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Abstract: Wire resistance in metal wire is one of the factors that degrade the performance of memristor
crossbar circuits. In this paper, an analysis of the impact of wire resistance in a memristor crossbar
is performed and a compensating circuit is proposed to reduce the impact of wire resistance in
a memristor crossbar-based perceptron neural network. The goal of the analysis is to figure out
how wire resistance influences the output voltage of a memristor crossbar. It emerges that the
wire resistance on horizontal lines causes the neuron’s output voltage to vary more than the wire
resistance on vertical lines. More interesting, the voltage variation caused by wire resistance on
horizontal lines increases proportionally to the length of metal wire. The first column has small
voltage variation whereas the last column has large voltage variation. In addition, two adjacent
columns have almost the same amount of voltage variation. Under these observations, a memristor
crossbar-based perceptron neural network with compensating circuit is proposed. The neuron’s
outputs of two columns are put into a subtractor circuit to eliminate the voltage variation caused by
the wire resistance. The proposed memristor crossbar-based perceptron neural network is trained to
recognize the 26 characters. The proposed memristor crossbar shows better recognition rate compared
to the previous work when wire resistance is taken into account. The proposed memristor crossbar
circuit can maintain the recognition rate as high as 100% when wire resistance is as high as 2.5 Ω.
By contrast, the recognition rate of the memristor crossbar without the compensating circuit decreases
by 1%, 5%, and 19% when wire resistance is set to be 1.5, 2.0, and 2.5 Ω, respectively.
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1. Introduction

Neuromorphic computing, inspired from biological perception, was introduced by C. Mead in the
late 1980s [1]. It has been expected to become an alternative architecture to overcome the bottleneck
of von Neumann computer architectures [1,2]. Neuromorphic computing refers to a hardware
implementation of a brain-inspired system, which has the capabilities of parallel processing like a
human brain. For realizing neuromorphic computing systems, various research activities, based on
CPUs (Central Processing Units), GPUs (Graphics Processing Units), FPGAs (Field-Programmable Gate
Arrays), analog circuits, memory circuits, etc., have been proposed in the past two decades [3–8]. These
architectures are based on CMOS (Complementary-Metal-Oxide-Semiconductor) technology, which
is approaching the end of their capabilities because scaling CMOS down faces several fundamental
limiting factors stemming from electron thermal energy and quantum-mechanical tunneling [9,10].
The memristor crossbar array has been one of the promising candidates for realizing neuromorphic
computing systems because crossbar architecture can be made with high density and low cost [11].
Memristor was postulated by Leon O. Chua in 1971 as the fourth basic circuit element and experimentally
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demonstrated by HP Lab in 2008 [12,13]. A memristor is a resistor with modifiable resistance, which
makes it ideal for mimicking the synaptic plasticity of biological neurons [14]. The early memristor-based
synaptic circuits are composed of memristors and CMOS transistors [15–17]. However, pure memristor
crossbar arrays without CMOS devices seem to be more efficient in terms of their integration and
power consumption [18–23]. Miao Hu et al. proposed a crossbar synaptic array that is composed of a
plus and minus crossbar array representing plus- and minus-polarity connection matrices for analog
neuromorphic computing [20]. Such a pure memristor crossbar array is very effective in realizing the
bio-inspired systems in term of power consumption and area occupation. To reduce area and power
consumption, S. N. Truong proposed a new memristor crossbar array architecture which is composed
of a single memristor array and a constant-term circuit [21].

In a memristor array, some amount of voltage drop can be caused by interconnect resistance, also
known as wire resistance along the row and the column lines [19,24–27]. Wire resistance degrades the
performance of the circuit more seriously when the array size increases [25]. To mitigate the impact
of wire resistance, several interesting schemes were proposed [24–27]. These schemes are effective
when they are applied to a memristor crossbar array, in which memristors are used as binary switches
between two distinct high and low resistance states (HRS and LRS, respectively). However, the impact
of wire resistance in an analog memristor crossbar array for realizing the synaptic weight matrix
was not fully considered. In this work, we propose a memristor crossbar array with a compensating
circuit for implementing the analog synaptic array of a perceptron neural network. The impact of wire
resistance is mitigated by compensating the voltage variation of two adjacent columns.

In this work, the output voltages of columns are figured out with taking the existing of wire
resistance into account. The mathematical analysis and the simulation result show that the output
voltage of columns increase, which is caused by the amount of voltage lost from wire resistance. The
column close to the first one has a small variation of voltage, compared to the one far from the first
column. From these observations, we propose a compensating circuit to mitigate the voltage variation
caused by the wire resistance in a memristor crossbar array.

2. Materials and Methods

Figure 1 shows an interesting memristor array circuit for implementing the synaptic weight matrix
of a perceptron neural network [21]. A single memristor array and a constant-term circuit are used for
realizing the negative and positive synaptic weights, instead of using two complementary crossbar
arrays [20,21].

In Figure 1, gj,k is the memristor’s conductance at the crossing point between the jth row and the
kth column. VIN,j is the input voltage applied to the jth row. VC,k is the column-line voltage on the kth
column. The column line, VC,F, is added in Figure 1 instead of using another memristor array [21].
The column line, VC,F, is connected to the inputs, from VIN,1 to VIN,m. In Figure 1, VC,F enters GF that
constitutes an inverting OP amp with the negative feedback resistor, RF1. The output voltage of GF is
VF that is connected to all the column lines from VC,1 to VC,n via RF2, as shown in Figure 1. By applying
Kirchhoff current law to the column line, VC,F, we can calculate VF and VO,k with Equations (1) and (2).

VF = −
m∑

j=1

RF1

RB
VIN, j. (1)

VO,k = −

 m∑
j=1

(
R0 · g j,k ·VIN, j

)
+

R0

RF2
VF

. (2)

If we choose RF1 = RF2 and combining Equation (1) with Equation (2), the following Equation (3)
can be obtained [21].
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VO,k = −

 m∑
j=1

(
R0 · g j,k −

R0

RB

)
VIN, j

. (3)

If −
(
R0 · g j,k −

R0
RB

)
is defined as a synaptic weight of the jth row and kth column, wj,k, we can

rewrite Equation (3) with Equation (4).

VO,k =
m∑

j=1

w j,kVIN, j, (4)

where w j,k = R0
(

1
RB
− g j,k

)
= R0

(
1

RB
−

1
M j,k

)
.
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Figure 1. The memristor-based crossbar architecture with a single memristor array and a constant-
term circuit for realizing the synaptic matrix of a perceptron neural network [21]. 

Equation (4) is used for calculating the output voltage of the kth column. The output of each 
column is a summation of the weighted inputs, hence each column works as a perceptron neuron. In 
Equation (4), Mj,k is the memristance value of the crossing point between the jth row and kth column. 
RB is a constant. The synaptic weight, wj,k, can be decided to be either negative or positive by adjusting 
the memristance, Mj,k. The output of the perceptron neuron is decided by a threshold function which 
produces 0 or 1. By adding the comparator to the output voltage, VO,k, we can decide if the neuron’s 
output of the kth column, OUTk, should be activated or not. OUT௞ = ൜1,  ifV୓,௞ ≥ Vୖ୉୊0,  ifV୓,௞ < Vୖ୉୊. (5) 

In previous work, the impact of wire resistance is ignored. However, in the crossbar array, the 
voltage drop along column and row lines cannot be omitted [19,24–27]. It becomes more serious when 
the array size increases [24]. The wire resistance between two adjacent junctions is modeled by a 
small-value resistor, r, as shown in Figure 2. 

Figure 1. The memristor-based crossbar architecture with a single memristor array and a constant-term
circuit for realizing the synaptic matrix of a perceptron neural network [21].

Equation (4) is used for calculating the output voltage of the kth column. The output of each
column is a summation of the weighted inputs, hence each column works as a perceptron neuron.
In Equation (4), Mj,k is the memristance value of the crossing point between the jth row and kth column.
RB is a constant. The synaptic weight, wj,k, can be decided to be either negative or positive by adjusting
the memristance, Mj,k. The output of the perceptron neuron is decided by a threshold function which
produces 0 or 1. By adding the comparator to the output voltage, VO,k, we can decide if the neuron’s
output of the kth column, OUTk, should be activated or not.

OUTk =

{
1, if VO,k ≥ VREF

0, if VO,k < VREF
. (5)

In previous work, the impact of wire resistance is ignored. However, in the crossbar array, the
voltage drop along column and row lines cannot be omitted [19,24–27]. It becomes more serious when
the array size increases [24]. The wire resistance between two adjacent junctions is modeled by a
small-value resistor, r, as shown in Figure 2.
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Figure 2. Wire resistance between two adjacent junctions is modeled by a small-value resistor, r,
connecting between two crossing points. (a) Wire resistance on horizontal lines is omitted. (b) Wire
resistance on vertical lines is omitted.

For the sake of simplicity, in this section we analyze the circuit separately with respect to the
wire resistance on horizontal lines and the wire resistance on vertical lines, as shown in Figure 2a,b,
respectively. We define Vb1, Vb2 as the voltages of node b1, b2, which are on the first column. Generally,
Vbj is the voltage of node bj on the first column. Similarly, Vkj is the voltage of node kj, which is on the
jth column. Applying Kirchhoff current law for all nodes in Figure 2a, VF and VO,k can be estimated
as follows:

−VF
RF1

=
VIN,m−Vbm

RB
+ . . .+

VIN, j−Vb j
RB

+ . . .+
VIN,1−Vb1

RB

VF = −RF1

 m∑
j=1

VIN, j
RB
−

m∑
j=1

Vb j
RB

.
(6)

−VO,k
R0

= (VIN,m −Vkm)gm,k + . . .+
(
VIN, j −Vkj

)
g j,k + . . .+ (VIN,1 −Vk1)g1,k +

VF
RF2

VO,k = −R0

 m∑
j=1

VIN, jg j,k −
m∑

j=1
Vkjg j,k +

VF
RF2

.
(7)

If we assume that RF1 = RF2, Equation (7) can be simplified as follow:

VO,k = −

 m∑
j=1

(
R0 · g j,k −

R0

RB

)
VIN, j −

m∑
j=1

R0Vkjg j,k +
m∑

j=1

R0
Vb j

RB

. (8)

By comparing Equation (8) and Equation (4), we can derive the variation of voltage, ∆V, which is
caused by wire resistance on the vertical lines.

∆V = −
m∑

j=1

R0
Vkj

M j,k
+

m∑
j=1

R0
Vb j

RB
. (9)

Here Mj,k is the memristance of the crossing point between the jth row and the kth column. Vbj
and Vkj are the voltage at nodes bj and kj of the first column and the kth column, respectively, as shown
in Figure 2a. Mj,k is calculated using Equation (4). It is possible to infer that the variation of voltage
presented in Equation (9) can be very small because there are a negative term and a positive term in
the right side of Equation (9).
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In Figure 2b, wire resistance on vertical lines is omitted whereas wire resistance on horizontal
lines is taken into account. The voltages applied to the columns decrease because they are lost from
wire resistance. If we define Vj(k) as the amount of voltage drop on wire resistance, which is on the jth
row and between the (k − 1)th and kth column, the voltage applied to the jth row of the kth column is
calculated as Equation (10).

VIN, j(k) = VIN, j −

k∑
i=1

V j(i). (10)

Here VIN,j(k) is the voltage applied to the jth row of the kth column. The column-line voltage on
the kth column, VO,k, can be calculated using Equation (11).

VO,k = −

 m∑
j=1

(
R0 · g j,kVIN, j(k) −

R0

RB
VIN, j

). (11)

By comparing Equation (11) and Equation (3), we obtain the variation of voltage, ∆Vk, of the kth
column as follows.

∆Vk =
m∑

j=1

R0g j,kVIN, j −

m∑
j=1

R0g j,kVIN, j(k). (12)

Calculating VIN,j(k) by using Equation (10), we obtain ∆Vk as presented in Equation (13).

∆Vk =
m∑

j=1

R0g j,k

k∑
i=1

V j(i)

. (13)

Here
∑k

i=1 V j(i) is the sum of the voltage on k resistors on the jth row. Equation (13) indicates that
the output voltage of the kth column increases because of wire resistance. It is possible to infer that the
column close to the first column has small voltage variation and the column far from the first column
has large voltage variation. In Equation (13), the voltage variation increases proportionally to the
column’s index, k. Hence, it is interesting that two adjacent columns can have almost the same amount
of voltage variation. Due to this reason, we propose a memristor crossbar array with compensating
circuit to mitigate the voltage variation caused by wire resistance. By putting two adjacent columns
into a subtraction circuit, the voltage variation can be eliminated significantly. The proposed memristor
crossbar is schematically shown in Figure 3.

In Figure 3, the memristor crossbar is composed of 27 columns for recognizing 26 character
images. The first column is a constant-term circuit to generate a negative voltage, as mentioned in
the previous section. The remaining 26 columns represent 26 perception neurons trained to recognize
the 26 characters. The differential amplifies from Gs,2 to Gs,26 are inserted into the circuit. The gain of
these amplifiers is 1, so they work as the subtractors. The output voltages from VO,1 to VO,n are the
neuron’s output of columns from Col1 to Coln. VO,1 enter the comparator C1 to decide if the neuron’s
output of column Col1 should be activated or not. VO,2 and VO,1 go into Gs,2 that produces VOs,2. VOs,2

enters the comparator C2 to decide if the neuron’s output of column Col2 should be activated or not.
In general, the output voltage of the column Colk−1 and the column Colk enter the subtractor Gs,k for
generating the neuron’s output, VOs,k, of the column Colk. Using superposition theorem, VOs,k can be
calculated with the difference of VO,k − 1 and VO,k.

VOs,k = −VO,k−1

(
R4

R3

)
+ VO,k

(
R6

R5 + R6

)(
R3 + R4

R3

)
. (14)
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If we assume that R3 = R4 = R5 = R6, we can obtain:

VOs,k = VO,k −VO,k−1. (15)

The differential amplifier is able to reject any signal common to both inputs. That means, if two
adjacent columns have almost the same amount of voltage variation, the voltage variation is then
mitigated at the output.Micromachines 2019, 10, 671 6 of 11 
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Figure 3. The proposed memristor crossbar with compensating circuit for implementing a perceptron
neural network. The outputs of two adjacent columns are put into a differential amplifier working as a
subtractor to eliminate the output voltage variation.

The concept of the proposed circuit is shown in Figure 4. The crossbar is trained to recognize the
26 characters from “A” to “Z”. The 25th column is for recognizing the character “Y”. The output of the
25th column is close to 1V when the input is “Y” and close to 0 when the other characters are applied
to the input. Similarly, the neuron’s output of the 26th column should be activated if the input is “Z”,
as indicated in Figure 4a. In Figure 4b, it is assumed that the wire resistance is present in the crossbar.
The output voltage increases as reasoned in the previous section. The two last neurons recognize the
input characters incorrectly, as demonstrated in Figure 4b. However, if we put the outputs of two
last columns into a subtractor, the voltage variation can be mitigated significantly, as illustrated in
Figure 4b. By doing this, we can maintain the recognition rate when wire resistance is present in the
crossbar circuit.
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Figure 4. The concept of the proposed circuit for compensating the output voltage variation caused
by wire resistance. (a) The ideal output of the 25th and 26th columns, which are trained to recognize
character images of “Y” and “Z”, respectively. (b) The output voltage of the 25th and 26th columns
when the wire resistance is taken into account. VOs,26 is the output of subtractor for the 26th column,
as depicted in Figure 3.

3. Results

The proposed memristor crossbar circuit in Figure 3 is verified for the application of character
recognition. Figure 5a shows eight × eight images of characters used in this simulation. Each character
is composed of 64 black-and-white pixels. The proposed memristor crossbar is composed of 64 rows
and 27 columns. The first column connects with all inputs through RB to generate the negative voltage
as mentioned in the previous section. The remaining 26 columns are for recognition of 26 characters
from “A” to “Z”. The 64 input voltages obtained from 64 pixels are applied to the inputs of 64 rows.

The red line in Figure 5b shows a hysteresis behavior of a real memristor based on the film
structure of Pt/LaAlO3/Nb-doped SrTiO3 stacked layer [28]. The black line in Figure 5b represents the
behavior model of the memristor used in this paper. This model can well describe various memristive
behaviors that come from different kinds of memristors [29]. The circuit simulation is performed using
the SPECTRE circuit simulation provided by Cadence Design Systems Inc. Memristors are modeled
using Verilog-A and the CMOS technology is given by SAMSUNG 0.13 mm process technology [29,30].
The Verilog-A model parameters are presented in [28]. The wire resistance between two adjacent
junctions is set to be 2.5 Ω for a 4F2 cross-point structure [19,31]. Figure 6a shows the neuron’s output
of the 25th column, which is trained to be activated when character “Y” is applied to the input. Ideally,
VO,25 is close to 1V for character “Y”, and close to 0V for others. However, the output voltage of
the 25th column, VO,25, is shifted up because of wire resistance, as reasoned in the previous section.
Similarly, in Figure 6b, the neuron’s output of the 26th column is shifted up as a result of the voltage
drop along wire resistance. It can be realized that if we compare the column’s output voltage, VO,26,
with the reference voltage, VREF, the neuron’s output of the 26th column can be activated for several
input characters, which consequently degrades the recognition rate. The output voltage of the 25th
column and the 26th column are put into a subtractor circuit to produce the neuron’s output voltage of
the 26th column, VOs,26. By doing this, the voltage variation is mitigated significantly, as demonstrated
in Figure 6c. When the character “Y” is applied to the inputs, VOs,26 is negative, because VO,25 is
higher than VO,26. For the character “Z”, VOs,26 is high, as indicated in Figure 6c. The simulation result
shown in Figure 6c indicates that the neuron’s output of the 26th column is only activated for the input
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character “Z”, because the variation of voltage caused by wire resistance is mitigated remarkably by
the subtractor circuit.Micromachines 2019, 10, 671 8 of 11 
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Figure 5. (a) The eight × eight pixels images of characters used to test the proposed memristor crossbar
circuit. (b) The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model [28,29].
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Figure 6. The simulation result of the proposed memristor crossbar array depicted in Figure 4. (a) The
neuron’s output of the 25th column without compensating circuit. (b) The neuron’s output of the 26th
column without compensating circuit. (d) The neuron’s output of the 26th column with compensating
circuit. The wire resistance between two adjacent junctions is set to be 2.5 Ω [19,28].
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The proposed circuit is tested with wire resistance that is varied from 0.5 to 2.5 Ω. This range
of wire resistance is commonly used and obtained from the International Technology Roadmap
for Semiconductors [24,25,31–34]. Figure 7 shows the comparison of the recognition rate between
the memristor crossbar without compensating circuit and the proposed memristor crossbar with
compensating circuit when the wire resistance is set to be 0.5, 1.0, 1.5, 2.0, and 2.5 Ω, respectively.
The recognition rate of the memristor crossbar without compensating circuit declines dramatically
when wire resistance increases. In particular, the recognition rate of the memristor crossbar without
compensating circuit is 99%, 95%, and 81%, when the wire resistance is set to be 1.5, 2.0, and 2.5 Ω,
respectively. By contrast, the proposed memristor crossbar with compensating circuit can maintain the
recognition as high as 100% when wire resistance is as high as 2.5 Ω.

Micromachines 2019, 10, 671 9 of 11 

 

The proposed circuit is tested with wire resistance that is varied from 0.5 to 2.5 Ω. This range of 
wire resistance is commonly used and obtained from the International Technology Roadmap for 
Semiconductors [24,25,31–34]. Figure 7 shows the comparison of the recognition rate between the 
memristor crossbar without compensating circuit and the proposed memristor crossbar with 
compensating circuit when the wire resistance is set to be 0.5, 1.0, 1.5, 2.0, and 2.5 Ω, respectively. The 
recognition rate of the memristor crossbar without compensating circuit declines dramatically when 
wire resistance increases. In particular, the recognition rate of the memristor crossbar without 
compensating circuit is 99%, 95%, and 81%, when the wire resistance is set to be 1.5, 2.0, and 2.5 Ω, 
respectively. By contrast, the proposed memristor crossbar with compensating circuit can maintain 
the recognition as high as 100% when wire resistance is as high as 2.5 Ω. 

 
Figure 7. The comparison of the recognition rate between the memristor crossbar without 
compensating circuit and the proposed memristor crossbar with compensating circuit. The wire 
resistance is set to be 0.5, 1.0, 1.5, 2.0, and 2.5 Ω, respectively. 

4. Discussion 

Finally, we discuss the power and area overhead of the proposed memristor crossbar circuit. 
The proposed circuit uses the compensating circuit constituted by an Op-Amp and four resistors. The 
proposed circuit consumes more power and area, compared to the memristor crossbar without 
compensating circuit. However, the proposed memristor crossbar with compensating circuit shows 
better recognition rate by 19% than the previous memristor crossbar circuit, when wire resistance is 
set to be 2.5 Ω. Because wire resistance in the crossbar cannot be omitted, the proposed scheme makes 
the memristor crossbar-based perceptron neural network become more possible. The proposed 
circuit can be applied to memristor-based crossbar architectures which are used in resistive memory 
and artificial neural networks [34–36]. 

5. Conclusions 

In this work, a memristor crossbar-based perceptron neural network with compensating circuit 
is proposed. The neuron’s outputs of two columns are put into a subtractor circuit to eliminate the 
voltage variation caused by wire resistance. The memristor crossbar-based perceptron neural 
network is trained to recognize the 26 characters. The proposed memristor crossbar with 
compensating circuit shows better recognition rate, compared to the previous memristor crossbar 
without compensating circuit when wire resistance is taken into account. The simulation result shows 
that the proposed circuit can maintain the recognition rate as high as 100% when the wire resistance 
is set to be 2.5 Ω. By contrast, the recognition rate of the memristor crossbar without compensating 
circuit decreases by 19% when wire resistance is set to be 2.5 Ω. 

Funding: This research received no external funding. 

Conflicts of Interest: The author declares no conflicts of interest. 

0.5 1.0 1.5 2.0 2.5
60
65
70
75
80
85
90
95

100

R
ec

og
ni

tio
n 

ra
te

 (%
)

Wire resistance (Ω)

 Memristor crossbar array without compensating circuit
 Memristor crossbar array with compensating circuit

Figure 7. The comparison of the recognition rate between the memristor crossbar without compensating
circuit and the proposed memristor crossbar with compensating circuit. The wire resistance is set to be
0.5, 1.0, 1.5, 2.0, and 2.5 Ω, respectively.

4. Discussion

Finally, we discuss the power and area overhead of the proposed memristor crossbar circuit.
The proposed circuit uses the compensating circuit constituted by an Op-Amp and four resistors.
The proposed circuit consumes more power and area, compared to the memristor crossbar without
compensating circuit. However, the proposed memristor crossbar with compensating circuit shows
better recognition rate by 19% than the previous memristor crossbar circuit, when wire resistance is set
to be 2.5 Ω. Because wire resistance in the crossbar cannot be omitted, the proposed scheme makes the
memristor crossbar-based perceptron neural network become more possible. The proposed circuit can
be applied to memristor-based crossbar architectures which are used in resistive memory and artificial
neural networks [34–36].

5. Conclusions

In this work, a memristor crossbar-based perceptron neural network with compensating circuit
is proposed. The neuron’s outputs of two columns are put into a subtractor circuit to eliminate the
voltage variation caused by wire resistance. The memristor crossbar-based perceptron neural network
is trained to recognize the 26 characters. The proposed memristor crossbar with compensating circuit
shows better recognition rate, compared to the previous memristor crossbar without compensating
circuit when wire resistance is taken into account. The simulation result shows that the proposed
circuit can maintain the recognition rate as high as 100% when the wire resistance is set to be 2.5 Ω.
By contrast, the recognition rate of the memristor crossbar without compensating circuit decreases by
19% when wire resistance is set to be 2.5 Ω.
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