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Abstract: A novel miniaturized single-fed circularly-polarized (CP) microstrip patch antenna
operating in the Industrial, Scientific, Medical (ISM) band of 2.40–2.48 GHz, is comprehensively
proposed for implantable wireless communications. By employing reactive loading in the
arrow-shaped slotted patch to form slow wave effect and embedding V-shaped slots into patch
to lengthen the current path, the proposed implantable antenna is minimized with the overall
dimensions of 9.2 mm× 9.2 mm× 1.27 mm. The radiation patterns of the proposed antenna illustrate
the performance of left-handed circular polarization. The simulated results show that an impedance
bandwidth of 7.2% (2.39–2.57 GHz) and an axial ratio bandwidth of 3.7% (2.39–2.48 GHz) at the
ISM band are achieved, respectively. Ex vivo measured results are in good agreement with the
corresponding simulated ones.
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1. Introduction

Implantable medical devices (IMDs) have increasingly caught the attention of the scientific
community due to their wireless capabilities of detecting bio-medical information and transmitting
health data much more flexibly and conveniently than traditional wired sensors placed exterior to
the body [1–3]. These devices have been widely adopted in many applications including neural
recording [4], glucose monitoring [5], and intracranial pressure monitoring [6], etc.

Implantable antennas act as a key factor to assure wireless communications between the
implantable devices and the external equipment [7], and have been assigned at the industrial,
scientific, and medical (ISM) bands with the operating frequency ranges of 433.1–434.8 MHz [8,9],
902–928 MHz [10], and 2.40–2.48 GHz [11,12]. Additionally, the 402–405 MHz medical implant
communication services (MICS) band [13] and the 1395–1400 MHz wireless medical telemetry services
(WMTS) band [14] are also designated for the implantable antennas. Implantable devices used for
the biomedical telemetry are typical microsystem and therefore cannot accommodate large antennas.
Due to the relatively short electromagnetic wavelength, the implantable antenna working at the ISM
higher frequency band of 2.40–2.48 GHz is adopted by some researchers, making the dimension
electrically small enough. Moreover, considerable design efforts, such as employing high-permittivity
dielectric substrates [15], loading shorting pins to connect the patch and the ground [16], and extending
the current flow path on the patch surface [17], have been made to realize the compact dimension
of the implantable antennas. Many crucial factors such as biocompatibility, specific absorption rate
(SAR), far-field radiation, and operating bandwidth, should be also considered during the designing
of implantable antennas.
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The planar inverted-F antenna (PIFA) was demonstrated as a useful prototype in the design of
implantable antennas because of its structural simplicity and low profile [18]. The monopole antenna
with the advantages of omnidirectional radiation pattern and wide bandwidth has been integrated
with the implantable system [19]. In [20], a differentially-fed dual-band flexible antenna was proposed
for ingestible capsule system. Nevertheless, the above-mentioned antennas are linearly polarized and
dependent on the relative orientations between the transmitters and the external receivers.

A circularly-polarized (CP) antenna is preferred for the implantable devices because it can
reduce multipath distortion and provide flexible mobility, compared with a linearly polarized antenna.
However, only a few works focus on the miniaturized CP implantable antennas. Capacitive loadings
were introduced in a square patch with a central squared slot to realize circular polarization for an
implantable antenna [21]. An axial-mode multilayer helical circularly-polarized implantable antenna
for ingestible capsule endoscope system was presented in [22]. Additionally, by cutting rectangular
slots into the patch and adding open stubs in the annular ring, a CP bio-friendly implantable annular
ring antenna was realized in [23].

A miniaturized CP squared patch antenna for implantable devices at the ISM band of
2.40–2.48 GHz was preliminarily introduced in [24]. After that, future works have been carried
out. In this article, an in-depth study on the working principle and a more detailed analysis on the
performance of the proposed antenna are presented while a proof-of-concept fabricated prototype
was fully characterized, verifying the good performance of the proposed antenna topology. Through
introducing reactive loading, slow wave effect is formed on the radiator, making the dimension of the
proposed antenna compact.

The contents of this article are organized as follows: In Section 2, a simulation environment is
set up, the geometry of the proposed implantable antenna is described, and the simulation results
are studied. In Section 3, the miniaturization of working mechanism, CP properties, and parameter
analysis are given. Section 4 presents the measured results before a useful conclusion is made in
Section 5.

2. Antenna Design and Simulation

2.1. Simulation Environment

As shown in Figure 1, the proposed antenna is simulated in a three-layer tissue numerical
model with the dimensions of 50 mm × 50 mm × 58 mm that imitates the real human environment.
The human tissue is composed of skin, fat, and muscle. The electrical properties of the tissues vary
with frequency. Table 1 lists the values of dielectric properties for skin, fat, and muscle in the simulated
model at 2.45 GHz. To be closer to external devices and reduce the path loss in the tissue, the proposed
antenna is implanted in a depth of 2 mm from the top of skin. The simulated tool employs ANSYS
High Frequency Structure Simulator (HFSS) software (v.13, Ansys Inc., Canonsburg, PA, USA) for
modeling, optimizing, and analyzing.
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Table 1. Dielectric properties of different tissues at 2.45 GHz.

Tissues Thickness (mm) εr σ (S/m)

Skin 4 38.0 1.46
Fat 4 5.28 0.1

Muscle 50 52.7 1.74

2.2. Geometry of the Proposed Circularly-Polarized Antenna

The configuration of the proposed implantable antenna is demonstrated in Figure 2,
the dimensions of the patch are fixed to 9.0 mm × 9.0 mm with a ground plane of 9.2 mm × 9.2 mm.
To achieve the miniaturization, the antenna is manufactured on a Rogers 3010 substrate with a high
dielectric constant of εr = 10.2 and a low loss tangent of tan δ = 0.0035, covered by a layer of superstrate
with the same material as the substrate, each with a thickness of H = 0.635 mm. The superstrate is
utilized to separate human tissues from the conducting patch of the proposed antenna and to enhance
the matching with the around inner tissues. In order to avoid shorting and to relieve mismatching,
the proposed antenna should be wrapped by a thin film of biocompatible materials alumina (εr = 9.2,
tan δ = 0.008). The 50-Ω coaxial cable feeding point is welded at the position (d, d) along the center of
diagonal of the patch. Two small triangle patches are embedded on the upper and lower sides of the
proposed antenna and connected with the main patch through two high impedance lines. Additionally,
V-shaped slots are embedded into the left and right side of the proposed antenna. It should be noted
that perturbation slots are cut to optimize the axial ratio (AR). Table 2 lists the detailed values of the
geometrical dimension after the optimization with the aid of ANSYS HFSS.
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Figure 2. Geometry of the proposed antenna at: (a) Top view; and (b) side view. 
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Figure 2. Geometry of the proposed antenna at: (a) Top view; and (b) side view.

Table 2. Dimensions of the proposed antenna parameters (unit: mm).

Symbol Value Symbol Value Symbol Value

L 9.0 W 0.5 L1 4.6
L2 1.8 L3 0.6 L4 0.4
L5 6.4 L6 0.8 L7 2.6
L8 2.2 L9 0.9 d 3.5
g 0.1 H1 1.8 H2 1

2.3. Simulated Results

Figure 3 illustrates the simulated reflection coefficient together with the axial ratio (AR) of the
proposed antenna in main radiation direction towards the outside of human body. The simulated
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impedance bandwidth is covered from 2.39 GHz to 2.57 GHz with S11 less than −10 dB while the AR
bandwidth can be extended from 2.39 GHz to 2.48 GHz with AR below 3 dB.
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Figure 4 depicts the simulated far-field gain radiation patterns of the proposed antenna in two
principal planes (i.e., xy-plane and xz-plane) at 2.45 GHz. Its maximum left-handed circular polarization
(LHCP) radiation is towards the antenna’s boresight at theta = 0◦, that is the off-body direction as
desired. Due to the fact that the proposed antenna is very compact and implanted in the lossy tissue
with the limited space, different from the conventional antenna operating in free space, the peak
realized gain is −24.8 dBi at 2.45 GHz.
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3. Antenna Analysis

3.1. Miniaturization of the Proposed Antenna

In order to investigate the mechanism of miniaturization, the corresponding topology of the
antenna is evolved from Case 1 to Case 4 by subsequently cutting slots and loading patch into a
conventional square patch antenna, as shown in Figure 5. Here, all antennas keep the fixed sizes of
9.2 mm × 9.2 mm and the simulating settings are similar.
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Case 4.

With reference to Figure 5, Case 1 is a conventional square patch antenna with the feeding port at
the upper right diagonal, Case 2 is obtained by etching an arrow-shaped slot in the upper and lower
parts of the patch. In Case 3, two small triangle patches are respectively loaded on the arrow-shaped
slot of Case 2 and connected with the main patch through two high impedance lines. As shown in
Figure 6, the resonant frequency of 4 GHz in Case 1 shifts down to 3.6 GHz in Case 2, then converts to
3.16 GHz in Case 3, indicating that a 21% of miniaturization can be achieved.
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Theoretically, an antenna can be equivalent to a transmission line, as shown in Figure 7, which is
characterized by a series inductance L0 and a shunt capacitance C0 per unit length. When the antenna
is loaded with patch through a high impedance lines, the miniaturization of the proposed antenna
can be achieved by taking advantage of the principle of slow waves [25]. The mechanism can be
understood through calculating the propagation velocity as:

νp =
1√

L0C0
=

c
√

εe f f
= λg f (1)
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According to Equation (1), by adding triangle patches (equivalent to a capacitance C1) and high
impedance line (equivalent to an inductance L1), total equivalent capacitance and/or inductance are
increased, subsequently propagation velocity becomes slower, resulting in waveguide wavelength
smaller when the frequency remains unchanged.

To further miniaturize the proposed antenna, V-shaped patches are etched into the left and right
sides of Case 3, lengthening the current path, as established in Case 4 of Figure 5d. Compared with
Case 1, the corresponding resonate frequency of Case 4 is shifted down from 4 GHz to 2.51 GHz,
demonstrating that 37.3% of miniaturization is achieved.

3.2. CP property of the Antenna

As shown in Figure 2, perturbation slots are introduced in the patch to strengthen the CP
performance. With reference to Figure 8, it can be seen that the small slots take critical role in
the impedance matching and circular polarization. For the purpose of visualizing how the circular
polarization is generated, the simulated surface current distributions on the patch at 2.45 GHz for four
moments of 0T, T/4, T/2, and 3/4T are demonstrated in Figure 9. With the increment of time by a step
of T/4, the currents rotate clockwise, transmitting LHCP waves in the boresight direction.
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3.3. Parameter Studies

To obtain available guidelines for the practical design of the proposed antenna, various important
parameters that can influence the return loss and axial ratio at the boresight direction are examined.
As a key parameter is studied, the other parameters are kept constant. The width L4 of the high
impedance microstrip line shows the crucial influence on the reflection coefficient and AR, due to its
effect on the current distributions on the patch of the proposed antenna. As exhibited in Figure 10,
the return loss and axial ratio are sensitive to different L4 values. A reasonable axial ratio at 2.45 GHz
can be achieved when L4 is set to be 0.4 mm. If L4 becomes larger or smaller, there is a drastic influence
on the AR. Figure 11 demonstrates the effect of tuning L5 on the performance of the proposed antenna.
With reference to the curves in the figure, a linear increase in L5 (from 6.3 mm to 6.5 mm) will result in
shifting the resonance down to the lower frequency and deviating the CP towards the lower band.
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that the power delivered to the proposed antenna is set to be 1 W, meaning that the delivered power
should be below 24.5 mW to meet the IEEE C95.1-1999 standard.

4. Experimental Results

In order to validate the design strategy, the prototype of the proposed implanted antenna was
fabricated and assembled. The measurement environment surrounding the proposed antenna is a
piece of fresh streaky pork (shortly after slaughter) comprised layers of skin, fat, and muscle. Figure 12
shows the photos of fabricated antenna and measurement setup. The S-parameters of the antenna
against frequency are measured with the aid of an Agilent N5230A vector network analyzer (VNA)
(Keysight Technologies, Santa Rosa, CA, USA). The simulated and measured S-parameters are shown
in Figure 13. The measured bandwidth for S11 < −10 dB is 12.9%, covering 2.32 to 2.64 GHz. There is
a slight difference between the simulated and measured results mainly due to the tolerances in the
fabrication process and measurement. A linearly polarized dipole, working as a receiver, is placed
150 mm away from the proposed antenna to testify the CP property of the proposed antenna. The S21
between the proposed antenna and the dipole was measured when the dipole was placed at the
phi = −45◦, 0◦, 45◦, and 90◦, respectively. With reference to Figure 13, there is a maximum deviation
only up to 3 dB for the measured S21, proving the CP property of the proposed antenna.
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5. Conclusions

This article has numerically designed and experimentally studied a novel miniaturized single-fed
circularly-polarized microstrip patch antenna at the ISM band of 2.40–2.48 GHz. By introducing
reactive loading to form slow wave effect on the radiator and etching V-shaped slots on the main
patch to lengthen the current flow path, a miniaturized antenna with the dimensions of 9.2 mm ×
9.2 mm × 1.27 mm can be obtained. The radiations of the proposed antenna show a left-handed
circular polarization when we adjust the sizes of geometrical structure. The prototype of the proposed
implantable antenna has been implemented. The agreements between the simulated results and ex
vivo measured ones have been reached.

As illustrated in Table 3, the performance of the proposed antenna is not perfect. Whereas,
a trade-off has been reached. Compared with [5], although the dimensions of the proposed antenna are
bigger, its AR bandwidth is broadened. The proposed antenna has less efficiency than the work in [21],
but it has smaller dimensions and bigger AR bandwidth; compared with the art [23], the proposed
antenna has compact dimensions with higher AR bandwidth; compared with [27], the proposed
antenna has much compact dimensions with high efficiency. Hence, based on the slow wave effect,
this novel implantable CP antenna is designed and miniaturized with the advantages of great size
reduction and high polarization purity. The merit performance of the proposed implantable antenna
shows the great potential in the application of biomedical telemetry, such as subcutaneous real-time
glucose monitoring.

Table 3. Comparison of the proposed antenna with prior art.

Ref.
Dimensions

(mm × mm × mm)
Bandwidth Peak Gain

(dBi)(S11 < −10 dB) (AR < 3 dB)

[5] 8.5 × 8.5 × 1.27 (92 mm3) 2.32–2.62 GHz (~12.2%) 2.42–2.48 GHz (~2.4%) −17
[21] 10 × 10 × 1.27 (127 mm3) 2.36–2.55 GHz (~7.7%) 2.44–2.48 GHz (~1.6%) −22
[23] π × (5.5)2 × 1.27 (~120 mm3) 2.31–2.51 GHz (~8.3%) 2.42–2.48 GHz (~2.49%) −22.7
[27] 10 × 10 × 1.27 (127 mm3) 2.35–2.50 GHz (~6.2%) 2.36–2.56 GHz (~8.13%) −27.2

This work 9.2 × 9.2 × 1.27 (107 mm3) 2.39–2.57 GHz (~7.2%) 2.39–2.48 GHz (~3.7%) −24.8
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