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Abstract: A squirmer model achieves propulsion by generating surface squirming velocities.
This model has been used to analyze the movement of micro-swimmers, such as microorganisms
and Janus particles. Although squirmer motion has been widely investigated, motions of two
connected squirmers, i.e., a dumbbell squirmer, remain to be clarified. The stable assembly of multiple
micro-swimmers could be a key technology for future micromachine applications. Therefore, in this
study, we investigated the swimming behavior and stability of a dumbbell squirmer. We first
examined far-field stability through linear stability analysis, and found that stable forward swimming
could not be achieved by a dumbbell squirmer in the far field without the addition of external torque.
We then investigated the swimming speed of a dumbbell squirmer connected by a short rigid rod
using a boundary element method. Finally, we investigated the swimming stability of a dumbbell
squirmer connected by a spring. Our results demonstrated that stable side-by-side swimming can be
achieved by pullers. When the aft squirmer was a strong pusher, fore and aft swimming were stable
and swimming speed increased significantly. The findings of this study will be useful for the future
design of assembled micro-swimmers.

Keywords: squirmer; locomotion; Stokes flow; hydrodynamic interaction; linear stability analysis;
boundary element method

1. Introduction

Artificial micro-swimmers have attracted strong research interest due to their potential
environmental and medical applications [1,2]. The motility of micro-swimmers enables them to
manipulate objects, carry chemicals, and react to their environment; therefore, they can be utilized in
therapeutic treatments, sensing, and environmental remediation. To date, a wide variety of propulsion
mechanisms have been proposed to generate motility in micro-swimmers, including magnetic forces,
chemical forces, optical forces, bubbles, ultrasound, and fluid oscillation [3–8]. Recently, some studies
have attempted to establish an assembly of micro-swimmers to generate stronger forces or large-scale
mixing [9–13]. The stable assembly of multiple micro-swimmers could be a key technology for
future micromachine applications. Hydrodynamic forces play an important role in constructing such
assemblies, because the stability of an assembled micro-swimmer is strongly influenced by the flow
field generated by surrounding micro-swimmers. However, the hydrodynamic effects at work in
micro-swimmer assemblies remain to be clarified.
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The flow field around a micro-swimmer can be described by Stokes flow, i.e., a negligible inertial
effect, given that the Reynolds number based on the scale and speed of the micro-swimmer and
the kinetic viscosity of the surrounding fluid often becomes much less than unity. Purcell [14]
showed that simple reciprocal body deformation cannot induce micro-swimmer migration in a Stokes
flow regime; this is known as the scallop theorem. To overcome the implications of the scallop
theorem, the micro-swimmer must undergo a nonreciprocal body deformation or an external force
must be introduced. In a Stokes flow regime, flow disturbance induced by a force decays inversely
proportional to the distance, such that the hydrodynamic interaction propagates even in the far field.
Mathematical frameworks to analyze the hydrodynamics of artificial and natural micro-swimmers,
as well as their interactions, have been elaborated on in recent review papers [15–20].

One of the most popular mathematical micro-swimmer models may be the squirmer model, which
was first proposed by Lighthill [21] and extended by Blake [22]. The squirmer model propels itself by
generating surface squirming velocities. The model was originally proposed for ciliates and microalgae,
such as Opalina and Volvox, and reproduces the flow field around Volvox well [23]. The squirmer model
has also been used to analyze the motion of Janus particles [24] and self-propelling liquid droplets [25];
thus, it has been accepted as a general model for micro-swimmers. The squirmer model has been
used to analyze nutrient uptake [26–28], swimming efficiency [29,30], two-body hydrodynamic
interactions [31–33], collective swimming [34–36], self-diffusivity [37], and rheology [38]. For details of
the squirmer model, please refer to the excellent review by Pedley [39].

Although these previous studies have clarified various aspects of the squirmer model, the motion
of two assembled squirmers, i.e., a dumbbell squirmer, has not yet been investigated in detail. In a
previous study [31], we calculated hydrodynamic interactions between two freely swimming squirmers.
Götze and Gompper [32] also investigated two freely swimming squirmers by considering thermal
fluctuation. Navarro and Pagonabarraga [33] investigated the hydrodynamic interactions of two
trapped squirmers. However, none of these studies examined free-swimming dumbbell squirmers.
Understanding the swimming behaviors and stability of the dumbbell squirmer is an important next
step in constructing a large assembly of micro-swimmers. Therefore, in this study, we investigated the
swimming behaviors and stability of the dumbbell squirmer.

In Section 2, we explain the squirmer model, basic equations, and numerical methods. In Section 3,
we investigate the stability of the dumbbell squirmer in the far field using linear stability analysis.
In Section 4, we discuss the swimming speed of a dumbbell squirmer connected by a short rigid rod,
using a boundary element method. In Section 5, we discuss the swimming behaviors and stability of a
dumbbell squirmer connected by a spring. Our conclusions are presented in Section 6.

2. Basic Equations and Numerical Methods

2.1. Squirmer Model

The squirmer model used in this study is a spherical steady squirmer. The squirmer has a radius
a, and is assumed to be neutrally buoyant and non-Brownian. The surface of the sphere moves purely
tangentially with respect to the cell body; this tangential motion is axisymmetric and time-independent.
The tangential surface velocity us is given by

us =
2

∑
n=1

2
n(n + 1)

Bn

(e · r
r

r
r
− e
)

P′n(e · r/r) (1)

where Pn is the nth Legendre polynomial, e is the unit orientation vector of the squirmer, and r is
the position vector, r = |r|. A solitary squirmer swims at speed U0 = 2B1/3. As in our previous
studies [28,34,35], we omitted squirming modes higher than the second (i.e., Bn = 0 when n ≥ 3)
because the effect of higher modes becomes negligibly small compared to that of the first and second
modes in far-field hydrodynamic interactions.
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We denote the ratio of second mode to first mode squirming as β, so that we have β = B2/B1.
A squirmer with positive β is a puller, analogous to a micro-swimmer for which thrust is mainly
generated in front of the body. A squirmer with negative β is a pusher, analogous to a micro-swimmer
for which thrust is mainly generated behind the body. A squirmer with β = 0 is a neutral swimmer,
analogous to a micro-swimmer for which the thrust and drag centers coincide.

2.2. Basic Equations

Due to the small size of a micro-swimmer, we neglect the inertial effects on fluid flow. In a Stokes
flow regime, the velocity around two squirmers can be expressed by a boundary integral equation,
as follows [31]:

u(x) = − 1
8πµ

2

∑
m=1

∫
J(x− y) · q(y) dAm(y) (2)

where µ is the viscosity and Am is the surface of squirmer m. J is the Green’s function for unbounded
fluid given by Jij = δij/r + rirj/r3, where r = x – y, and δ is the Kronecker delta. The single-layer
potential q is found by subtracting the traction force on the inner surface, fin, from that on the outer
surface, fout, i.e., q = fout − fin. The boundary condition is given by:

u(r) = Um + Ωm ∧ (r− rc
m) + us

m , r ∈ Am (3)

where Um and Ωm are the translational and rotational velocities of squirmer m, rc
m is the center of

squirmer m and us
m is the squirming velocity of squirmer m, defined by Equation (1).

It is supposed that squirmer m is subjected to known external forces Fm and torques Tm.
The equilibrium conditions for squirmer m are:

Fm =
∫

q dAm , Tm =
∫

(r− rc
m) ∧ q dAm (4)

We employed three different force–torque conditions in Sections 3–5:

(a) In Section 3, we assume that the distance between the centers of two far-field squirmers is
invariant in time, i.e., l = const (Figure 1). In this case, Fm is generated so as to satisfy the
constant distance condition. Tm is assumed to be zero, such that squirmer orientation satisfies the
torque-free condition.

(b) In Section 4, we connect two near-field squirmers by a dragless rigid rod (Figure 2). In this case,
both squirmers exhibit rigid body motion, i.e., U2 = U1 + Ω1 ∧

(
rc

2 − rc
1
)

and Ω2 = Ω1. Fm and
Tm are determined so as to achieve the rigid body motion.

(c) In Section 5, we connect two squirmer surfaces by a dragless linear spring (Figure 6). The spring
is connected at rs

m on the surface of squirmer m, and generates force Fs
m given by:

Fs
1 = k(|rs

2 − rs
1| − l0)

rs
2 − rs

1∣∣rs
2 − rs

1

∣∣ , Fs
2 = −Fs

1 (5)

where k is the spring constant and l0 is the equilibrium length of the spring. The force generates a
torque on squirmer m as:

Ts
m = (rs

m − rc
m) ∧ Fs

m (6)
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Figure 1. Problem settings for the far-field analysis. Two squirmers (1 and 2) with orientation vectors 
e1 and e2, respectively, are shown in the far field. The center of squirmer 1 was placed at the origin of 
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squirmer centers. This distance was assumed to be time-invariant with the application of x-direction 
force Fx. No external torque was exerted; thus, the squirmer orientation was determined to satisfy the 

torque-free condition. The orientation angles θ1 and θ1 were defined from the x-axis. The radius of 

Figure 1. Problem settings for the far-field analysis. Two squirmers (1 and 2) with orientation vectors
e1 and e2, respectively, are shown in the far field. The center of squirmer 1 was placed at the origin
of coordinate. We assumed that e1 and e2 were in the x–y plane, where the x-axis was taken as the
direction passing through the center of squirmer 2 at rc

2 = (l, 0, 0) and l is the distance between the
squirmer centers. This distance was assumed to be time-invariant with the application of x-direction
force Fx. No external torque was exerted; thus, the squirmer orientation was determined to satisfy the
torque-free condition. The orientation angles θ1 and θ1 were defined from the x-axis. The radius of
the squirmers was a, which satisfied l >> a. The squirmers swam with velocity Ui, where i was 1 or 2,
and exerted a stresslet of S.
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Figure 2. Problem settings for a dumbbell squirmer connected by a dragless rigid rod. The length of rod
ε was set at 0.01a. (a) Two identical squirmers with swimming mode β were placed side-by-side at an
angle of φ from the y-axis. Due to the symmetry of the problem, the dumbbell swam in the y-direction
with velocity U. The rod imparted the x-direction force F and the z-direction torque T to the squirmers.
(b) Two squirmers with swimming modes β1 and β2 were placed fore and aft. The squirmers were
oriented in the y-direction and swam in the y-direction at velocity U. The rod exerted the y-direction
force F.

2.3. Numerical Methods

In Sections 4 and 5, we simultaneously solve Equations (2) and (4) for the boundary condition
(3). The governing equations are discretized using a boundary element method [31,40]. The details
of these numerical methods are provided in our previous study [31]. Briefly, each spherical surface
is discretized by 590 or 320 triangles, depending on the distance between the squirmers. The linear
algebraic equations for the problem are generated by combining the governing equations and boundary
condition. The integration is performed using 28-point Gaussian polynomials and the singularity is
solved analytically. Time-marching is performed using a fourth-order Adams–Bashforth method.
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3. Linear Stability Analysis of a Dumbbell Squirmer in the Far-Field

In this section, we investigate the stability of a dumbbell squirmer in the far field, because it
can be clarified mathematically using linear stability analysis. We let squirmer 1 be at the coordinate
origin (Figure 1), such that the x-axis passed through the center of squirmer 2 at (l, 0, 0). l was
the center-to-center distance between the squirmers, and a was the squirmer radius; the far-field
assumption requires that l >> a. The unit orientation vectors of squirmers 1 and 2 were e1 and e2,
respectively. For simplicity, we assumed that both e1 and e2 existed in the same x–y plane. The angle of
orientation vector em from the x-axis was θm, where m is 1 or 2. To force dumbbell motion, the distance
between the centers of the squirmers was set as invariant in time, i.e., l = const, by imposing x-direction
force Fx to squirmer 1 and −Fx to squirmer 2. We imposed no external torque on the squirmers;
therefore, squirmer orientation was determined so as to satisfy the torque-free condition. The torque
condition can induce instability in the swimming of the dumbbell squirmer; we further investigated this
phenomenon. Squirmer m swims with a translational velocity of Um by generating surface squirming
velocity. The squirming velocities were assumed to be the same for both squirmers, inducing the
stresslet S, given by [31]:

S =
4
3
πµa2(3ee− I)B2 (7)

where I is the identity matrix.
When force F and stresslet S are exerted on squirmer 1, rotational velocity ω far from the squirmer

can be approximated as:

ωi(r) =
1

16πµ
εijk∇j(Jkl Fl + KklmSlm) (8)

where ε is the alternating unit tensor. The kernel function K is given by [41]:

Kijk =
1
2
(
∇k Jij +∇j Jik

)
(9)

Equation (8) indicates that the x-direction force Fx acting on squirmer 1 generates no rotational
velocity at the center of squirmer 2, rc

2. In contrast, the stresslet of squirmer 1 generates the following
rotational velocity at rc

2:

ωz(rc
2) =

1
8πµ

9
2l3 S0 sin(2θ1) (10)

where S0 = 4πµa2B2/3.
The translational velocity of squirmer 2 relative to squirmer 1 is U2 − U1, where the x-component

is zero by definition. The y-component is non-zero, and can be approximated as U0 sin(θ2 − θ1) in the
leading order. The y-component velocities induce a rotational velocity of U0(sin θ1 − sin θ2)/l to both
squirmers relative to the center-to-center vector. Thus, the orientation change of the squirmers can be
expressed as:

dθ1

dt
=

U0

l
(sin θ1 − sin θ2) +

1
8πµ

9
2l3 S0 sin(2θ2) (11)

dθ2

dt
=

U0

l
(sin θ1 − sin θ2) +

1
8πµ

9
2l3 S0 sin(2θ1) (12)

When the dumbbell squirmer swims in the steady state, the orientations are time-invariant. In this
case, Equations (11) and (12) are solved as follows:

( θ∗1 , θ∗2 ) = ( 0, 0) , ( 0, π) , ( π/2, π/2) , ( π, 0) , ( π, π) (13)
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We now introduce small disturbances to the orientation angles, given by θ1 = θ∗1 + ∆θ1 and
θ2 = θ∗2 + ∆θ2. By assuming that angle disturbances are sufficiently small, Equations (11) and (12) can
be rewritten in the leading order as:(

d∆θ1
dt

d∆θ2
dt

)
=

( U0
l cos θ∗1 −U0

l cos θ∗2 + 9S0
8πµl3 cos(2θ∗2 )

U0
l cos θ∗1 + 9S0

8πµl3 cos(2θ∗1 ) −U0
l cos θ∗2

)(
∆θ1

∆θ2

)
(14)

The eigenvalues of the matrix are:

λ± =
U0

2l
(cos θ∗1 − cos θ∗2 )±

1
2

√{
U0

l
(
cos θ∗1 + cos θ∗2

)}2
+ 4BC (15)

with
BC = −

(
U0
l

)2
cos θ∗1 cos θ∗2 −

U0
l cos θ∗2

9S0
8πµl3 cos(2θ∗1 )

+U0
l cos θ∗1

9S0
8πµl3 cos(2θ∗2 ) +

(
9S0

8πµl3

)2
cos(2θ∗1 ) cos(2θ∗2 )

Under the conditions of Equation (13), both eigenvalues become negative only when
(

θ∗1 , θ∗2
)
=

( π, 0) and S0 > 0. Thus, dumbbell puller squirmers can achieve stable swimming when they are
oriented in opposite directions. In this case, however, the swimming velocity of the dumbbell squirmer
is zero. These results indicate that the dumbbell squirmer cannot achieve stable forward swimming
under the present problem settings, i.e., two squirmers in the far field with no external torque applied.

4. Swimming of a Dumbbell Squirmer Connected by a Short Rigid Rod

We next investigated the swimming of a dumbbell squirmer in the near field. When two squirmers
are in the near field, the leading order contribution of the force and torque exerted on the squirmers
can be derived mathematically using a lubrication theory [31]. However, next-order terms must be
determined by matching the inner and outer solutions. Thus, a numerical approach may be necessary.
To overcome this difficulty, we employed a boundary element method.

Before discussing the stability of the dumbbell squirmer in the near field, basic tendencies of
dumbbell squirmer swimming must be clarified. We assumed that the squirmers were connected
by a dragless short rigid rod (Figure 2) of length ε = 0.01a, although the value does not qualitatively
change the results presented in this section. The dumbbell squirmer exhibits rigid body motion,
i.e., U2 = U1 + Ω1 ∧

(
rc

2 − rc
1
)

and Ω2 = Ω1, where Um and Ωm are the translational and rotational
velocities, respectively, of squirmer m. To achieve rigid body motion, the connecting rod imparts forces
Fm and torques Tm to the squirmers.

4.1. Two Identical Squirmers Connected Side-by-Side

We first investigated the swimming of two identical squirmers connected in parallel (Figure 2a).
The dragless short rigid rod was connected at the minimum distance between two spherical surfaces.
The squirmers had swimming mode β and angle φ from the y-axis. Due to the symmetry of the
problem in the y–z plane, the dumbbell swam in the y-direction with velocity U. The rod imparted the
x-direction force F and the z-direction torque T to the squirmers.

Figure 3 shows the swimming velocity of the side-by-side dumbbell squirmers. The velocity was
nearly 1 when φ = 0, i.e., parallel orientation, whereas it was zero when φ = ±π. Figure 3b shows that
maximum swimming velocity slightly increased as |β| increased. The angle with maximum velocity
φmax increased as β increased. These results indicate that swimming velocity was not significantly
increased in the case of the side-by-side dumbbell squirmers.
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Figure 3. Swimming velocity of a side-by-side dumbbell squirmer connected by a short rigid rod.
(a) Contour plot of the velocity in β–φ space. (b) Maximum velocity Umax and the angle with maximum
velocity φmax at each β value.

Figure 4 shows the force F and torque T induced by the connecting rod. When F was positive,
two squirmers tended to attract each other and the rod generated force, causing the squirmers to repel
each other. When T was positive, two squirmers tended to face each other and the rod generated torque
to face them in the opposite direction. The force was strongly affected by both β and φ, and changed its
sign depending on these parameters. In contrast, torque was always negative in the range −5 ≤ β ≤ 5.
When torque was negative, the squirmers tended to orient away from each other and the rod generated
torque to turn them face to face. These results show that steady forward swimming cannot be achieved
in a side-by-side dumbbell squirmer without the application of external torque to counterbalance the
hydrodynamic torque.
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Figure 4. Force F and torque T induced by the connecting rod of the side-by-side dumbbell squirmers.
(a) Contour plot of the force in β–φ space, where negative F indicates that the squirmers tended to repel
each other without the rod. White lines indicate F = 0. (b) Contour plot of torque in β–φ space, where
negative T indicates that the squirmers tended to turn away from each other without the rod.

4.2. Squirmers with Different Modes Connected Fore and Aft

We next investigated the swimming of two squirmers with different squirming modes, β1 and β2,
connected fore and aft (Figure 2b). A dragless short rigid rod was again connected at the minimum
distance between the spherical surfaces. The two squirmer centers were placed along a line parallel to
the y-axis, and both squirmers were oriented in the y-direction. Due to symmetry of the problem along
the y-axis, the dumbbell swam in the y-direction with velocity U. The rod exerted y-direction force F,
and no torque was generated on the squirmers.

Figure 5a shows the swimming velocity of the fore-and-aft dumbbell squirmer. The velocity differed
considerably depending on the squirming mode, with a significantly greater velocity observed when the
fore squirmer was a puller and the aft squirmer a pusher, i.e., β1 > 0 and β2 < 0. When β1 = 3 and β2 =−3,
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velocity increased to become about 1.4 times larger than that of a solitary squirmer. When β1 =−3 and β2

= 3, velocity decreased to become about 0.6 times smaller than that of a solitary squirmer.
Figure 5b shows force F induced by the connecting rod. When F was positive, the squirmers

tended to attract each other and the rod generated a repelling force between the squirmers. The sign of
the force changed along β1 + β2 = 0. When β1 + β2 > 0, F was positive and the squirmers tended to
attract each other. When β1 + β2 < 0, F was negative and the squirmers tended to repel each other.

In designing a real dumbbell swimmer, the two micro-swimmers can be connected by a flexible
string instead of a connecting rigid rod. Such a string cannot resist compression force, because it can
be bent easily. However, stretching force can be effective because the string can generate a contraction
force when fully stretched, by setting β1 + β2 < 0.
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Figure 5. Swimming behavior of a fore and aft dumbbell squirmer connected by a short rigid rod.
(a) Contour plot of velocity at various swimming modes. White line indicates U/U0 = 1. (b) Contour
plot of force at various swimming modes, where negative F indicates that the squirmers tended to repel
each other without the rod. White line indicates F = 0.
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5. Stability of a Dumbbell Squirmer Connected by a Spring

In considering real applications of assembled micro-swimmers, it is preferable to connect or
detach swimmers in a reversible manner, which can be achieved using the reversible adhesion of
proteins or polymer chains. Since the mechanical behavior of these macromolecules is similar to
that of a spring, the swimmer can be modeled as a dumbbell micro-swimmer connected by a spring.
Moreover, the rigid connecting rod used in Section 4 may be too ideal. The rod should have some
elasticity, and may be bent at the base, i.e., on the squirmer surface. A dumbbell micro-swimmer
connected by a spring may be a more realistic model; therefore, we investigated the stability of a
dumbbell squirmer connected by a linear spring.

5.1. Two Identical Squirmers Are Connected Side-by-Side

We first investigated the swimming behavior of two identical squirmers connected in parallel
by a dragless linear spring (Figure 6a). The spring was connected at rs

m on the surface of squirmer m,
where rs

m was on the equator. We assume that the spring can change angle at rs
m without any friction.

The spring generated force given by Equation (5), where the equilibrium length was set as l0 = a.
The spring constant k was set as k/µU0 = 100, to ensure that the spring was sufficiently strong and its
length did not change considerably. The spring force generated torque on the squirmer, as shown in
Equation (6). The squirmers had the same swimming mode β.
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To introduce small disturbances and asymmetry in the squirmer configuration, the centers of
squirmers 1 and 2 were initially placed at rc

1 = ( 0, 0, 0) and rc
2 = (3a, 0, 0.1a). The squirmers were

oriented in the x–y plane, at an angle from the y-axis described by e1 = (− sinφ1, cosφ1, 0) and
e2 = ( sin φ2, cos φ2, 0). We set φ1 = 1◦ and φ2 = 2◦. The dumbbell squirmer swam with velocity U.
We varied swimming mode β, and examined the stability of side-by-side swimming. We observed that
stability was not affected by the magnitude of the initial disturbance, provided that the disturbance was
not too large.

Figure 7 shows the trajectories of dumbbell squirmers connected in parallel with a spring.
Trajectories were circular when β was negative. Squirmers with negative β became stable with inclined
squirmer orientation, such that the dumbbell generated rotational velocity as well as translational
velocity. When β ≥ 0, the paths of the dumbbell squirmer were straight. In this case, the squirmers
eventually became almost parallel to each other, and their direction almost coincided with the
swimming direction. These results indicate that the side-by-side dumbbell was stable when the
squirmers were pullers. The swimming speed of the dumbbell squirmer was almost U0, such that
side-by-side swimming did not greatly affect swimming speed (Figure 3).
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Figure 7. Effect of β on the trajectories of the squirmer centers of dumbbell squirmers connected
side-by-side. To generate a small disturbance, two squirmers were initially placed at rc

1 = (0, 0, 0) and
rc

2 = (3a, 0, 0.1a) with φ1 = 1◦ and φ2 = 2◦. The equilibrium length of the spring was set at a. (a) Circular
trajectories obtained in negative β cases. Inset shows the cases β = −1 and −3. (b) Straight trajectories
obtained for β = 0, 1, and 3.

The mechanism of stability can be explained by the torque balance of the squirmers. Figure 8a
shows the velocity field around a stable side-by-side dumbbell squirmer with β = 3. A large velocity
was generated in front of the squirmer and a small velocity was generated behind the squirmer, where
recirculation regions were observed. The orientation vectors appear almost parallel to each other,
but slightly apart, due to the hydrodynamic torque exerted in the side-by-side orientation (Figure 4b).
The velocity field generated by pullers is shown schematically in Figure 8b. Since the squirmers were
slightly apart from each other, the connecting spring was stretched, imparting force Fs to squirmer
1 and resulting in spring torque Ts (red arrow). This torque counterbalanced hydrodynamic torque Tu,
which was generated by the squirming velocity of squirmer 2. Since the torques canceled each other
out, the squirmer was able to maintain steady orientation while swimming.
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Figure 8. Mechanism of stable swimming of dumbbell squirmers connected side-by-side. (a) Velocity
field around a stable dumbbell squirmer with β = 3. (b) Schematics of the torque balance. Two squirmers
tended to move away from each other, and the spring was stretched. The spring force Fs induced spring
torque Ts to the squirmer (red arrows). The squirming velocity (blue arrows), generated hydrodynamic
torque Tu. The configuration became stable when the two torques canceled each other out.

5.2. Squirmers with Different Modes Connected Fore and Aft

We next investigated swimming of two squirmers with different squirming modes β1 and β2,
connected fore and aft by a dragless linear spring (Figure 6b). The spring connected the bottom of
squirmer 1 (rs

1 = rc
1 + ae1) and the top of squirmer 2 (rs

2 = rc
2 + ae2). The spring generated force and

torque as given by Equations (5) and (6), at an equilibrium length of l0 = a and spring constant of
k/µU0 = 100.

To introduce small disturbances and asymmetry in the squirmer configuration, the centers of
squirmers 1 and 2 were initially placed at rc

1 = ( 0, 0, 0) and rc
2 = (0,−3a, 0.1a). The squirmer

vectors were oriented in the x–y plane; the angles from the y-axis were e1 = ( − sin φ1, cos φ1, 0)
and e2 = ( sin φ2, cos φ2, 0). We set φ1 = 1◦ and φ2 = 2◦. The dumbbell squirmer swam at velocity
U. To reduce the number of parameters, we assumed that β1 = 0 and varied swimming mode β2 to
examine the stability of fore and aft swimming. We again observed that stability was not affected by
the magnitude of the initial disturbance, provided that the disturbance was not too large.
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Figure 9 shows the trajectories of the dumbbell squirmers connected fore and aft by the spring.
Trajectories with β2 ≥ −0.5 eventually became circular, although convergence was slow. In these cases,
the squirmers became stable at inclined orientations, such that the dumbbell generated rotational
as well as translational velocity. When β2 ≤ −1, the dumbbell squirmer paths were straight.
The swimming directions did not coincide with the y-direction, because the initial disturbance greatly
changed the swimming direction within the first tens of time unit. These results demonstrate that the
fore and aft dumbbell was stable when the aft squirmer was a strong pusher. The swimming speed of
the dumbbell squirmer at β2 = −3 was about 1.2U0, indicating that the fore and aft squirmers were
able to increase swimming speed considerably (Figure 5a).
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The mechanism of stability can again be explained by the torque balance of the squirmers.
Figure 10a shows the velocity field around a stable fore and aft dumbbell squirmer with β1 = 0 and β2 =
−3. A large velocity was generated behind the aft squirmer, whereas a small velocity was generated in
front of the fore squirmer and between the squirmers. In this case, the orientation vectors were aligned.
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The velocity field around the dumbbell squirmers is shown schematically in Figure 10b. Since the aft
squirmer was a strong pusher, the squirmers tended to repel each other (Figure 5b). The repulsion
flow stretched the connecting spring, imparting force Fs to the squirmers. The spring force resulted in
spring torques Ts (red arrows), which overwhelmed the hydrodynamic torques Tu generated by the
squirming velocities; thus, the two squirmers eventually aligned.
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Figure 10. Mechanism of the stable swimming in a dumbbell squirmer connected fore and aft. (a)
Velocity field around a stable dumbbell squirmer with β1 = 0 and β2 = −3. (b) Schematics of the torque
balance. Two squirmers tended to repel each other, and the spring was stretched. Spring force Fs induces
spring torque Ts to the squirmer (red arrows). The spring torque stabilized the aligned configuration
when it overwhelmed hydrodynamic torque Tu, which was caused by the squirming velocity.

6. Conclusions

We investigated the swimming behavior and stability of a dumbbell squirmer. We first
investigated stability in the far field using linear stability analysis. The results indicated that stable
forward swimming could not be achieved when the two squirmers were in the far field without the
application of external torque. We then investigated the swimming speed of a dumbbell squirmer
connected by a short rigid rod using a boundary element method. Two types of dumbbell squirmers
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were examined: (a) side by side and (b) fore and aft. A significant increase in the swimming velocity
was observed when the fore squirmer was a puller and the aft squirmer was a pusher. The force and
torque exerted by the dumbbell squirmer were also clarified. Finally, we investigated the swimming
stability of a dumbbell squirmer connected by a spring. We demonstrated that stable side-by-side
swimming could be achieved by pullers. Fore and aft swimming were also stable when the aft squirmer
was a strong pusher, such that the swimming speed was significantly increased. The findings of this
study form a fundamental basis for micro-swimmer mechanics and will be useful in creating future
designs of assembled micro-swimmers.
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