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Abstract: The effect of nitrogen doping on the photoluminescence (PL) of amorphous SiCxOy films
was investigated. An increase in the content of nitrogen in the films from 1.07% to 25.6% resulted in red,
orange-yellow, white, and blue switching PL. Luminescence decay measurements showed an ultrafast
decay dynamic with a lifetime of ~1 ns for all the nitrogen-doped SiCxOy films. Nitrogen doping
could also widen the bandgap of SiCxOy films. The microstructure and the elemental compositions of
the films were studied by obtaining their Raman spectra and their X-ray photoelectron spectroscopy,
respectively. The PL characteristics combined with an analysis of the chemical bonds configurations
present in the films suggested that the switching PL was attributed to the change in defect luminescent
centers resulting from the chemical bond reconstruction as a function of nitrogen doping. Nitrogen
doping provides an alternative route for designing and fabricating tunable and efficient SiCxOy-based
luminescent films for the development of Si-based optoelectronic devices.

Keywords: photoluminescence; amorphous silicon oxycarbide; nitrogen doping; defect; plasma
enhanced chemical vapor deposition

1. Introduction

Efficient silicon (Si)-based luminescent materials are indispensable components to realize a cheap
and complementary metal oxide semiconductor (CMOS) optical integration. Thus far, different
systems of Si-based luminescent materials, such as SiOx, SiNx, SiCx, and SiNxOy, have been developed,
and efforts have been devoted to understanding and ameliorating the light emission of Si-based
materials [1–9]. Silicon oxycarbide (SiCxOy) has been widely explored because of its strong light
emission and high solid solubility for rare earths [10–13]. SiCxOy also features a tunable band gap.
As such, it is beneficial to obtaining strong white electroluminescence at a low driving voltage in
SiCxOy-based light-emitting diodes [14]. In the recent reference, Gallis et al. systematically studied
the white photoluminescence (PL) dynamics from SiCxOy film, where the band tail states related to
the Si−O−C and/or the Si−C bonds were suggested as the sources of the luminescence [11]. Recently,
optical gain was demonstrated in a-SiCxOy under ultraviolet excitation, which was attributed to the
formation of a three-level luminescence model with the intermediate level related to Si dangling bond
(DB) defects radiative state [15]. Furthermore, an increase in C content in SiCxOy films can cause a
strong light emission ranging from near-infrared to orange regions [15]. Although performance is
enhanced in SiCxOy films, progress remains slow. The main obstacle lies in the fact that the light
emission efficiency generally remains too low to allow the fabrication of efficient light-emitter devices.
To date, studies on the effect of doping on the optical properties of SiCxOy films have mainly focused
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on rare earth (RE) doping, such as Er and Eu doping [16–18]. However, up to now, the effect of other
elements on the optical properties of SiCxOy films is still unclear.

In this letter, the effect of nitrogen doping on the PL of amorphous SiCxOy film was investigated.
Interestingly, an increase in nitrogen content in the films induced strong red, orange-yellow, white, and
blue switching PL. Combining the PL results with the analysis of the microstructure and the chemical
bonding configurations within the films, it suggests that the rearrangement of chemical bonds with
varying nitrogen plays an important role in the evolution of PL characteristics in the films.

2. Materials and Methods

Nitrogen-doped SiCxOy films with the thickness of 550 nm were grown at 250 ◦C on Si substrates
and quartz by radio frequency (RF) glow-discharge decomposition of SiH4, CH4, O2, and NH3 mixtures
in the very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) system. The flow
rates of SiH4, CH4, and O2 were kept at 3.5, 5, and 1.2 sccm, respectively, whereas the flow rate of NH3

varied from 0.5 sccm to 5 sccm to control the N content in the films. The films were named Sx (x = 1, 2,
3, 4) for the NH3 flow rates at 0.5, 1, 3, and 5 sccm, respectively. The RF power and the deposition
pressure for the growth were maintained at 30 W and 20 Pa, respectively. The optical band gaps
of the films were calculated using the Tauc method, which were determined by spectrophotometer
(Shimadzu UV-3600, Shimadzu Corporation, Kyoto, Japan). The PL spectra of the films were measured
at room temperature by use of a fluorescence spectrophotometer (Jobin Yvon fluorolog-3, Horiba,
Ltd., Kyoto, Japan). Time resolved PL were measured by use of an Edinburgh FLS1000 spectrometer
(Edinburgh Instruments Ltd., Livingston, UK) equipped with a 600 mW 375 nm-laser beam with the
repetition rate of 20 MHz. The microstructures of the films were characterized by Raman spectra.
The chemical bonds of the films were examined by Fourier transform infrared (FTIR) absorption, and
Si, O, C, and N contents in the films were identified through X-ray photoelectron spectroscopy.

3. Results and Discussion

Figure 1a shows the PL spectra of the SiCO:N films prepared at different NH3 flow rates. Strong
visible light emission could be tuned from red to blue regions at room temperature by adjusting the
NH3 flow rates increased from 0.5 sccm to 5 sccm. Red, orange-yellow, white, and blue switching
luminescence were strong enough to be seen with naked eyes even at 325 nm Xe lamp light excitation.
Figure 1b illustrates the optical band gap energy of the films as a function of the NH3 flow rate.
The optical band gap Eopt of the films was obtained in accordance with the Tauc plot Equation (1):

(αhν)1/2 = A1/2(hν− Eopt) (1)

where α is the absorption coefficient, A is a coefficient quantifying the slope of the absorption edge,
and hν is the photon energy [19]. The calculated Eopt increases linearly from 2.83 eV to 3.66 eV as the
NH3 flow rate increases from 0.5 sccm to 5 sccm. This finding demonstrates that N doping can widen
the bandgap of SiCxOy films, which may result from the substitution of stronger Si–N bonds for weak
Si–Si bonds or Si–C bonds. The comparison of PL with Eopt results indicated that the value of PL peak
energy of all the films was obviously smaller than the corresponding Eopt, suggesting that the origin of
PL was not from the band-to-band recombination.

The microstructure of the SiCO:N films was examined using Raman spectra (Figure 2a) to
further understand the origin of PL characteristics. All the SiCO:N films exhibited similar line shape
characteristics typical of amorphous silicon-based materials. A broad Raman band, which was ascribed
to the transverse optical (TO) vibration mode of amorphous silicon, peaked at ~470 cm−1 for all the
SiCO:N films. These results showed that all the SiCO:N films had a uniform amorphous structure
without the presence of Si nanocrystals [20]. Furthermore, there was no obvious change in the
surface morphology of the films prepared at different NH3 flow rates, as was revealed by atomic force
microscopy (Figure 2b).
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Figure 1. (a) Photoluminescence (PL) spectra of the SiCO:N films prepared by different NH3 flow 
rates: S1 (0.5 sccm), S2 (1 sccm), S3 (3 sccm), and S4 (5 sccm). The inset is the optical images of PL from 
the films under 325 nm Xe lamp light excitation. (b) The optical band gap of the SiCO:N films vs. the 
NH3 flow rates. The inset shows the ((αhν)1/2·vs·hν) plot of the SiCO:N film Sx (x = 1, 2, 3, 4). 

 
Figure 2. (a) Raman spectra of the SiCO:N films with various NH3 flow rates, (b) atomic force 
microscopic images of the SiCO:N films prepared by different NH3 flow rates: S1 (0.5 sccm),  
S2 (1 sccm), S3 (3 sccm), and S4 (5 sccm). 

The films were measured by time-resolved PL to obtain further insights into the PL mechanism 
of the SiCO:N films (Figure 3). The decay curves could be fitted with a double exponential function: 
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where Ai and τi (i = 1, 2) are the normalized amplitudes of the components and the time constants, 
respectively [21]. The obtained average lifetime of the SiCO:N films was about 1 ns. The luminescent 
dynamic behavior was similar to that observed in defect-related luminescent Si-based materials, such 
as SiNxOy and SiCxOy [19,21]. Furthermore, it was also found that the luminescence decay lifetimes 
in our case were shorter than those in the band-tail recombination model where a broader band-tail 
brought a longer lifetime, as the photogenerated carriers could be thermalized into deeper localized 
states [22]. Therefore, the results suggested that the light emission of the SiCO:N films originated 
from the defect luminescent centers in the films. 

The FTIR spectra of the SiCO:N films were obtained to study the local bonding changes in the 
films grown at different NH3 flow rates (Figure 4). In the S1 film, the vibration modes related to  
Si–C, Si–N, C–Si–O, Si–H, and C–H bonds could be clearly observed. The bands centered at 860 and 
1039 cm−1 could be ascribed to Si–N and C–Si–O stretching modes, respectively [23,24]. Additionally, 
a band at 1265 cm−1 was assigned to the Si–CH3 stretching vibration [25]. A small band shoulder at 

Figure 1. (a) Photoluminescence (PL) spectra of the SiCO:N films prepared by different NH3 flow rates:
S1 (0.5 sccm), S2 (1 sccm), S3 (3 sccm), and S4 (5 sccm). The inset is the optical images of PL from the
films under 325 nm Xe lamp light excitation. (b) The optical band gap of the SiCO:N films vs. the NH3

flow rates. The inset shows the ((αhν)1/2
·vs·hν) plot of the SiCO:N film Sx (x = 1, 2, 3, 4).
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Figure 2. (a) Raman spectra of the SiCO:N films with various NH3 flow rates, (b) atomic force
microscopic images of the SiCO:N films prepared by different NH3 flow rates: S1 (0.5 sccm), S2 (1 sccm),
S3 (3 sccm), and S4 (5 sccm).

The films were measured by time-resolved PL to obtain further insights into the PL mechanism of
the SiCO:N films (Figure 3). The decay curves could be fitted with a double exponential function:

I(t) = A1 exp(
−t
τ1

) + A2 exp(
−t
τ2

) (2)

where Ai and τi (i = 1, 2) are the normalized amplitudes of the components and the time constants,
respectively [21]. The obtained average lifetime of the SiCO:N films was about 1 ns. The luminescent
dynamic behavior was similar to that observed in defect-related luminescent Si-based materials, such
as SiNxOy and SiCxOy [19,21]. Furthermore, it was also found that the luminescence decay lifetimes
in our case were shorter than those in the band-tail recombination model where a broader band-tail
brought a longer lifetime, as the photogenerated carriers could be thermalized into deeper localized
states [22]. Therefore, the results suggested that the light emission of the SiCO:N films originated from
the defect luminescent centers in the films.

The FTIR spectra of the SiCO:N films were obtained to study the local bonding changes in the
films grown at different NH3 flow rates (Figure 4). In the S1 film, the vibration modes related to
Si–C, Si–N, C–Si–O, Si–H, and C–H bonds could be clearly observed. The bands centered at 860 and
1039 cm−1 could be ascribed to Si–N and C–Si–O stretching modes, respectively [23,24]. Additionally,
a band at 1265 cm−1 was assigned to the Si–CH3 stretching vibration [25]. A small band shoulder at
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800 cm−1 was observed and was assigned to the Si–C stretching vibration [24]. A distinct absorption
peak at 2170 cm−1 and a weak band located at 2965 cm−1 were attributed to the Si–H and the C–H
stretching vibrations, respectively [26]. A weak band around 3375 cm−1 was associated with the N–H
stretching mode [23]. The most important feature for the FTIR spectra was the strong dependence
of major bands on NH3 flow rates. As the NH3 flow rates increased, the intensity of C–Si–O bonds
gradually decreased, and the peak gradually became red shifted. As the NH3 flow rate increased to
3 sccm, this band broadened and red shifted to ~1010 cm−1 with a shoulder at ~940 cm−1, which was
assigned to the N–Si–O vibration [27]. As the NH3 flow rate further increased to 5 sccm, the band of the
N–Si–O vibration became dominant, indicating that the silicon oxycarbide-dominant phase of the film
transformed into silicon oxynitride. Apparently, the increase in the NH3 flow rate resulted in chemical
bond reconstruction in the films. Based on the FTIR spectra, the evolution of PL characteristics could
be suggested from the chemical bond reconstruction in SiCO:N films.
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The composition of the SiCO:N films was examined through X-ray photoelectron spectroscopy
(XPS) (Figure 5). The atomic percentages of Si, C, O, and N in the SiCO:N film fabricated at an NH3

flow rate of 0.5 sccm were 51.89%, 19.82%, 27.22%, and 1.07%, respectively. This finding indicated that
the Si-rich silicon oxycarbide phase was dominant in the S1 film. The change in the XPS spectra was the
gradual decrease in Si and C concentrations with the increase in N concentration and NH3 flow rates
(Figure 5). As the NH3 flow rate increased to 5 sccm, the N concentration rapidly increased to 25.6%,
whereas the Si and the C concentrations decreased to 40.8% and 8.22%, respectively. This finding was
consistent with the observed results in the FTIR spectra shown in Figure 4, that is, the N–Si–O vibration
band became dominant, while the C–Si–O vibration band significantly weakened as the NH3 flow rate
increased to 5 sccm. This result indicated that the dominant phase in the films changed from silicon
oxycarbide to silicon oxynitride when the NH3 flow rate increased to 5 sccm.
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The PL decay analysis (Figure 3) revealed that the luminescent dynamic behavior in the nitrogen
doped SiCxOy films featured a defect-related luminescent characteristic, as observed in SiNxOy and
SiCxOy films. Previous studies clarified that C-related nonbridging oxygen hole centers (NBOHC)
are the principal radiative recombination centers in silicon oxycarbide, and they are responsible for
light emission ranging from the green region to the red region [28]. In our case, the PL intensity in the
film decreased as the NH3 flow rate increased. This change was similar to that of the intensity of the
C–Si–O bonds (Figure 4). Therefore, the observed tunable light emissions from green to red may have
originated from recombination through C-related NBOHC defects in SiCxOy films. The PL spectra of
the S3 film could be deconvoluted into a strong green band and a weak blue band. As the NH3 flow
rate increased to 5 sccm, the intensity of the green PL band decreased dramatically, whereas the blue PL
band of the film S4 became dominant. This behavior could be attributed to the change in the dominant
phase of the films from silicon oxycarbide to silicon oxynitride as a result of the increase in NH3 flow
rate to 5 sccm (Figure 4). In the case of amorphous SiNxOy films, the blue PL could be ascribed to
the radiative recombination between N–Si–O defect states and the valence band tail states [27]. Thus,
the blue PL from S3 and S4 was likely from N–Si–O defect luminescent centers.

4. Conclusions

In summary, we report the effect of nitrogen doping on the PL of amorphous SiCxOy films. Nitrogen
doping can induce strong red, orange-yellow, white, and blue switching PL with a recombination
lifetime in nanoseconds. This process can also widen the band gap of SiCxOy films. The PL results and
the FTIR analyses reveal that the switching characteristics in PL originate from the variation in defect
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luminescent centers resulting from the chemical bond re-construction as a function of nitrogen doping.
Apparently, nitrogen doping provides an alternative route for designing and fabricating tunable and
efficient SiCxOy-based luminescent films for the development of Si-based optoelec-tronic devices.
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