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Abstract: Advances in the last decade combining transcriptomics with established proteomics
methods have made possible rapid identification and quantification of protein families in snake
venoms. Although over 100 studies have been published, the value of this information is increased
when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical
variation, and possible medical implications. This review brings together all compositional studies
of snake venom proteomes published in the last decade. Compositional studies were identified for
132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers),
65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately
90% of their total venom composition consisted of eight protein families for elapids, 11 protein
families for viperines and ten protein families for crotalines. There were four dominant protein
families: phospholipase A2s (the most common across all front-fanged snakes), metalloproteases,
serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich
secretory proteins, L-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and
natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A2s
and viper venoms metalloproteases, phospholipase A2s and serine proteases. Although 63 protein
families were identified, more than half were present in <5% of snake species studied and always in
low abundance. The importance of these minor component proteins remains unknown.
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1. Introduction

Medically significant venomous snakes are almost entirely front-fanged, and are classified
into three families: Atractaspidae (Burrowing Asps, 69 species), Elapidae (Elapids, 360 species),
and Viperidae (Vipers, 340 species). This last family is in turn divided into two subfamilies, Viperinae
(True Vipers, 101 species), and Crotalinae (Pit Vipers, 239 species) (data taken from www.reptile-
database.org). The venom glands of caenophidian (advanced) snakes are homologous [1], and current
evidence suggests that the three families of front-fanged snakes evolved from non-front-fanged
venomous snakes [2].

Snake venoms are mixtures of different protein families, and each of these families contains many
different toxins or toxin isoforms. As snake venom glands are homologous, it would be expected that
some toxin families would be ubiquitous across the three front-fanged snake families. This ancestral
venom proteome has since diversified among different snake families due to the influence of genetic
mutations, genetic drift, and natural selection differentially molding the venom of each species to
confer optimal prey specific toxicity.

For decades, a major line of research in snake venom studies has been investigating the structure
and function of single toxins. Recent advances in the last decade in transcriptomics technology,
combined with well-established proteomics methods such as reverse-phase high performance
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liquid chromatography (RP-HPLC), and mass spectrometry (MS), has enabled rapid identification
of different toxins in snake venoms, as well as the ability to rapidly measure their relative
abundance. These technological advances have fortuitously coincided with major improvements
in our understanding of snake evolutionary relationships (phylogeny). As the venom proteomes of
over 100 snake species have now been published, there is a sufficient number of studies to allow the
general themes in snake venom evolution to begin to be understood. There is a need to collate this
data for each family/subfamily of snakes for comparative analysis. This review collects all the studies
published in the last ten years that provide relatively complete compositional abundances of the toxins
in snake venoms. It could thenform the basis of an online database to be continually expanded as the
venom profiles of more snake species are added to the body of knowledge.

2. Results

Compositional venom studies were identified for 132 species of snakes: 42 species from 360 (12%)
Elapididae (elapids), 20 species from 101 (20%) Viperinae (true vipers), 65 species from 239 (27 %)
Crotalinae (pit vipers), and five species of non-front-fanged snakes (percentage unknown—perhaps
<3%). A total of 63 protein families were identified in all of the studies in the venoms of the 130 snake
species reviewed. Of the 127 species of front-fanged snakes, their venom contained 59 protein families.
For this group, with only a few exceptions, approximately 90% of their total venom composition was
made up of eight protein families for elapids (Table 1 and Figure 1), 11 protein families for viperines
(Table 2 and Figure 1), and ten protein families for crotalines (Table 3 and Figure 1). Three species (two
elapids and one crotaline) had unusual venom compositions (Tables S1 and S2).
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Figure 1. The relative proportions of different protein families for the venoms of: elapids (upper); 
viperines (middle); and crotalines (lower), averaged from the number of species noted in the brackets. 
PLA2, phospholipase A2; SVSP, snake venom serine protease; SVMP, snake venom metalloprotease; 
LAAO, L-amino acid oxidase; 3FTx, three-finger toxin; KUN, kunitz peptide; CRiSP, cysteine-rich 
secretory protein; CTL, C-type lectin; DIS, disintegrin; NP, natriuretic peptide; NGF, nerve growth 
factor; CYS, cystatin; VEGF, vascular endothelial growth factor; MVC, minor venom component. 

Figure 1. The relative proportions of different protein families for the venoms of: elapids (upper);
viperines (middle); and crotalines (lower), averaged from the number of species noted in the brackets.
PLA2, phospholipase A2; SVSP, snake venom serine protease; SVMP, snake venom metalloprotease;
LAAO, L-amino acid oxidase; 3FTx, three-finger toxin; KUN, kunitz peptide; CRiSP, cysteine-rich
secretory protein; CTL, C-type lectin; DIS, disintegrin; NP, natriuretic peptide; NGF, nerve growth
factor; CYS, cystatin; VEGF, vascular endothelial growth factor; MVC, minor venom component.
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Table 1. The 42 elapids included in the study (excluding two aberrant species), with the proportion of each of the eight major protein families in venom (expressed as
percent of total venom), which make up 80–100% of their venom proteome.

SPECIES PLA2 SVSP SVMP LAAO 3FT KUN CRiSP NP %WV 3FT + PLA2 REF

Austrelaps labialis 33 3 45 9 8 98 78 [3]
Drysdalia coronoides 86.4 9.2 2.8 98.4 86.4 [4]
Micropechis ikaheka 80 <0.1 7.6 0.4 9.2 0.7 1.8 99.8 89.2 [5]
Notechis scutatus 74.5 5.9 5.6 6.9 0.3 2 93.2 80.1 [6]

Oxyuranus scutellatus 68–80 <5 5–9 0–9 <10 <1 1 >90 68–89 [7]
Pseudechis papuanus 90.2 2.8 1.6 3.1 2.3 100 93.3 [8]

Toxicocalamus longissimus 6.5 1.4 92.1 100 98.6 [9]
Aipysurus laevis 71.2 25.3 2.5 99 96.5 [10]

Hydrophis cyanocinctus 18.9 81.1 100 100 [9]
H. platurus 32.9 0.9 49.9 9.1 92.8 82.8 [11]

H. schistosus 27.5 0.5 0.2 70.5 1.3 100 98 [12]
Laticauda colubrina 33.3 66.1 0.05 99.45 99.4 [13]

Bungarus caeruleus (Sri Lanka) 64.5 1.3 19 4.4 5.5 94.7 83.5 [14]
B. candidus Malaya 25.2 3.9 4.9 5.8 30.1 12.6 3.9 1 86.4 55.6 [15]
B. fasciatus Vietnam 66.8 3.5 7 1.3 1.8 0.4 80.8 68.1 [16]
B.fasciatus Malaya 44.2 5.8 4.7 5.8 17.4 9.3 1.2 88.4 61.6 [15]

Dendroaspis angusticeps 6.7 69.2 16.3 2 94.2 69.2 [17]
D. polylepis 3.2 31 61.1 2.9 95.3 31 [18]

Naja haje 4 9 1 60 1.9 10 85.9 64 [19]
N. melanoleuca 12.9 9.7 57.1 3.8 7.6 91.1 70 [20]

N. katiensis 29 3.3 67.1 0.2 99.6 96.1 [21]
N. mossambica 27.1 2.6 69.3 99 96.4 [21]
N. nigricollis 21.9 2.4 73.2 0.2 97.7 95.1 [21]

N. nubiae 26.4 2.6 70.9 99.9 97.3 [21]
N. pallida 30.1 1.6 67.7 99.4 97.8 [21]

N. atra China 12.2 1.6 84.3 1.8 99.9 96.5 [22]
Naja atra Taiwan 14–17 2–2.6 0.2 76–80 2.2–2.4 >93 90–97 [23]
N. kaouthia China 26.9 1.1 56.6 5.4 90 83.5 [24]

Naja kaouthia Malaya 23.5 3.3 1.1 63.7 0.5 4.3 96.4 87.2 [25]
Naja kaouthia Thailand 12.2 2.6 1 78.3 2.3 0.2 96.4 90.5 [25]
Naja kaouthia Vietnam 17.4 1.6 0.5 76.4 0.8 96.7 93.8 [25]
N. naja Eastern India 11.4 0.3 1 0.8 63.8 0.4 2.1 2 79.8 75.2 [26]

Naja naja North-west India 21.4 0.9 74 2.5 98.8 95.4 [27]
Naja naja Sri Lanka 14 0.9 80.5 3.7 99.1 94.5 [27]

N. sputatrix 31.2 0.4 1.3 0.1 64.2 0.2 97 95.4 [28]
Ophiophagus hannah 2.8 11.9 0.5 64.5 3.3 6.5 0.2 89.5 67.3 [29]

Micrurus alleni 10.9 1.2 3 77.3 92.4 88.2 [30]
M. altirostris 13.7 0.9 1.2 79.5 2.1 0.1 97.5 93.2 [31]
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Table 1. Cont.

SPECIES PLA2 SVSP SVMP LAAO 3FT KUN CRiSP NP %WV 3FT + PLA2 REF

M. clarki 36.5 1 1.6 3.8 48.2 0.9 92 84.7 [32]
M. corallinus 11.9 0.8 2.9 2.3 81.7 99.6 93.6 [31]
M. dumerelii 52 1.9 1.8 3.1 28.1 9 95.9 80.1 [33]
M. fulvius 64.9 2.9 25.1 2.2 95.1 90 [34]

M. mipartitus 29 1.3 1.6 4 61.1 1.9 98.9 90.1 [35]
M. mosquitensis 55.6 0.5 2.6 2.8 22.5 9.8 93.8 78.1 [30]
M. multifasciatus 8.2 3.6 3.2 83 1.9 99.9 91.2 [35]
M. nigrocinctus 48 0.7 4.3 2.3 38 93.3 86 [36]

M. tschudii 4.1 0.7 95.2 1.6 100 99.3 [37]

Abbreviations: PLA2, phospholipase A2; SVSP, snake venom serine protease; SVMP, snake venom metalloprotease; LAAO, L-amino acid oxidase; 3FT, three-finger toxin; KUN, Kunitz
peptides; CRiSP, Cysteine-Rich Secretory Protein; %WV, percentage of venom; 3FT + PLA2, percentage of whole venom made up of these two protein families.

Table 2. The 20 viperines (true vipers) included in the study with the proportion of the 11 major protein families in each venom (expressed as percent of total venom),
which make up 90–100% of their venom proteome (except *, venom proteome incompletely characterized).

SPECIES PLA2 SVSP SVMP LAAO CRiSP CTL/SNACLEC DIS NP KUN VEGF CYS %WV REF

Bitis arietans 4.3 19.5 38.5 13.2 17.8 4.2 1.7 99.2 [38]
B.caudalis 59.8 15.1 11.5 1.7 1.2 4.9 2.3 3.2 99.7 [38]
B.gabonica 11.4 26.4 22.9 1.3 2 14.3 3.4 2.8 3 1 9.8 98.3 [38]

B.nasicornis 20.1 21.9 40.9 3.2 1.3 4.2 3.5 4.2 99.3 [38]
B.rhinoceros 4.8 23.9 30.8 2.2 1.2 14.1 8.5 0.3 7.5 5.3 98.6 [38]

Cerastes cerastes (Morocco) 19.1 6.9 63.1 0.7 1.7 8.5 100 [39]
C. cerastes (Tunisia) 16.6 13.2 55.9 6.2 3.2 4.9 100 [39]

Daboia russelii (Pakistan) 32.8 3.2 21.8 0.6 2.6 6.4 0.4 28.4 1.5 97.7 [40]
D. russelii (West India) 32.5 8 24.8 0.3 6.8 1.8 4.9 12.5 1.8 93.4 [41]
D. russelii (Sri Lanka) 35 16 6.9 5.2 2 22.4 4.6 92.1 [42]

Echis carinatus sochureki 7.97 4.58 56.57 1.19 1.99 16.53 7.7 0.4 97 [43]
E. coloratus 5.7 3.58 61.41 3.91 5.69 9.45 5.8 0.32 96 [43]
E. ocellatus 8.5 1.71 72.43 1.36 0.34 6.46 2.72 93.5 [43]

E. pyramidium leakeyi 21.57 1.42 48.94 2.83 24.26 0.28 99.3 [43]
Macrovipera lebetina (Tunisia) 5 5.5 63.1 3.2 15.1 3.1 3.3 98.3 [44]

M. l. obtusa 14.6 14.9 32.1 1.7 2.6 14.8 11.3 5.3 97.3 [45]
M. mauritanica 5.5 8.3 45.4 8.1 13.8 4.5 2.5 4.9 93 [44]
Vipera anatolica 8.1 1.6 41.5 15.9 1.1 2 0.3 70.5 * [46]

V. berus 10 31 19 2 8 2 1 11 84 * [47]
V. kaznakovi 41 11 16 4 10 12 0.53 4 94.5 [48]
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Table 2. Cont.

SPECIES PLA2 SVSP SVMP LAAO CRiSP CTL/SNACLEC DIS NP KUN VEGF CYS %WV REF

V. nikolskii 65 19 0.66 0.08 0.66 4 8 97.4 [48]
V. orlovi 24 24 15 5 12 11 0.56 0.15 4 91.7 [48]
V. raddei 23.8 8.4 31.6 0.2 7.4 9.6 9.7 6 0.9 2.4 100 [45]

V. renardii 44 8 12 4 8 3 13 0.8 3 95.8 [48]

Abbreviations: PLA2, phospholipase A2; SVSP, snake venom serine protease; SVMP, snake venom metalloprotease; LAAO, L-amino acid oxidase; CRiSP, Cysteine-Rich Secretory
Protein; CTL/SNACLEC, C-type lectins and C-type lectin like; DIS, disintegrin; NP, natriuretic peptides including vasoactive peptides; bradykinin potentiating and inhibitory peptides;
KUN, kunitz peptides; VEGF, vascular endothelial growth factor; CYS, cystatin; %WV, percentage of whole venom.

Table 3. The 65 crotalines (pit vipers) included in the study (excluding one aberrant species), with the proportion of the ten major protein families in each venom
(expressed as percent of total venom), which make up 80–100% of their venom proteome. Taxonomy follows Fenwick et al. 2009 [49].

SPECIES PLA2 SVSP SVMP LAAO CRiSP CTL/SNACLEC DIS NP DEF MPi %WV REF

Calloselasma rhodostoma 4.4 14.9 41.2 7 2.5 26.3 96.3 [50]
Cryptelytrops purpureomaculatus 8 12 35 10 6 19 2 92 [51]

Gloydius brevicaudus 25 3.7 64.4 0.9 1.1 0.2 4.6 99.9 [52]
G. intermedius 9.9 36.2 2.6 13.1 6.2 0.8 25.3 94.1 [53]

Ovophis okinavensis 0.65 93.1 4.2 0.62 0.47 99 [54]
Protobothrops elegans 77.1 10.4 8 0.5 0.1 0.2 96.3 [55]

Protobothrops flavoviridis 55.5 11.8 17.3 3.1 2 0.9 2.6 93.2 [56]
P.mucrosquamatus 22.5 10.4 43 2 0.8 3.9 0.8 3.6 87 [57]

Viridovipera stejnegeri 24.5 11 43.1 3.3 6 1.5 2.2 1.2 92.8 [57]
Agkistrodon bilineatus (3 subsp) 34.3–42 7.6–16.9 24.5–30.8 2.6–4.9 0–5.6 0.4–1.4 2.2–3.1 4.6–8.7 76.7+ [58]

A. c. contortrix 50.7 5.85 25 4 2 0.8 88.35 [59]
A. piscivorus (3 subsp) 33.6–46 10.1–13.9 21–33.1 0.8–4.5 2–3.5 0.8–3.2 2.2–4.9 5.7–5.9 76.2 [58]
Atropoides nummifer 36.5 22 18.2 9.1 1.9 1.3 2.5 8.6 100 [60]

A. picadoi 9.5 13.5 66.4 2.2 4.8 1.8 <0.1 1.8 100 [60]
Bothriechis aurifer 7.3 35.1 9.5 10.7 16.4 1.4 13.4 3.2 97 [61]

B. bicolor 35.2 19.1 8.5 10.8 1 4.4 7.6 3.6 4.6 94.8 [61]
B. marchi 14.3 10.1 34.2 1.1 2.8 4.2 6.5 10.6 8.5 83.8 [61]
B. lateralis 8.7 11.3 55.1 6.1 6.5 11.1 98.8 [61]

B. nigroviridis 38.3 18.4 0.5 2.1 37 96.3 [62]
B. schlegelii 43.8 5.8 17.7 8.9 2.1 13.4 91.7 [61]

B. supraciliaris 13.4 15.2 6.8 5.9 4.3 1.6 21.9 69.1 [63]
B. thalassinus 12.1 39.6 4.3 5.1 11.5 2 10.6 9.9 95.1 [61]

Bothrocophias campbelli 43.1 21.3 15.8 5.7 0.9 6.4 0.3 3.9 97.4 [64]
B. colombiensis 44.3 <1 42.1 5.7 0.1 5.6 0.8 99.5 [65]

Bothropoides diporus 24.1 7.2 34.2 7.4 2.9 1.4 15.9 2.6 95.7 [66]
B. erythromelaus (5 populations) 10.1–15.1 4–9.7 32.5–59.9 0.4 8.4–21.6 3.4–8.9 9.3–14.5 68+ [67]

B. insularis 10 12.5 30 1.3 1.3 31.3 11.3 97.7 [68]
B. jaracara (south-east) 3.7 13.7 35.6 7.2 2.4 9.6 7 16.4 95.6 [69]

B. jaracara (south) 20.2 28.6 10.3 8 2.6 9.4 0.2 22.6 100 [69]
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Table 3. Cont.

SPECIES PLA2 SVSP SVMP LAAO CRiSP CTL/SNACLEC DIS NP DEF MPi %WV REF

B. neuwiedi 8.4 8.8 49.9 16.7 2 8.6 94.4 [70]
B. pauloensis 31.9 10.5 38.1 2.8 2.2 0.6 1.3 12.4 99.8 [71]

Bothrops asper (Caribbean coast) 28.8 18.2 41 9.2 0.1 0.5 2.1 99.9 [72]
B. asper (Pacific coast) 45.5 4.4 44 4.6 0.1 0.5 1.4 100 [72]

B. atrox (Western Para Brazil) 5.7–7.5 9.7–14.1 46.5–54 8.7–9.4 3.7–4.3 10.2–13.1 84.5+ [73]
B. atrox (Colombia) 24.1 10.9 48.5 4.7 2.6 7.1 1.7 0.3 99.9 [74]
B. atrox (Venezuela) 7.7–8.5 2.3 85 1.2–1.5 2.8–3.8 99+ [75]

B. atrox (Peru) 11 11.1 58.2 10.5 2.4 3.6 3.2 100 [76]
B. ayerbi 0.7 9.3 53.7 3.3 1.1 10.1 2.3 8.3 88.8 [77]

B. barnetti 6.4 6.7 74.1 0.8 3.1 3.3 5.5 99.9 [76]
B. caribbaeus 12.8 4.7 68.6 8.4 2.6 1.7 98.8 [78]
B. jararacussu 25.7 12.3 26.2 15 2.2 9.7 91.1 [70]
B. lanceolatus 8.6 14.4 74.2 2.8 <0.1 100 [78]

B. pictus 14.1 7.7 68 1.1 8.9 99.8 [76]
B. pirajai 40.2 7.1 20.7 5.2 9.2 1.4 5.6 89.4 [79]

B. punctatus 9.3 5.4 41.5 3.1 1.2 16.7 3.8 10.7 91.7 [80]
Cerrophidion godmani 23.4 19.1 32.8 5 4.2 0.5 7.5 5.7 98.2 [81]

C. sasai 23.4 19.1 32.8 5 4.2 0.5 7.5 5.7 98.2 [82]
Crotalus adamanteus 7.8 20 24.4 5.3 1.3 22.2 16.8 97.8 [83]

C. atrox 7.3 19.8 49.7 8 4.3 3.4 6.2 3 100 [84]
C. basiliscus 14 11 68 2 4 99 [85]

C. culminatus 8.3 10.1 35.5 2.7 1.9 13 1.6 24.4 97.5 [86]
C. durissus cascavella 90.9 1.2 <0.1 <0.1 0.9 <0.1 0.2 93.4 [87]

C. d. collilineatus 72 1.9 0.4 0.5 1.8 <0.1 0.5 20.8 98 [88]
C. d. terrificus 48.5 25.3 3.9 77.7 [89]

C. horridus 22.8 58.2 0.1 1.1 0.8 0.22 0.2 82.3 [90]
C. simus simus 22.4 30.4 27.4 5.7 1 0.6 1.5 6.5 95.5 [91]

C. tigris 26.8 66.2 1.9 0.2 95.1 [92]
C. tzabacan 11.1 5.4 18.5 0.5 35.2 4.2 23.5 98.4 [86]
C. viridis 7.7–10.2 26.8 10.9–11.4 1.9–2.5 2.1–3.9 1.8–3.3 0.1 6.5–8.2 35.6–38 0.1 93.5+ [93]

Sistrurus catenatus (3 subsp.) 31.3-31.9 18.2-24.4 40.6-48.6 1.6-4.2 0.8-10.7 0.9-4.2 93.4+ [94]
S. miliarius 32.5 17.1 36.1 2.1 2.9 7.7 98.4 [94]

Lachesis acrochorda 2.3 35.1 23.2 9.6 0.9 6.9 21.5 99.5 [95]
L. melanocephala 13.4 21 18.9 3.6 7.5 30.2 94.6 [94]

L. muta muta 8.7 31.2 31.9 2.7 1.8 7.9 14.7 98.9 [94]
L. m. rhombeata 10.8 26.5 29.5 0.5 1.4 2.7 28 99.4 [96]

L. stenophrys 14.1 21.2 30.6 2.7 3.6 27.1 99.3 [94]
Porthidium lansbergii 16.2 4.5 35.5 3.6 1.4 6.7 12.9 12.4 93.2 [97]

P. nasutum 11.6 9.6 52.1 3 1.3 10.4 9.9 1.9 99.8 [81]
P. ophryomegus 13.5 7.3 45 3.3 0.6 8 16.7 4.2 98.6 [97]

Rhinocerophis alternatus 2 5.8 52.2 14.9 2.5 14.8 92.2 [70]
R. cotiara 0.6 13 51 19.6 2.9 4.7 91.8 [70]
R. fonescai 30.1 4.1 42.5 1.9 2.4 9.8 4.4 95.2 [98]

Abbreviations: PLA2, phospholipase A2; SVSP, snake venom serine protease; SVMP, snake venom metalloprotease; LAAO, L-amino acid oxidase; CRiSP, Cysteine-Rich Secretory
Protein; CTL/SNACLEC, C-type lectins and C-type lectin like; DIS, disintegrin; NP, natriuretic peptides, including vasoactive peptides, bradykinin potentiating and inhibitory peptides;
DEF, defensin (crotamine); MPi, snake venom metalloprotease inhibitor; %WV, percentage of whole venom.
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The 59 protein families could be classified based on compositional abundance and ubiquity.
These categories were: four dominant protein families: phospholipase A2s (PLA2), metalloproteases
(SVMP), serine proteases (SVSP) and three-finger toxins (3FTx); six secondary protein families:
cysteine-rich secretory proteins (CRiSP), L-amino acid oxidases (LAAO), kunitz peptides (KUN),
C-type lectins/snaclecs (CTL), disintegrins (DIS) and natriuretic peptides (NP); nine “minor” protein
families; and 36 “rare” protein families (Table S3). There was also a further group of four “unique”
protein families, which were each restricted to a single genus.

The major difference between elapid and viper venoms was the presence of 3FTx in elapid venoms
and the virtual absence of 3FTx in viper venoms. Elapid venoms were also less diverse in the range
or number of protein families, largely consisting of only PLA2 and 3FTx, although different groups
were dominated by one or the other (Figure 2). Elapid venoms were more variable in the amount of
different protein families compared to viper venoms.
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Figure 2. Differences in the venom composition among the family elapidae, averaged from the number of
species noted in the brackets. The 3FTx/PLA2 dichotomy is shown for New World coral snakes (upper
pair), Australian elapids (middle pair) and Afro-Asian cobras and kraits (lower pair). The lowermost pie
chart shows the unique venom composition of African black mamba. PLA2, phospholipase A2; SVSP,
snake venom serine protease; SVMP, snake venom metalloprotease; LAAO, L-amino acid oxidase; 3FTx,
three-finger toxin; KUN, kunitz peptide; CRiSP, cysteine-rich secretory protein; NP, natriuretic peptide;
VEGF, vascular endothelial growth factor; NGF, nerve growth factor; MVC, minor venom component.
Mildly venomous Australian species: Drysdalia coronoides, Austrelaps labialis and Toxicocalamus longissimus.
Medically significant Australian elapids: Oxyuranus scutellatus, Notechis scutatus, Pseudechis papuanus and
Micropechis ikaheka.
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Protein families in non-front-fanged snakes are included in Table S4.

3. Discussion

A total of 63 protein families were identified in the venoms of the 132 snake species included in
this review. As the venom composition of only five species of non-front-fanged snake species were
found, we will focus on the 127 species of front-fanged snakes, which contain 59 different protein
families. Despite this diversity, with only a few exceptions, more than 90% of elapid and viper venoms
were composed of just ten protein families (Figure 1). Based on their compositional importance and
ubiquity, these 59 protein families were classified into five groups.

1. Dominant protein families (four families): PLA2, SVMP, SVSP and 3FTx.
2. Secondary protein families (six families that were commonly present, but in much smaller

amounts than the dominant families): KUN, CRiSP, LAAO, CTL, DIS, and NP.
3. Minor protein families (nine families): acetylcholinesterase, hyaluronidase, 5′ nucleotidase,

phosphodiesterase, phospholipase B, nerve growth factor, vascular endothelial growth factor,
vespryn/ohanin and snake venom metalloprotease inhibitor.

4. Rare protein families: 36 families listed in Table S3.
5. Unique protein families (four families): defensins, waglerin, maticotoxin and cystatins. These families

make up to 38% of the whole venom of a single species, but are classified separately as each is present
in only one genus.

Both elapid and viper venoms were dominated by two or three protein families, PLA2s and
3FTxs for elapids and SVMPs, PLA2s and SVSPs for vipers (Figure 1). These protein families made up
on average 83% and 67% of the venom proteome of elapids and vipers, respectively. Viper venoms
consisted mainly of PLA2, SVMP and SVSP, but the variability in the amounts of different protein
families between different groups of vipers was less than for elapids.

There was then a secondary group of six protein families, which made up 11% and 22% of the
venom proteome of elapids and vipers, respectively. The remainder of the venoms consisted of minor
abundance protein families belonging to nine minor protein families and 36 rare protein families,
which were only present in a few species and in small amounts (nearly always less than 2%) (Table S3).
It is unknown if these protein families are vestigial relics of snake evolutionary history (redundant,
due to acquired prey immunity), or are recent genetic mutations.

There were four unique protein families, each only present in one genus but often making up the
dominant fraction in the venom: Defensins, Crotalus; Waglerin, Tropidolaemus; Maticotoxin, Calliophis;
and Cystatins, Bitis. Cystatins placement in this category was somewhat arbitrary, as it only comprised
2–10% of the venom, but was present in four of the five Bitis species studied and in no other snake
species apart from the extremely aberrant Calliophis.

3.1. Dominant Protein Families

Phospholipase A2s. This was the most widespread protein family in elapids and vipers.
However, the type of PLA2 differed between families with pancreatic type I in elapids and
synovial-type II in vipers [99]. Maximum recorded amounts were 90% for Pseudechis papuanus (elapid),
51% for Agkistrodon contortrix (crotaline) and 65% for Vipera nikolskii (viperine).

Three-finger toxins. These toxins were only present in elapids (except for one Crotaline
Atropoides nummifer <0.1%). In elapids, they made up to 95% of the total venom (Micrurus tschudii)
and were present in 98% of all species. 3FTxs have been only recorded in small quantities in several
viper species in other studies; Lachesis muta [100], Sistrurus catenatus [101], Protobothrops [54] and
Daboia russelii [102].

Metalloproteases. This was the major protein family in viper venoms, present in all of the viper
species included. The maximum amounts present were 72% for viperines (Echis ocellatus), and 85% for
crotalines (Bothrops atrox). They were of lesser importance in elapids. Although they were present in
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88% of species, they made up a much smaller proportion of the venom; maximum amounts recorded
were 19% for Calliophis bivirgata and 12% for Ophiophagus hannah.

Serine proteases. These were the least quantitatively important of the dominant protein group.
They were present in almost all vipers with the maximum amounts being 31% (Vipera berus) and
93% (Ovophis okinavensis). They were only present in 29% of elapids with the maximum amount being
6% for Notechis scutatus. However, they may potentially make up to 15% in some other Australian
elapids, such as Pseudonaja textilis (Tasoulis et al. unpublished), because there are few proteomic
studies of Australian elapids and it is well known that SVSPs are of major importance in Australian
snakes as procoagulants [103,104].

3.2. Secondary Protein Families

Kunitz peptides. This family was the major venom component in black mambas (61%).
This protein family was entirely absent from crotalines and, in viperines, was common in only three
genera: Bitis, Macrovipera and Daboia. As crotalines are a derived viperine, this suggests that their
absence in crotalines is the result of a reversal or secondary loss. Amongst other elapids, they may
make up to 13% of the total venom.

L-amino acid oxidases. These enzymes were most common in crotalines in both the number of
species that contained them (91% of all species) and in proportion of a single species venom with
a maximum of 20% in Rhinocerophis cotiara. They were of relatively equal importance in elapids and
viperines, always present in more than half the species and in amounts up to 6%.

Cysteine-rich secretory proteins. This group was widespread across all families, but more
common in vipers (88% of species) than elapids (56% of species). The maximum amounts recorded in
individual snake venoms were 10% for elapids and 16% for vipers.

C-type lectins/snaclecs. These were only a minor component of elapid venoms (maximum
amount 2%), but were present in 100% of viperine venoms with a maximum amount 22% in
Daboia russelii and 88% of crotalines with a maximum amount of 31% in Bothrops insularis.

Disintegrins. This protein family was entirely absent in elapids and was of relatively equal
importance in viperines (88% of species) and crotalines (68% of species). The maximum amounts were
18% and 17%, respectively, for viperines and crotalines.

Natriuretic peptides. This protein family was far more important in vipers than elapids.
They were only recorded in 20% of elapids with a maximum amount of 3% in Dendroaspis polylepis.
They were present in 35% of viperines with a maximum amount of 11% in Vipera berus and in 60% of
crotalines with a maximum amount of 37% in Bothriechis nigroviridis.

3.3. Major Inter-Family Differences

A major difference between elapids and vipers was the virtual absence of 3FTxs from viper
venoms, while being one of the two dominant protein families in elapid venoms. As noted
by Aird et al. [54], while 3FTxs have been recorded from several viper venoms, it has been via
transcriptomics studies, not proteomic approaches. Vespryns/ohanins were only recorded in elapid
venoms, with only three exceptions, none exceeding 0.5% (Agkitrodon bilineatus, Bothropoides pauloensis
and Crotalus viridus—all crotalines). Conversely, DISs were absent in elapids while occurring in
almost all viper venoms (averaging 2–6%). Another protein family conforming to this trend was
CTLs, which again were a common component in viper venoms (averaging 6–8%), but were a minor
component in elapid venoms, only present in about a third of the species, and in amounts not more
than 2%. A similar trend was also apparent for NPs.

3.3.1. Elapids

Remarkably, for about 90% of the elapids, greater than 75% of their total venom composition
was made up of just two protein families: PLA2s and 3FTxs. Lomonte et al. [32] drew attention to the
divergence in venom phenotypes exhibited by New World coral snakes (Micrurus). There is a sharp



Toxins 2017, 9, 290 10 of 22

dichotomy among species in the relative proportions of PLA2s and 3FTxs in their venoms. Our study
shows that there is also a dichotomy in the proportion of PLA2s and 3FTxs in elapids on the Australian
continent (Figure 2). The medically important Australo-Papuan elapids (Elapidae: Hydrophiinae) are
dominated by PLA2s and the smaller and less important elapids contain mainly 3FTxs, similar to
the Afro-Asian cobra venoms which are also mainly 3FTxs. Lomonte et al. [32] suggested that based
on the known phylogeny, 3FTxs could be the ancestral state in coral snakes, with an evolutionary
trend towards a greater preponderance of PLA2. Interestingly, when mapped onto the currently
accepted phylogenies, all the most basal species in every clade of Australo-Papuan elapids have venom
that is predominately composed of 3FTxs, while the derived species possess venom dominated by
PLA2s. This suggests that this trend has happened repeatedly in the Australia–New Guinea region:
New Guinea terrestrial elapids [105], Australian terrestrial elapids [106,107] and sea snakes [108,109].
However, this is based on the proteomics of only a few species and requires further investigation.

Kraits (Bungarus) are also dominated by PLA2s, making up almost half the venoms with less
3FTxs, similar to the medically important Australian elapids. However, they contain larger amounts of
the secondary protein families—KUNs, LAAOs and CRiSPs—compared to other elapid groups.

The venoms of most cobra (Naja), species are dominated by 3FTxs, with less PLA2s. Interestingly,
there is a similar dichotomy between cobras and kraits in proportions of PLA2s and 3FTxs, to coral
snakes and Australo-Papuan elapids (Figure 2). Cobras also lacked many of the secondary protein
families, except for CRiSPs, which are present in relatively large amounts in two species (both
non-spitting species), N. haje (10%) and N. melanoleuca (7.6%). The venoms of the African spitting
cobras were the most simplistic of all cobra species in the number of different protein families making
up their venom.

Apart from Calliophis, Dendroaspis (Mambas), had the most unique venoms of the elapids, having
no PLA2s, but instead containing specialized KUNs (dendrotoxins—Kv1 channel blockers) and 3FTxs
modified into both acetylcholinesterase inhibitors (fasciculins) and L-type calcium channel blockers
(calciseptines). Additionally, the KUNs are present in Dendroaspis in far greater amounts than in any
other elapid species.

The most aberrant venom displayed by any elapid species was the Malayan blue coral snake
Calliophis bivirgata flaviceps, which possessed the highest amounts of vespryn/ohanin of any elapid
species (14%) and unusually high amounts of SVMPs for an elapid (19%). Even more unusual,
almost a quarter of its venom consisted of a unique protein family, maticotoxin A, a cytotoxin.
The highly aberrant venoms of these genera could indicate an ancient phylogenetic divergence.

3.3.2. Vipers

Viperine and crotaline venoms were quite similar, being composed mainly of three dominant
protein families: PLA2s, SVMPs and SVSPs (Figure 1). The major difference between the two
subfamilies was that KUNs were present in viperines and absent in crotalines. Additionally, crotalines
possessed glutaminyl cyclases which were absent from viperine venoms. Some protein families were
restricted to a single genus, such as defensins (crotamine), which were only found in the crotaline
genus Crotalus (rattlesnakes), while cystatins were only found in the viperine genus Bitis. Both of these
were present in significant amounts. The results confirmed the longstanding paradigm that viperid
venoms consist of predominately hemotoxins, hemorrhagins, myotoxins and cytotoxins.

Few obvious trends were discernible in crotaline venoms at a protein family level, with less
variability across the family (Figure 3). Lachesis has generally higher amounts of NPs than most
crotalines, in addition to having relatively large amounts of SVSPs. The meso-american genera
Atropoides/Cerrophidion and Porthidium, all possessed noticeably large amounts of DIS, CRiSPs and
CTLs. Asian crotalines could not be separated from American crotalines based on venom protein
families, suggesting an interesting wide geographical similarity (Figure 3).
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Figure 3. Differences in venom composition in different genera of viperids, showing the less extreme
variation in individual protein families compared to elapids. The majority of the venoms are made
up of SVMP, PLA2 and SVSP. Differences include the presence of KUNs in viperines and the greater
importance of NPs in some crotalines. Abbreviations: SVMP, snake venom metalloprotease; PLA2,
phospholipase A2; SVSP, snake venom serine protease; LAAO, L-amino acid oxidase; CRiSP, cysteine
rich secretory protein; CTL, C-type lectin/snaclec; DIS, disintegrin; NP, natriuretic peptide; VEGF,
vascular endothelial growth factor; MVC, minor venom components.

The most aberrant venom of any viperid was Tropidolaemus. In addition to having 38% of its
venom being represented by a unique protein family waglerin, the three dominant protein families in
other viperid venoms made up only 15% of its venom proteome.

3.4. Medical Implications

PLA2s are present in 95% of the two most medically important snake families (elapids and vipers),
excepting the limitation that there are some important groups of snakes that have not been investigated.
Having a common protein family so widely spread has useful implications, such as making it possible
to develop an assay that tests for the presence of snake venom in human body fluids. This has been
shown for a limited number of snakes, in which measurement of phospholipase activity in patient
samples identified patients with viper and elapid envenomation [110].

Demonstrating that there is a limited number of protein families in snake venoms, which is
even more limited for major snake families or sub-families, supports efforts to develop universal
anti-venoms [111].This explains the cross-neutralization of venoms by different anti-venoms, such as
Asian and Australian anti-venoms cross-neutralizing neurotoxicity [112], and cross-neutralization of
pit-viper venoms [113].

3.5. Evolutionary Biology

It has been known for some time that snake venoms are homologous and restricted to a small number
of clearly successful protein families [114,115]. These molecular scaffolds have undergone considerable
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evolutionary “tinkering” to maximize their lethality to prey. Due to its finer inter- and intra-genus level
resolution, this review represents a new and complementary dataset which can supplement future
research in evolutionary biology. Although the extreme potency of some snake venoms clearly argues
for powerful positive directional selection, it is also highly likely that in many adaptive radiations
of snakes venom variation is not the primary driver of speciation. New ecological opportunities
are also important e.g., the unidirectional late Oligocene or early Miocene invasion of the Americas
by crotalines and elapids [116], and climatic oscillations can act as engines of speciation (“species
pump”) [117–119]. Venom is simply one of many competing traits being selected for [120], and is often
of neutral selective value [121,122]. Therefore, toxin evolution cannot be considered in isolation to
other species traits.

An additional consideration is that different protein families can be equally effective in
immobilizing the same prey type. A classic example of this is comparing the African elapid, black
mamba Dendroaspis polylepis and the Australian elapid, coastal taipan Oxyuranus scutellatus. As noted
by Shine [123] these two species represent a remarkable instance of parallel evolution resembling
each other in body size, general morphology (Figure 4), color, venom toxicity, fang length, “snap and
release” bite, clutch size, hatchling size, rapid growth in juveniles, males growing larger than females
and feeding primarily on mammals. Despite having the same diet, they have a completely different
composition of protein families in their venom. Black mamba contains mostly KUNs and 3FTxs,
while coastal taipans have PLA2s and SVSPs. About 25% of coastal taipans completely lack 3FTxs
in their venom or they are present in very small amounts (Tasoulis et al. unpublished). To further
compound the difference, taipan toxins are mainly enzymatic while mamba venoms are almost
entirely non-enzymatic. However, some of these protein families have converged to target the central
nervous system, although in different ways [124–127], while others have evolved to target different
physiological systems, such as the procoagulant (prothrombin activator), in coastal taipan venom.
Black mamba venom is devoid of coagulopathic enzymes [18].
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Figure 4. African black mamba Dendroaspis polylepis (left) and Australian coastal taipan Oxyuranus
scutellatus (right): These elapids represent evolutionary parallels on different continents in terms of
their morphology, ecology and biology, but the pharmacological effects caused by their venoms are the
result of different protein families. Some of these protein families have convergently evolved to cause
potent neurotoxicity. Photo credits: Nick Evans (black mamba), and Brendan Schembri (coastal taipan).

Previous evolutionary studies on snake venom have investigated phylogeny-based comparisons [128],
co-evolution of venom and prey [94,129–133], prey resistance to venom [134,135], gene loss and
duplication [136–139], exon exchange [3,101,140] and venom ontogeny [141–147]. This database allows
us to study snake venom evolution through deep time. It can be used in conjunction with studies
aimed at unraveling the historical biogeography of particular lineages of venomous snakes that, due to
the known geological and climatic history of their in situ evolution, represent model case studies
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of evolution. These studies can examine venom evolution at different hierarchical levels, inter and
intra-generic, as well as intra-specific.

Examples of this are the recent studies done on Meso-American pit vipers Atropoides, Bothriechis,
and Cerrophidion [148,149] that are providing strong support for an underlying biogeographic model
which gives a robust framework for estimating temporal rates of change and divergence times. Ideally,
the venoms of these snake genera would be studied in even finer resolution, not just at a protein family
level, but a complete venom profile of all toxins and toxin isoforms. This data can then be compared
with probable divergence times to show which toxins are undergoing accelerated evolution. Due to
its enormous diversity, and lability, venom could prove to be a phenotypic trait par excellence for
studying evolutionary biology.

Although the relative abundance of protein families can be rapidly altered by genetic drift,
(e.g., founder effect), some conserved toxins may act as reliable biomarkers for tracing evolutionary
history. The venom compositions of the species in the viperine genus Bitis (Table 2) show a perfect
congruence with the phylogenetic relationships of this genus proposed by Wittenberg et al. 2015 [150].
There is also evidence that snakes with unique venom represent species of ancient phylogenetic
divergence (e.g., Calliophis and Dendroaspis [151,152] and Tropidolaemus wagleri [153].

Dowell et al. [136], have shown how rattlesnake venoms can become simplified due to gene
deletions resulting in the loss of toxins. Our data analysis also reveals numerous examples where
protein groups appear to have been lost in individual species and entire genera. For example LAAOs
and CRiSPs are present in all Bitis species examined except B. arietans. NPs and vascular endothelial
growth factors are absent in all Bitis species examined except the sister species B. gabonica/rhinoceros.
Given the homologous nature of these protein families and their ubiquity, these patterns are difficult
to explain other than being the result of character reversals.

Finally, on broader scale, trends in snake venom evolution can be compared with venom evolution
in other groups of venomous organisms.

4. Methods

An online search was conducted using MEDLINE (PubMed platform) and Google Scholar
from May 2006 to September 2017 using the keywords “snake venom proteomics”, and “snake
venomics”. In addition, because of their strong emphasis on publishing articles on snake venom,
the contents of the following journals were searched for articles on snake venom proteomics published
between May 2006 and September 2017: Journal of Proteome Research, Journal of Proteomics, Toxicon,
and Toxins. In addition, the journal BMC Genomics was searched using the keywords “snake
venom proteomics”. The reference lists for any studies found were then searched for additional
studies. The search was restricted to English language publications. Only studies that showed the
compositional abundance of each protein family were included. If multiple studies had been conducted
on a single snake species, the most recent one (which usually had the finest resolution) was included.
To eliminate possible differences caused by ontogenetic venom variation, only data for adult snakes
was considered. In cases in which venom from a particular snake species had marked geographical
variability, entries for each geographical region were incorporated. For transcriptomics studies, data
was usually presented as both relative expression of toxin-encoding genes and genes detected in the
venom gland by proteomics. In these instances, the proteomic data was used. Many studies did not
use transcriptomics, but instead a combination of reverse-phase high performance chromatography
and electrophoresis followed by trypsin digestion and mass spectrometry. Researchers often did not
state the number of individuals used in the study; presumably, many studies were based on the venom
of a single snake. Due to space limitations, as well as ease of assimilating the data, the tables presented
in the Results Section include only the protein families that make up the majority of the total venom
proteome. For convenience, snake species with anomalous protein families in their venom were placed
in separate tables for each snake family/subfamily. The remaining minor abundance protein families
were included as a separate list.



Toxins 2017, 9, 290 14 of 22

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/9/9/290/s1,
Table S1: Elapid species with unusual venom composition, Table S2: The unusual venom composition of
Tropidolaemus wagleri (Temple Pit Viper), Table S3: The remaining 36 protein families in viper and elapid venoms
have been classed as rare protein families, Most have only been recorded in one or two species of snakes,
and always made up less than 10% of the whole venom. Table S4: The five non-front fanged snakes included in
the study with the proportion of the ten major protein families in each venom (expressed as % of total venom),
which make up the majority of their venom proteome.
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