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Abstract: In this study, we incorporated silver nanowires (AgNWs) into poly(3,4-ethylenedioxythiophene):
poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for inverted perovskite solar
cells (PVSCs). The effect of AgNW incorporation on the perovskite crystallization, charge transfer,
and power conversion efficiency (PCE) of PVSCs were analyzed and discussed. Compared with neat
PEDOT:PSS HTL, incorporation of few AgNWs into PEDOT:PSS can significantly enhance the PCE
by 25%. However, the AgNW incorporation may result in performance overestimation due to the
lateral charge transfer. The corrosion of AgNWs with a perovskite layer was discussed. Too much
AgNW incorporation may lead to defects on the interface between the HTL and the perovskite layer.
An extra PEDOT:PSS layer over the pristine PEDOT:PSS-AgNW layer can prevent AgNWs from
corrosion by iodide ions.
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1. Introduction

Perovskite solar cells (PVSCs) are one of the most promising photovoltaic technologies due to their
rapid increase in power conversion efficiency (PCE) from 3.8% to 24.2% in a very short period of time
as well as offering specific advantages such as lightweight, low cost, and simple fabrication compared
to traditional inorganic solar cells [1–9]. Among the PVSCs, inverted-type (planar) cells with a device
structure of indium tin oxide (ITO)/hole transport layer (HTL)/perovskite/electron transport layer
(ETL)/metal have emerged as an alternative to conventional PVSCs because of their low-temperature
processability [10–13]. Inverted architecture devices can be processed at relatively low temperatures
(~120 ◦C) compatible with flexible substrates. Moreover, inverted PVSCs show potential to be
manufactured at a low cost and at an industrial scale. Poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS) is commonly used for the HTL of inverted PVSCs due to (a) high transparency in
the visible range, (b) easy processing, (c) high work function, (d) tunable conductivity (10−4–10−3 S/cm),
and (f) significant mechanical flexibility [14–17]. However, PEDOT:PSS also possesses some drawbacks,
such as inefficient electron-blocking properties and limited chemical stability arising from its acidity
and highly hygroscopic nature [1,18–20]. Several new materials, including NiOx [21,22], CuSCN [23],
PbS [24], and graphene oxide [25], have been investigated widely as potential alternatives to PEDOT:PSS
to improve the resistance to electron transport and electrical conductivity. Besides, doping polyethylene
oxide [26], MoOx [27,28], GeO2 [29], or graphene oxide [30] into PEDOT:PSS can increase electrical
conductivity and hole extraction, reduce the series resistance, and thereby enhance PCE. It was also
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found that adjusting the pH value of PEDOT:PSS by NaOH [31], KOH [32], or dopamine [33] could
promote effectively the cell stability. Although numerous studies have reported improvement or
alternatives for PEDOT:PSS, it still remains a challenge to achieve high efficiency.

Compared with 0-D metal nanoparticles, 1-D silver nanowires (AgNWs) display superior electrical
conductivity due to the fast electron transport on their axial direction. Applying AgNWs in transparent
conductive electrodes show not only excellently flexible properties but also a very high ratio of DC
conductivity to optical conductivity, indicating AgNWs are one of the best potential replacements
for indium tin oxides [34]. AgNW networks have been improved extremely in terms of the electrical
conductivity, optical properties, and manufacturing [35–39]. Therefore, some studies have used AgNWs
to fabricate the top electrodes [40–42] and bottom window electrodes [43,44] of PVSCs, revealing
feasibility of AgNW electrodes on PVSCs. In this study, we incorporated AgNWs into the PEDOT:PSS
as a HTL for inverted PVSCs. The effect of AgNWs on the formation of the perovskite layer, charge
transfer resistance, and PCE of PVSCs were studied with respect to varying the concentration of AgNWs.
Compared with neat PEDOT:PSS HTL, incorporation of few AgNWs into PEDOT:PSS significantly
enhances the PCE by one-fourth. The corrosion of AgNWs with a perovskite layer was discussed.

2. Experimental Setup

2.1. Materials

ITO-coated glass substrates (7 Ω·sq−1) were purchased from Ruilong optoelectronics (Taiwan).
PDOT:PSS and 6,6-phenyl-C61-butyric acid methyl ester (PCBM) were purchased from Grand-Hand
(Taiwan). Methylamine and silver nitrate were purchased from Showa Chemical (Tokyo, Japan).
Hydrogen iodide and lead (II) iodide were purchased from Alfa Aesar (Shanghai, China) and Acros
Organics (Geel, Belgium), respectively. Hexadecyl trimethyl ammonium bromide (CTAB), anhydrous
dimethyl sulfoxide (DMSO), and polyvinylpyrrolidone (PVP) were purchased from Sigma-Aldrich
(Saint Louis, MO, USA) and used as received. Methylamine iodide (MAI) was synthesized from
methylamine and hydroiodic acid (see supporting information). Other chemicals and solvents such as
chloroform, dimethyl formamide (DMF) were purchased from J.T. Baker (Phillipsburg, NJ, USA) and
used without further purification.

2.2. Device Fabrication

Typically, the ITO-coated glass substrate was masked by PI tape in a T shape (2 × 1.5 cm) and
then the unmasked portion of the ITO was etched with zinc powder and diluted HCl (<6 M). After
few seconds, the residual zinc powder was removed by washed with ethanol. Then the mask was
removed and cleaned three times with detergent, ethanol, and acetone. AgNWs were synthesized
as reported previously [45,46], with some of the parameters modified slightly to obtain fine AgNWs
(see supporting information). The mixture of PEDOT:PSS and AgNWs EG solution (0, 0.17, 0.51, and
0.85 wt%) in the weight ratio of 20:1 was coated on ITO glass at 3000 rpm for 60 s and then dried
by heating at 120 ◦C for 10 min. MAI and PbI2 were mixed in DMSO/DMF in the volumetric ratio
of 4:6 at 60 ◦C to obtain a 1.2-M MAPbI3 solution. The solution was coated on the HTL under the
conditions of 1000 rpm for 10 s, followed by 5000 rpm for 20 s and heating at 100 ◦C to complete the
film formation. 10 mg of PCBM and 0.8 mg of CTAB were dissolved in 500 µL of chloroform with
ultrasonication and then spin-coated onto the perovskite layer at 1250 rpm for 30 s. Finally, near
100-nm thick silver was thermally deposited on the ETL layer by a thermal evaporator (Kao-Duen
Tech, Taiwan) under a vacuum of 5 × 10−6 torr and a plating rate of 0.8–0.9 Å/s. The structure of the
PVSC is shown schematically in Figure S1.

2.3. Measurements and Characterization

The crystalline phase of AgNWs and MAPbI3 were characterized through X-ray diffraction (XRD)
using an X-ray diffractometer (Miniflex II, Rigaku, Tokyo, Japan) and Cu Kα radiation (wavelength
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0.15418 nm) with a fixed operating voltage of 30 kV and a fixed current of 15 mA. The sheet
resistances of the PEDOT:PSS incorporated with AgNWs were measured using a four-pin probe
meter (Loresta-GP, Mitsubishi Chemical, Tokyo, Japan) with an MCP-T610 probe. The morphology
of AgNWs, MAPbI3, and the devices were examined using a field-emission scanning electron
microscope (SEM) (JSM-7401F, JEOL, Tokyo, Japan). The length of AgNWs was determined using an
optical microscope (OM) (M835, M&T Optics, Taiwan). The absorption and emission spectra of the
ITO/PEDOT:PSS-AgNW/MAPbI3 were determined using a UV-Vis spectrometer (V770, Jasco, Tokyo,
Japan) and a fluorescence spectrometer (LS-55, Perkin Elmer, Waltham, MA, USA), respectively. The
photocurrent density-voltage (J-V) characteristics were measured under irradiation of 100 mW·cm–2

using a solar simulator (MFS-PV, Hong-Ming Technology, Taiwan) equipped with a source meter
(Keithley 2400, Keithley Instruments, Cleveland, OH, USA). Electrochemical impedance spectra (EIS)
were measured over the frequency range of 50 mHz–100 kHz with a potential perturbation of 10 mV
using an electrochemical workstation (Zennium, Zahner Elektrik, Kronach, Germany).

3. Results and Discussion

During the AgNW synthesis process, both length and diameter of AgNWs increase with
reaction time. In order to prevent the AgNWs from exceeding HTL in thickness to conduct charge
recombination or current leakage, we shortened the reaction time to make finer ones in our experiments.
The as-prepared AgNWs had lengths of ~20 µm and diameters of 20–30 nm (Figure 1), confined by the
thickness of the HTL. Although PEDOT:PSS is electrically conductive in nature, the sheet resistance of
the PEDOT:PSS layer really decreases with the increase of AgNW content (Figure S2), revealing the
AgNW incorporation can improve the conductivity of the HTL.
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Figure 1. Typical (a) optical microscope (OM) and (b) scanning electron microscope (SEM) images of
as-prepared AgNWs.

Observing in the XRD patterns (Figure 2), neither an obvious change on the crystallinity of
MAPbI3 for the PEDOT:PSS-AgNW HTL nor a peak attributed to PbI2 (12.7◦) was found, implying that
AgNW incorporation did not lead to PbI2 separated out from MAPbI3. Note that the XRD patterns
did not display the main peak at 37.8◦ corresponding with the (111) plane of AgNWs because the
AgNWs are few and sheltered by the MAPbI3 layer. Figure 3 shows the top-view SEM images of the
morphology of the MAPbI3 layer upon the HTL with various AgNW contents. The average crystal
size of MAPbI3 in the range of 200–220 nm is not strongly dependent on the AgNW contents in the
HTL. However, the PL intensity of MAPbI3 decreases with increasing AgNW amount in the HTL but
increases with further increasing AgNW amount (Figure 4). The fluorescence intensity results from the
electron-hole recombination. Therefore, the PL analysis implies that moderate AgNW incorporation
can reduce charge recombination rate. The AgNW incorporation also induces the slight increase on the



Micromachines 2019, 10, 682 4 of 11

absorption in the range of 300–400 nm (Figure 5), which may arise from surface plasmon resonance
absorption of AgNWs [47].
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Figure 6 shows the J-V curves of the PVSCs with various AgNW incorporations in HTL.
The corresponding characteristic properties are summarized in Table 1. The experimental results show
that the PCEs of the PVSCs increase with increasing AgNW content in the HTL, reached a maximum at
PVSC-2 (0.51 wt% AgNWs), and decreased with further increasing AgNW content (PVSC-3). The order
is reciprocal to the PL intensity. Because the decrease of the fluorescence intensity (quenching) indicates
the decrease of electron-hole recombination rate, the enhancement on PCE caused by the AgNW
incorporation may result from the rapid hole transfer away through AgNWs to suppress the charge
recombination. The PCE can be enhanced by approximately 25% compared to the pristine cell (PVSC-0).
Figure 7 displays the Nyquist plots of the EIS for the PVSCs with various AgNW incorporations in the
HTL. As listed in Table 1, the external (R1), interface (R2), and charge recombination resistances (R3)
appears sequentially from high to low frequency, respectively. With the increase of AgNW content, R2

decreases significantly, whereas R3 reaches a maximum at 0.51 wt% AgNW incorporation. The results
indicate that the AgNW incorporation decreases the interface resistance and the rate of electron-hole
recombination, which is consistent with PL and J-V analyses. However, too much AgNW incorporation
(0.85 wt% AgNWs) leads to high PL intensity, low PCE, high interface resistance, and low resistance
of charge combination. Figure S3 shows the monochromatic incident photon-to-electron conversion
efficiency (IPCE) spectrum of PVSC-2 (the best cell). The calculated JSC from integration of the IPCE
over the AM 1.5 G is 20.6 mA/cm2, which is smaller than the value of 24.3 mA/cm2 obtained from J-V
curve listed in Table 1. The discrepancy in the two methods may arise from different light intensity,
mismatch in the absorption spectrum, or degradation of device [48,49]. However, the difference in JSC

values obtained from the IPCE and J-V curve is much larger than that reported in literature. To realize
the cause of the discrepancy, we measured the performance of the solar cells with a mask. The JSC

and PCE led to a 5–10% reduction after applying a mask. Therefore, the enhancement on JSC and PCE
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by incorporating AgNWs may result partially from the lateral charge transport, which overestimates
the performance.Micromachines 2019, 10, x 8 of 14 
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Table 1. Photovoltaic characteristics of PVSCs incorporated with various AgNW amounts in the hole
transport layer.

Samples AgNW Solution
(wt%)

Voc
(V)

Jsc
(mA·cm−2)

FF
(%)

η
(%)

R1
(Ω)

R2
(kΩ)

R3
(kΩ)

PVSC-0 0 0.89 19.6 65.4 11.4 7.6 11.6 5.8
PVSC-1 0.17 0.86 20.4 73.0 12.9 5.9 1.6 3.3
PVSC-2 0.51 0.88 24.3 67.0 14.3 10.2 1.0 7.4
PVSC-3 0.85 0.84 22.2 64.9 12.1 10.9 2.1 3.0
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Figure 7. Nyquist plots of the electrochemical impedance spectra of PVSCs with various
AgNW incorporations.

The SEM image reveals that some defects were found in the HTL for high AgNW incorporation
(Figure 8a). We infer that too many AgNWs might have protrude out of the HTL and contacted the
MAPbI3 solution when the subsequent perovskite layer was coated. The iodide ion in the MAPbI3 might
react with AgNWs to form defects [50]. A protection layer may prevent AgNWs from reacting with
halogen ions to form nonconducting silver halide, deteriorating the optoelectronic properties [51,52].
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In the previous study [45], we proved that PEDOT:PSS can prevent AgNWs from corrosion by the
iodine electrolyte. In order to verify the argument, we spin-coated extra PEDOT:PSS layers upon
the pristine PEDOT:PSS-AgNW layer to prevent AgNWs from touching the MAPbI3 solution. After
coating an extra one, two, or three PEDOT:PSS layers, no defects were found in the interface between
the MAPbI3 layer and the PEDOT:PSS–AgNW layer (Figure 8b–d). The PCE was increased from 12.14%
to 13.04% with one extra PEDOT:PSS layer, whereas too much PEDOT:PSS (spin-coating PEDOT:PSS
two or three times) makes the PCE decline (Figure S4 and Table 2). Figure 9 shows the Nyquist
plots of the EIS for the PVSCs with extra PEDOT:PSS layers. The resistance of charge recombination
(R3) increases with one covering PEDOT:PSS layer (PVSC-3-1L) to prevent against iodine-mediated
corrosion. However, too much PEDOT:PSS coating decreases the resistance of charge recombination,
which increases the probability of electron-hole recombination due to the increase of distance of charge
transport and thereby decreases the PCE.
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Table 2. Photovoltaic characteristics of PVSC-3 with coating extra PEDOT:PSS layers over the pristine
AgNW-PEDOT:PSS hole transport layer.

Samples AgNW Solution
(wt%)

Number of Extra
PEDOT:PSS Layers

Voc
(V)

Jsc
(mA·cm–2)

FF
(%)

η
(%)

R1
(Ω)

R2
(Ω)

R3
(kΩ)

PVSC-3-1L 0.85 1 0.97 21.8 51.5 13.0 18.1 514.8 4.6
PVSC-3-2L 0.85 2 0.93 19.1 51.4 9.1 20.4 567.9 2.1
PVSC-3-3L 0.85 3 0.92 19.4 54.5 9.8 113.7 562.5 1.9

4. Conclusions

We prepared the inverted PVSCs with incorporating AgNWs into PEDOT:PSS as a HTL. The AgNW
incorporation increased the rate of charge transport and suppressed the electron-hole recombination.
Incorporation of 0.51 wt% AgNWs revealed a maximum improvement, being a 25% enhancement
on the PCE. However, the AgNW incorporation may overestimate performance due to the lateral
charge transfer. Too much AgNW incorporation may result in the contact of AgNWs with the MAPbI3

solution, thereby forming defects on the interface between the HTL and the MAPbI3 layer. An extra
PEDOT:PSS layer over the pristine PEDOT:PSS-AgNW layer can prevent AgNWs from corrosion by
iodide ions, whereas too much PEDOT:PSS protection may increase the distance of charge transport
and may thus decrease the PCE.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/10/682/s1,
Figure S1: Schematic representation of structure of the cell device; Figure S2: Variation on the sheet resistance of
HTL with various AgNW contents; Figure S3: IPCE spectrum of PVSC-2; Figure S4: Photocurrent density-voltage
curves of PVSCs with coating extra PEDOT:PSS layers.
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