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Abstract: Micro-electromechanical system (MEMS) suspended inductors have been widely studied in
recent decades because of their excellent radio frequency performance. However, the deformation of
the inductor coil and the performance variation usually occur to the MEMS suspended inductors when
the inductors are under mechanical shock. Few studies have been carried out on the performance
variation of MEMS suspended inductors under shock. In this study, the mechanism of the performance
variation of MEMS suspended inductors under mechanical shock is analyzed by combining theoretical
analysis and experiments. A theoretical analysis based on the lumped-element equivalent model is
presented and shock tests are carried out. The shock tests show that the main reason of the MEMS
suspended inductor performance variation after mechanical shock is the variation of the substrate
parasitic effect, which is caused by the variation of the suspension height of the inductor after shock.
The test results agree with the theoretical analysis.
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1. Introduction

Inductors play an important role in radio frequency integrated circuits (RFICs) [1–3].
Compared with traditional complementary metal oxide semiconductor (CMOS) on-chip inductors,
micro-electromechanical systems (MEMS) suspended planar spiral inductors have excellent
radio-frequency because the inductor coils are lifted several micrometers above the substrate [4–7].
MEMS suspended inductors have benefits in improving the performance of RFICs. However, MEMS
suspended inductors have poor mechanical properties and they tend to fail under mechanical shock
during fabrication, shipping, and operation. In particular, in some extreme application conditions,
MEMS devices tend to withstand high mechanical shocks of amplitudes in the order of 104–105 g [8].
A suspended structure inductor coil of the MEMS suspended inductor, for example, is susceptible to
deform or even damage under high mechanical shock. When the MEMS suspended inductors are
shocked and plastic deformation occurs, the radio frequency (RF) performance of the inductors will
vary which may affect the operation of the circuits. So, it is important to study the influence of shock
on the performance of the MEMS suspended inductors.

Many studies have been carried out to model the MEMS planar spiral inductor on silicon
substrate with a lumped-element equivalent circuit [9–11], among which the π model presented
by Yue et al. [12–14] is the most widely used one. Many researchers used the π model to design,
optimize, and study MEMS planar spiral inductors. Lee et al. analyzed the effects of the substrate
characteristic, metal line width, and suspension height on the suspended inductor performance with
the π model [15]. Palan et al. designed and characterized a levitated suspended RF inductor with the π

model [16]. Lu et al. designed and optimized a MEMS suspended inductor which was compatibility
with the CMOS process with the π model and the inductors they fabricated had a high Q factor [17].
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The π model characterizes the planar spiral inductors on silicon with a lumped-element equivalent
circuit. The method of calculating each element in the π model by geometric parameters and material
parameters is presented in Yue’s work. There are also some researchers who studied to improve the π

model. Cao et al. developed a 2-π model for on-chip spiral inductors [18]. An equivalent 2-π ladder
circuit were employed to model the series resistance and inductance, the proximity effect and the
skin effect of the conductor were considered. The 2-π model can provide an accurate performance
prediction and an excellent scalability for spiral inductor design. To obtain the model parameters of an
existing MEMS inductor, Huang et al. proposed an approach to extract the values of each element
of the π model by using the Y parameters of the inductors obtained by experimental tests [19,20].
The performance of the inductors and the factors affecting the loss can be analyzed with this method.

In this investigation, the performance variation mechanism of MEMS suspended inductors
under mechanical shock is analyzed by combining theoretical analysis and experiments. First,
a theoretical analysis is performed based on the π model. Then for the purpose of verification of the
theoretical analysis, shock experiments with a Machete hammer are carried out. The values of each π

model elements of the inductors shocked by different amplitude shock pulses are extracted. Finally,
the experiment results are presented. As the mechanical response analysis and shock test of MEMS
suspended inductors have been presented in our former paper [21], we mainly focus on the analysis
and discussion of the π model parameters variation and the performance variation mechanism of
MEMS suspended inductors under mechanical shock in this paper.

2. Theoretical Analysis

The RF performance of MEMS suspended inductors can be analyzed with the π lumped-element
equivalent model. Figure 1 shows the π model consisting of eleven elements. The equivalent circuit
in Figure 1 consists of a series branch and two parallel branches. The series branch characterizes the
parameters of the inductor coil and the parallel branch characterizes the parasitic parameters of the
silicon substrate.
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Figure 1. The π model of the micro-electromechanical system (MEMS) suspended inductor.

2.1. Series Branch of π Model

The series branch of π model consists of three elements: the series inductance of the inductor coil
Ls, the series resistance of the inductor coil Rs, and the series capacitance Cs.

The series inductance Ls characterizes the ability of the inductor to store magnetic energy and it
can be considered as a constant mainly decided by the geometry of the inductor coil when the wire
thickness is thin and the working frequency is high. For the planar spiral inductor coil, the inductance
value Ls can be calculated with the Greenhouse method [22]. The Greenhouse method calculates the
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inductance value of the inductor coil by summing the self-inductance of each wire segment and the
positive and negative mutual inductance between the wire segment pairs.

The series resistance Rs represent the metal loss mechanism which should be expressed as the
alternating current (AC) resistance of the inductor coil. Besides the material conductivity and the
cross-sectional area of the wire segments, Rs is also related to frequency. The AC resistance of the
conductor is higher than that of direct current (DC) resistance and the AC resistance increases with
frequency because of the existence of skin effect. The series resistance Rs can be expressed as [14]:

Rs =
ρ·l

w·te f f
(1)

where ρ, l, and w represent the resistivity, length, and width of the wire, respectively. te f f represent the
effective thickness defining the area of current flowing which can be expressed as Equation (2).

te f f = δ·(1− e−t/δ) (2)

where t and δ represent the thickness of the wire and the skin depth of the wire material, respectively.
The skin depth can be calculated with:

δ =

√
ρ

πµ f
(3)

where µ and f represent the permeability of the wire material and the frequency, respectively.
According to [18], the series resistance and inductance can also be modeled as a ladder circuit as

Figure 2 shows. R0 and L0 indicated the series resistance and inductance of the wire in DC condition.
To take skin effect and proximity effect into account, the additional resistor-inductor branch which
includes R1 and L1 in Figure 2 is introduced to represent each conduction layer in depth and the mutual
inductance Lm is added to model the magnetic interaction between the external field and internal
current. The analytical equation of each parameters in the ladder circuit can be referred to [18].
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The series capacitance Cs mainly represents the coupling capacitance caused by the overlap
between the inductor coil and the underpass because the adjacent turns are almost equipotential and
the effect of the crosstalk capacitance is negligible [14]. The wire and the underpass can be considered as
the upper and lower plates of the parallel plate capacitor. So, the series capacitance can be expressed as:

Cs = n·w2
·

εair
tairM1−M2

= n·w2
·
εair

h− t
(4)

where n represents the number of overlap, εair represents the permittivity of air, tairM1−M2 represent the
air layer thickness between the inductor coil and the underpass. tairM1−M2 is related to the suspension
height h, h indicates the distance between the inductor coil and the upper surface of the insulating layer,
the thickness of the underpass line is equal to the coil wire thickness t. n·w2 indicates the overlapping
area between the coil and the underpass.
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2.2. Parallel Branch of π Model

Each of the parallel branches of π model consists of three elements: the dielectric layer capacitance
Cd, the substrate parasitic resistance Rsub, and the substrate parasitic capacitance Csub.

An air layer exists between the inductor coil and the surface of the oxide layer, which is the
difference between MEMS suspended inductors and traditional on-chip inductors. So, an air layer
capacitance Cair is added to the traditional π model and the dielectric layer capacitance Cd consists
of Cair and the oxide capacitance Cox as Figure 1 shows. Considering the inductor coil as the upper
plate of the capacitor and the substrate surface as the lower plate of the capacitor, Cair and Cox can be
calculated with:

Cair =
1
2
·l·w·

εair
h

(5)

Cox =
1
2
·l·w·

εox

dox
(6)

where h and dox represents the suspension height and the oxide layer thickness respectively and εox

represents the permittivity of the oxide layer.
A larger area of the inductor coil and a lower suspension height will make the dielectric layer

capacitance Cd become higher and the capacitance coupling effect of the MEMS suspended inductor
become more significant.

Rsub and Csub represent the silicon substrate parasitic resistance and capacitance respectively.
Csub models the high-frequency capacitive effects occurring in the semiconductor silicon. Rsub and Csub
can be approximately proportional to the area occupied by the inductor and they can be calculated
with Equations (7) and (8) respectively.

Rsub =
2

l·w·GSi
(7)

Csub =
1
2
·l·w·CSi (8)

where GSi and CSi are conductance and capacitance per unit area for the substrate. GSi and CSi depend
on the substrate type and the substrate doping, they can be extracted from measurement results.

The parallel branch of the π model can be simplified to a resistor–capacitor parallel circuit as
Figure 3 shows.
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The resistance Rp and the capacitance Cp represent the substrate loss and the overall substrate
parasitic capacitance and they can be expressed as:

Rp =
1

ω2Cd
2Rsub

+
Rsub(Cd + Csub)

2

Cd
2 (9)
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Cp = Cox
1 +ω2(Cd + Csub)CsubRsub

2

1 +ω2(Cd + Csub)
2Rsub

2
(10)

where Cd can be expressed as:

Cd =
CoxCair

Cox + Cair
. (11)

The quality factor Q of the MEMS suspended inductor can be expressed as:

Q = 2π·

∣∣∣EM−peak − EE−peak
∣∣∣

Eloss
(12)

where EM−peak, EE−peak, Eloss represent the peak magnetic energy, the peak electric energy, and the
energy loss in one oscillation n cycle respectively. They can be expressed as:

EM−peak =
V0

2Ls

2·(ω2Ls2 + Rs2)
(13)

EE−peak =
V0

2(Cs + Cp)

2
(14)

Eloss =
2π
ω
·
V0

2

2
·(

1
Rp

+
Rs

ω2Ls2 + Rs2 ). (15)

By substituting Equations (13)–(15) into (12), the quality factor Q can also be expressed as:

Q =
ω·Ls

Rs
·

Rp

Rp +
[
(ω·Ls

Rs
)

2
+ 1

]
·Rs

·

1− Rs
2(Cs + Cp)

Ls
−ω2Ls(Cs + Cp)

 (16)

where the first term represents the magnetic energy stored and the ohmic loss in the inductor coil, the
second term represents the energy dissipated in the silicon substrate which represents the substrate
loss and the third term represents the self-resonance factor which describes the decrease of Q as the
peak electric energy increases.

As the shock sensitive direction of the suspended inductor is perpendicular to the plane of the coil,
the plastic deformation of the suspended inductor is mainly reflected in the variation of the suspension
height, which is the distance between the coil and the substrate. The variation of the suspension
height leads to the variation of series capacitance Cs and the air layer capacitance Cair. The geometric
parameters of the inductor coil i.e., coil length, wire width, and wire thickness will not vary greatly
when the suspended inductors are shocked so the series inductance Ls and the series resistance Rs

will not vary greatly. The substrate parasitic resistance Rsub and capacitance Csub will also not vary
significantly because they are related to the coil length, the wire width of the inductor coil, and the
doping of the silicon substrate.

When the suspended inductors are shocked and plastic deformation occurs to them, the suspension
height h will decrease. The distance between the plates of the capacitor decreases when the value of h
decreases, which will lead to the increase of the capacitance of Cs and Cair according to the Equations
(4) and (5) and the electric energy stored in the inductor will also increase. From Equations (9) and (10),
it can be seen that Rp will decrease and Cp will increase as Cd increases. The variation of Rp and Cp

will lead to the increase of the peak electric energy and the energy loss in one oscillation n cycle so
the quality factor Q will decrease when the suspended inductor is shocked and plastic deformation is
occurred to the inductor coil. From Equation (16), the effect of shock on the quality factor Q variation
is reflected in the two terms of substrate loss and self-resonant factor. The smaller the Rp is, the more
serious the substrate loss is. The higher the Cp and Cs are, the more the electric energy stored by the
suspended inductor is. A lower the Q value indicates a worse performance of the suspended inductor.
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3. MEMS Suspended Inductors Fabrication and Shock Test

3.1. MEMS Suspended Inductor Sample and Fabrication

In this study, we chose the 1.5 turns inductor in [17] as the inductor sample. The schematic of the
MEMS suspended inductor is shown in Figure 4 and the geometry parameters of the inductor coil are
shown in Figure 5.

1 
 

 

 

Figure 4. Schematic of the MEMS suspended inductor sample. (a) Trimetric view. (b) Side view.
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Figure 5. Geometric parameters of the MEMS suspended inductor coil. (a) The top view of the inductor
coil. (b) The side view of the inductor coil.

In Figure 5, the outer diameter dout, inner diameter din, wire width w, spacing s, wire thickness t,
and suspension height h are 250 µm, 170 µm, 20 µm, 20 µm, 10 µm, and 20 µm, respectively.

The MEMS suspended inductors are fabricated on a silicon wafer and the thickness of the wafer is
0.5 mm. Copper is employed as the material of the inductor and a surface micromachining process
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based on a positive photoresist is employed to fabricate this MEMS suspended inductor. The fabrication
process is shown in Figure 6 and the whole process can be illustrated by the following steps [17]:

1. As Figure 6a shows, a 1.5 µm thick silicon oxide insulating layer is first deposited using a plasma
enhanced chemical vapor deposition method. A chromium/copper seed layer is deposited on the
silicon oxide by a magnetron sputtering process, the thickness of copper and chromium is 2000
Å and 600 Å, respectively. A 10 µm AZ4620 positive photoresist is spin coated and patterned.
Then the underpass lines are electroplated in the molds, electroplating thickness is 10 µm. Copper
sulfate is selected as the electroplating bath in all electroplating process steps.

2. As Figure 6b shows, a 10 µm AZ4620 photoresist is spin coated and patterned. Then, the pillars
of the suspended inductor are electroplated.

3. As Figure 6c shows, the 1000 Å copper seed layer is deposited and a 10 µm AZ4620 photoresist is
spin coated and patterned. Then, the 10 µm spiral coil is finally electroplated.

4. As Figure 6d shows, the suspended structure is released by removing all photoresist and seed
layers. Photoresist is removed by sodium hydroxide and acetone, chromium seed layer is removed
by mixed solution of potassium ferricyanide and sodium hydroxide, copper seed layer is removed
by mixed solution of ammonia and hydrogen peroxide.
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Figure 6. Fabrication process of the MEMS suspended inductor. (a) Seed layer deposition, photoresist
(PR) mold patterning and copper electroplating, (b) PR mold patterning and copper electroplating,
(c) Seed layer deposition, PR patterning and copper electroplating, (d) PR strip and seed layer etch.

The scanning electron microscopy (SEM) image of the fabricated MEMS suspended inductor is
shown in Figure 7.

The measurement results of the geometric parameters of the suspended inductors are: the outer
diameter dout is in the range of 248.6–251.7 µm, the inner diameter din is in the range of 166.9–171.2 µm,
the wire width w is in the range of 20.1–22.8 µm, the spacing s is in the range of 18.3–20.0 µm, the wire
thickness is in the range of 7.7–9.1 µm, and the suspension height is in the range of 17.7–18.9 µm.
From the measurement results we can find that the consistency of the fabricated inductors is good.
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3.2. Shock Test

The fabricated MEMS suspended inductors were tested by using a Machete hammer. The Machete
hammer test machine is shown in Figure 8. The shock pulses generated by Machete hammer can be
considered as half-sine waveforms and the amplitude of the shock pulses generated by the Machete
hammer we used range from 8500 to 20,400 g and the durations range from 100 to 120 µs [21].
By changing the lifting height of the hammer, shock loads of different amplitudes can be obtained.
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In order to ensure the consistency of the inductors for the shock test, all inductors for the test were
from the same wafer. The wafer with MEMS suspended inductors were divided into several dies and
each die had two inductors on it. Three or four dies were adhered to each test shell like Figure 9a
shows and the shell was fixed in the test fixture during the shock test like Figure 9b shows.

The normal direction of the coil plane, which is the shock sensitive direction of the inductor,
was made parallel to the axial direction of the hammer. The direction of the shock applied was
perpendicular to the coil plane.

The MEMS suspended inductors, which were shocked by three kinds of shock loads, were obtained
after the shock test. The durations of the three kinds of shock loads were the same and the amplitudes
of the three kinds of shock loads were 12,500 g, 13,900 g, and 16,600 g, respectively. Twelve MEMS
suspended inductors were employed for each shock test and the shocked inductors were examined
with an optical microscope after test. When the shock amplitude was 12,500 g, all of the tested inductors
remained intact and no visible damage was found. When the shock amplitude was 13,900 g, no visible
damage was found in 7 of the 12 tested inductors. When the shock amplitude was 16,600 g, only one
tested inductor remain intact and fracture occurred in 11 of the 12 tested inductors.
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the shell.

4. Results and Discussion

The performance of four inductors was measured, one of which was an unshocked inductor and
the other three were the inductors shocked by three kinds of shock loads with amplitudes of 12,500 g,
13,900 g, and 16,600 g, respectively. The pictures of the three shocked inductors are shown in Figure 10.

From Figure 10 we can find that plastic deformation occurred to the inductor coils after they were
shocked. The inductors after the 13,900 g and 16,600 g shock test had a severer deformation than the
inductor after the 12,500 g shock test. We can also find that the inductor coil deforms horizontally
besides deforming vertically and the spacing of the coils decreases after shock test from Figure 10,
especially for the inductor after the 16,600 g shock test.

With finite element simulation software ANSYS, the variation of the Von Mises equivalent stress
and the deformation, which is the decrease of the suspension height, of the inductor coil during shock,
can be obtained. The results are listed in Table 1.
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Table 1. The simulated stress and deformation of the inductor under shock.

Shock Load Amplitude of the
Inductor/g

Max Von Mises Stress by
Simulation/MPa

Max Deformation by
Simulation/µm

0 0 0
12,500 90.31 5.48
13,900 101.16 6.19
16,600 119.94 7.83

The S parameters of these MEMS suspended inductors were measured by an Agilent N522A
vector network analyzer and a Cascade probe station. The de-embedded quality factors of the four
inductors are shown in Figure 11.
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As shown in Figure 11, the maximum quality factor of the inductor, which had not been shocked,
reached ~40 at 7.5 GHz. When the inductor was shocked by a 12,500 g shock load, the maximum
quality factor of the inductor could reach ~30. When the shock amplitude was 13,900 g, the maximum
quality factor of the inductor decreased to 23. The maximum quality factor was only 7.8 and the
curve became much smoother compared to that of the inductor before the shock test when the shock
amplitude reached 16,600 g. From Table 1 we can find that the maximum deformation is about 8 µm
when the inductor was subjected to a 16,600 g shock, which means the coil deformed severely and it
was close to the underpass and the substrate. The loss brought by high parasitic capacitance is more
serious at high frequencies which made the quality factor greatly damped. As the amplitude of the
shock load increases, the maximum quality factor of the MEMS suspended inductor decreases, which
means the performance of the inductor becomes worse.

The values of each π model elements: Cs, Ls, Rs, Cp, and Rp can be extracted with the method
in [13,19,20] by using the S parameters.

Figure 12 shows the series resistance Rs of the inductors. From Figure 12 we can find that the
series resistance of the inductors increases with the frequency because of the skin effect. The skin effect
results in current flowing in the outer area of the wires and the effective cross-sectional area of the
wires decreases when the frequency is high.
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Figure 12. The series resistance of the inductor coils.

It can be found that the Rs curve of the inductor shocked by 12,500 g is not greatly varied from
that of the unshocked inductor from Figure 12. However, when the shock amplitude rises to 13,900 g
and 16,600 g, the series resistance of the inductor coil increases, which means that the mechanical
shock also leads to the increase of ohmic loss of the MEMS suspended inductor. We believe that this is
because the enhancement of the proximity effect of the wires. The mechanism of the proximity effect is
the superposition of the excitation current and the eddy currents, which is caused by the magnetic field
generated by the adjacent wire, changes the current distribution in the wires and results in the decrease
of the effective cross-sectional area of the wires [18,23]. The proximity effect leads to the increasing
of the effective resistance of the inductor wires. From Figure 10, we can find that the inductor coil
deforms horizontally besides deforming vertically, which results in the decrease of the spacing between
the adjacent wires of the inductor coil. The decrease of spacing will lead to the increase of the eddy
currents in wires because the influence of the magnetic field generated by the adjacent wire on them
are enhanced, which indicates the enhancement of the proximity effect.

Figure 13 shows the series inductance Ls of the inductors. From Figure 13 we can find that Ls

does not vary much with frequency. The series inductance values of the inductors are all in the range
of 1.1–1.3 nH and the inductance values of the shocked inductors are not varied greatly from the
unshocked inductors. So, the wire width, wire thickness, and length of the coil have not varied greatly
after the inductors are shocked.
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According to Equation (4) in Section 2.1, the series capacitance Cs is related to the suspension
height of the coil. So, the series capacitance Cs can be predicted and calculated with the simulated
deformation of the coil in Table 1. The calculated and the extracted series capacitance are listed in
Table 2.

Table 2. The series capacitance Cs of the inductors.

Shock Load Amplitude of
the Inductor/g

The Calculated Series
Capacitance Cs/fF

The Extracted Series
Capacitance Cs/fF

0 0.42 0.35
12,500 0.84 0.44
13,900 0.97 0.65
16,600 1.72 1.8

From Table 2 we find that the extracted Cs of the unshocked inductor agrees with the calculated
Cs. When the inductor was shocked by 12,500 g, the extracted Cs has little variation and it is less than
the calculated Cs. This means that only slight plastic deformation occurred to the inductor coil as the
maximum Von Mises stress of the coil (90.31 MPa) is below the yield strength of copper (100 MPa [24]).
When the shock amplitude was 13,900 g, the extracted Cs increases which means obvious plastic
deformation occurred to the coil. The extracted Cs is less than the calculated Cs, we believe that this is
because the maximum Von Mises stress (101.16 MPa) is near the yield strength of copper and the actual
deformation of the coil is less than the simulated maximum deformation. When the shock amplitude is
16,600 g, the extracted Cs agrees with the calculated one which means severe plastic deformation occurs
to the coil. As the shock load amplitude of the suspended inductors increases, the series capacitance
Cs increases, which means that the suspension height of the coil decreases. As the shock amplitude
becomes higher, the decrease of the suspension height becomes more significant, which is consistent
with the theoretical analysis in Section 2.

Figures 14 and 15 show the parasitic resistance Rp and the parasitic capacitance Cp in the equivalent
model of the suspended inductor. Rp and Cp represent the substrate loss and the overall substrate
parasitic capacitance respectively. They represent the combined effects of Cd, Csub, and Rsub in the
parallel branches of the π model. Rp and Cp are frequency depended.
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Figure 14. The parasitic resistance of the MEMS suspended inductors.

From Figure 14 we can find that the parasitic resistance Rp decreases as the frequency increases,
which indicates that the influence of the substrate loss on the inductor performance is much more
significant at higher frequency. The higher the shock amplitude is, the smaller the parasitic resistance
is, which is consistent with the theoretical analysis in Section 2. The decreasing of Rp indicates that the
substrate loss becomes severer with the increases of the shock amplitude.

From Figure 15 we can find that the parasitic capacitance Cp also decreases as the frequency
increases, which indicates that the capacitance of the inductor has more significant influence on the
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inductor performance at lower frequency. The higher the shock amplitude is, the higher the parasitic
capacitance is. The electric energy stored by the suspended inductor will be more as the parasitic
capacitance is higher. Besides Rs, Cs, and Ls, the parasitic effect of the substrate also has influence
on the performance of the MEMS suspended inductor. Although Rs, Cs, and Ls did not vary much
after the inductor shocked by 12,500 g shock load, its Q factor still decreases obviously as the parasitic
resistance decreases and the parasitic capacitance increases.
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The influence of shock on the performance of the MEMS suspended inductor is reflected in
the following aspects: the increase of ohmic loss caused by the increase of the series resistance Rs,
the increase of substrate loss caused by the decrease of the parasitic resistance Rp, the increase of electric
energy stored by the inductor caused by the increase of the series capacitance Cs and the parasitic
capacitance Cp.

5. Conclusions

In this paper, the mechanism of the performance variation of MEMS suspended inductors under
mechanical shock is analyzed by combining theoretical analysis and experiments. First, we theoretically
analyzed the variation of the π model parameters caused by the MEMS suspended inductor coil
deformation after being shocked. Then MEMS suspended inductors were fabricated and shock tests
were carried out. We measured the inductors shocked by shock load with different amplitude and we
extracted the π model parameters of the inductors. The variation of the performance and the π model
parameters of the inductors before and after shock were analyzed. We find that the quality factor of the
inductors decreases in varying degrees after shock. The higher the shock amplitude is, the worse the
inductor performance is. The performance variation of the inductors after shock is mainly caused by
the variation of the substrate parasitic effect. The loss caused by the increase of the substrate parasitic
capacitance and the decrease of the substrate parasitic resistance are the main reasons for the decrease
of the quality factor of the MEMS suspended inductor after shock.
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