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Abstract: The Kv1.2 channel plays an important role in the maintenance of resting membrane
potential and the regulation of the cellular excitability of neurons, whose silencing or mutations
can elicit neuropathic pain or neurological diseases (e.g., epilepsy and ataxia). Scorpion venom
contains a variety of peptide toxins targeting the pore region of this channel. Despite a large amount
of structural and functional data currently available, their detailed interaction modes are poorly
understood. In this work, we choose four Kv1.2-targeted scorpion toxins (Margatoxin, Agitoxin-2,
OsK-1, and Mesomartoxin) to construct their complexes with Kv1.2 based on the experimental
structure of ChTx-Kv1.2. Molecular dynamics simulation of these complexes lead to the identification
of hydrophobic patches, hydrogen-bonds, and salt bridges as three essential forces mediating the
interactions between this channel and the toxins, in which four Kv1.2-specific interacting amino acids
(D353, Q358, V381, and T383) are identified for the first time. This discovery might help design highly
selective Kv1.2-channel inhibitors by altering amino acids of these toxins binding to the four channel
residues. Finally, our results provide new evidence in favor of an induced fit model between scorpion
toxins and K+ channel interactions.

Keywords: Kv1.2 channel; scorpion toxin; molecular dynamics simulation

1. Introduction

The voltage-gated K+ channel Kv1.2, encoded by KCNA2, is a transmembrane protein that
is composed of four identical α-subunits, with each subunit having six transmembrane segments
(S1–S6) and a membrane reentering P-loop. As shown by their experimental structure [1], S1–S4
form a voltage-sensor domain (VSD) and S5–S6 constitute a pore that selectively passes K+ ions [2].
Kv1.2 plays an important role in maintaining the resting membrane potential that enables efficient
neuronal repolarization following an action potential [3]. Therefore, its loss or mutation will cause
some neurogenic diseases, such as ataxia, myoclonic epilepsy, and premature death [4–7].

Given its key physiological function, Kv1.2 is frequently selected as a target by a diversity
of venomous animals. In scorpions, at least six families of K+ channel toxins (α-KTxs, β-KTxs,
δ-KTxs, κ-KTxs, λ-KTxs, and ε-KTxs) are identified [2,8–12], in which α-KTxs are the largest source
targeting this channel. These α-KTxs impair the K+ channel functions by blockage of their pore
region. Due to high sequence similarity in this region between Kv1.2 and its two paralogs (i.e., Kv1.1
and Kv1.3) (Figure 1A), toxins are not able to distinguish the three channel subtypes, resulting in
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undesired side effects when assayed in vivo. Hence, it remains a great challenge to improve the Kv1.2
selectivity of these natural toxins via engineering modification in the absence of detailed data about
the toxin-channel interactions.
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Figure 1. Scorpion toxins and K+ channels. (A) The rKv1.1-rKv1.3 pore region sequences. Amino acids 
conserved across the alignment are marked in yellow, and turret, pore helix, and filter are colored in 
green, blue, and red, respectively; (B) The α-KTxs studied in this work. Their functional sites 
identified by mutational experiments are highlighted with a double underline. New interaction sites 
predicted by reported molecular dynamics (MD) simulation data are underlined once. For the affinity 
of each toxin, Kd (dissociation constant), Ki (equilibrium constant), or IC50 (half maximal inhibitory 
concentration) (asterisks) are shown in nanomole (nM) [8,13–17]. 

There is only one experimental toxin-channel complex (ChTx-Kv1.2) available currently [18], 
which hampers a detailed comparative study to draw commonality and difference among complexes. 
An alternative approach is to employ computative technology to solve this question. Several popular 
methods include homology modeling, Brownian dynamics, molecular docking, and molecular 
dynamics simulation [19]. Molecular dynamics simulation is a powerful tool in predicting the 
structures of toxin-channel complexes. Some toxin-Kv1.2 complexes were reported, which were 
constructed with molecular dynamics simulation, such as maurotoxin-Kv1.2 [20,21]. However, the 
comparison of the mechanism among these Kv1.2 inhibitors is lacking. 

In this work, we employed molecular dynamics (MD) simulation to study the interactions of 
four α-KTxs (Margatoxin (abbreviated as MgTx), Agitoxin-2 (abbreviated as AgTx-2), OsK-1, and 
Mesomartoxin (abbreviated as MMTX) with the pore of Kv1.2. These toxins all bind to the channel 
with high affinity [8,13,14] (Figure 1B). However, as mentioned above, they are also ligands of Kv1.1 
and Kv1.3, with the exception of MMTX, which lacks effect on Kv1.1. Our MD simulation data reveals 
for the first time four Kv1.2-specific amino acids that are involved in direct interactions with these 
toxins. This finding thus provides a structural basis for their Kv1.2 blocking activity and might help 
design new Kv1.2-targeted peptide drugs with an improved channel subtype selectivity. 

2. Results 

2.1. The Channel Selectivity of Four Scorpion Toxins Analyzed 

All the four toxins fold into the cysteine stabilized α-helix/β-sheet (CSα/β) structure with a 
functional dyad comprising a conserved lysine and an aromatic amino acid in a distance of 5–7 Å 
(Figure 1B). These toxins reversibly block K+ channels by interacting at the external pore of the 
channel protein. Of them, MgTx is a 39 amino acids peptide isolated from the venom of the scorpion 
Centruroides margaritatus, which blocks Kv1.2 and Kv1.3 at picomolar concentrations and Kv1.1 at 
nanomolar concentrations without detectable effect on other types of K+ channels, such as Kv1.4–Kv1.7 
and the insect Shaker K+ channel [15]. K28 of MgTx is responsible for blocking K+ channels [22]. AgTx-

Figure 1. Scorpion toxins and K+ channels. (A) The rKv1.1-rKv1.3 pore region sequences. Amino acids
conserved across the alignment are marked in yellow, and turret, pore helix, and filter are colored in
green, blue, and red, respectively; (B) The α-KTxs studied in this work. Their functional sites identified
by mutational experiments are highlighted with a double underline. New interaction sites predicted by
reported molecular dynamics (MD) simulation data are underlined once. For the affinity of each toxin,
Kd (dissociation constant), Ki (equilibrium constant), or IC50 (half maximal inhibitory concentration)
(asterisks) are shown in nanomole (nM) [8,13–17].

There is only one experimental toxin-channel complex (ChTx-Kv1.2) available currently [18],
which hampers a detailed comparative study to draw commonality and difference among complexes.
An alternative approach is to employ computative technology to solve this question. Several popular
methods include homology modeling, Brownian dynamics, molecular docking, and molecular
dynamics simulation [19]. Molecular dynamics simulation is a powerful tool in predicting the
structures of toxin-channel complexes. Some toxin-Kv1.2 complexes were reported, which were
constructed with molecular dynamics simulation, such as maurotoxin-Kv1.2 [20,21]. However, the
comparison of the mechanism among these Kv1.2 inhibitors is lacking.

In this work, we employed molecular dynamics (MD) simulation to study the interactions of
four α-KTxs (Margatoxin (abbreviated as MgTx), Agitoxin-2 (abbreviated as AgTx-2), OsK-1, and
Mesomartoxin (abbreviated as MMTX) with the pore of Kv1.2. These toxins all bind to the channel
with high affinity [8,13,14] (Figure 1B). However, as mentioned above, they are also ligands of Kv1.1
and Kv1.3, with the exception of MMTX, which lacks effect on Kv1.1. Our MD simulation data reveals
for the first time four Kv1.2-specific amino acids that are involved in direct interactions with these
toxins. This finding thus provides a structural basis for their Kv1.2 blocking activity and might help
design new Kv1.2-targeted peptide drugs with an improved channel subtype selectivity.

2. Results

2.1. The Channel Selectivity of Four Scorpion Toxins Analyzed

All the four toxins fold into the cysteine stabilized α-helix/β-sheet (CSα/β) structure with a
functional dyad comprising a conserved lysine and an aromatic amino acid in a distance of 5–7 Å
(Figure 1B). These toxins reversibly block K+ channels by interacting at the external pore of the
channel protein. Of them, MgTx is a 39 amino acids peptide isolated from the venom of the scorpion
Centruroides margaritatus, which blocks Kv1.2 and Kv1.3 at picomolar concentrations and Kv1.1 at
nanomolar concentrations without detectable effect on other types of K+ channels, such as Kv1.4–Kv1.7
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and the insect Shaker K+ channel [15]. K28 of MgTx is responsible for blocking K+ channels [22].
AgTx-2 is a 38 amino acids peptide isolated from the venom of Leiurus quinquestriatus hebraeus, which
reversibly inhibits Kv1.1 to Kv1.3 with Kd values of 0.13 nM, 3.4 nM, and 0.05 nM, respectively [8,16].
Its functional residues include K27 and N30 [17]. OsK-1 is a 38 amino acids peptide isolated from the
venom of Orthochirus scrobiculosus, which blocks Kv1.1 to Kv1.3 with IC50 values of 0.6 nM, 5.4 nM,
and 0.014 nM, respectively [14]. E16K and/or K20D mutations of OsK-1 show an increased potency on
Kv1.3 channel but do not change the effect on Kv1.2 [14]. MMTX is a 29 amino acids peptide isolated
from Mesobuthus martensii that exerts a strong inhibitory effect on rKv1.2 (IC50 = 15.6 nM) and weak
effect on rKv1.3 (IC50 = 12.5 µM) without affecting Kv1.1, even at 50 µM [13].

2.2. Modeling of Toxin-Kv1.2 Complexes

ChTx (also named CTX) is the most thoroughly studied scorpion K+ channel toxin isolated from
the venom of Leiurus quinquestriatus hebraeus, which inhibits Kv1.2 and Kv1.3 channels with nanomolar
affinity by several crucial functional residues, such as R25, K27, and R34 [8,23]. K27 of ChTx is a key
residue for blocking the pore region of the K+ channel [24]. Superimposition of the four toxins to ChTx
reveals root-mean-square deviations (RMSDs) of <2.5 Å in their Cα atoms (Figure 2), indicating that
they are quite similar in structure. Importantly they all contain evolutionarily conserved functional
motifs, K27 and N30 (numbered according to ChTx), which have been comfirmed to directly interact
with the pore region of Kv channels [25,26]. Supported by these observations, we assume that all these
five toxins inhibit Kv1.2 in a similar manner. To investigate the detailed interactions between the toxins
and Kv1.2, we constructed their complexes based on the experimental structure of ChTx-Kv1.2 via
molecular replacement and energy minimization.
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Figure 2. Construction of toxin-channel complex for MD simulation analysis. Three experimentally
determined functional sites of α-KTxs are shown as sticks. Superimposed structure of these five toxins
are emphasized by red box and root-mean-square deviations (RMSDs) between these four toxins and
ChTx are listed below the structure.

2.3. Conformational Changes Induced by Toxin-Channel Interaction

To recognize the conformation change of toxins and Kv1.2 channel after combining each other,
we play molecular dynamic simulations of four toxins without channel and with sole Kv1.2 channel.
Subsequently, we compared their conformation changes.
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In our molecular dynamic simulations, the equilibrated conditions of four toxin-channel
complexes were established in terms of their RMSDs, residue Cα fluctuations during 40 ns time
span of simulation. These systems reached equilibrium after 15 ns (Figure 3A). Simultaneously, we
calculated the average Cα root-mean-square fluctuations (RMSFs) of all complexes of the Kv1.2 pore
region. From the RMSF data, it is clear that Kv1.2 turret is the most flexible region besides the N-,
C-terminal (Figure 3B,C). Therefore, we proposed that Kv1.2 channel interacts with different scorpion
toxins, mainly by modulating their turret region.

The equilibrated conditions of four toxins were established in terms of their RMSDs and residue
Cαwise fluctuations during 40 ns time span of simulation. MgTx and AgTx-2 reached equilibrium after
5 ns and MMTX reached equilibrium after 27 ns (Figure 4A). The system equilibrium stage of OsK-1 is
from 5 ns to 35 ns (Figure 4A). We calculated the average Cα root-mean-square fluctuations (RMSFs) of
their system equilibrium phase (Figure 4B). Without a doubt, the results show that these four toxins are
very rigid, because α-KTxs obtain six conservative cysteines which form three intermolecular disulfide
bonds. Due to their stable structure, they are developed into protein scaffolds. For example, Vita et al.
designed a metal binding activity on ChTx [27]. After combining with Kv1.2, their structure mildly
adjusted. OsK-1 and AgTx-2 have little change after combining with Kv1.2, which indicate that its
interaction mechanism with Kv1.2 is similar to ChTx (Figure 4C,F). MgTx shows the increased flexibility
of α-helix and γ-core region (the last two β-folds and the turn region between them) (Figure 4D).
MMTX shows the increased flexibility of N-terminal (Figure 4E).

Toxins 2017, 9, 354  4 of 18 

 

In our molecular dynamic simulations, the equilibrated conditions of four toxin-channel 
complexes were established in terms of their RMSDs, residue Cα fluctuations during 40 ns time span 
of simulation. These systems reached equilibrium after 15 ns (Figure 3A). Simultaneously, we 
calculated the average Cα root-mean-square fluctuations (RMSFs) of all complexes of the Kv1.2 pore 
region. From the RMSF data, it is clear that Kv1.2 turret is the most flexible region besides the N-, C-
terminal (Figure 3B,C). Therefore, we proposed that Kv1.2 channel interacts with different scorpion 
toxins, mainly by modulating their turret region. 

The equilibrated conditions of four toxins were established in terms of their RMSDs and residue 
Cα wise fluctuations during 40 ns time span of simulation. MgTx and AgTx-2 reached equilibrium 
after 5 ns and MMTX reached equilibrium after 27 ns (Figure 4A). The system equilibrium stage of 
OsK-1 is from 5 ns to 35 ns (Figure 4A). We calculated the average Cα root-mean-square fluctuations 
(RMSFs) of their system equilibrium phase (Figure 4B). Without a doubt, the results show that these 
four toxins are very rigid, because α-KTxs obtain six conservative cysteines which form three 
intermolecular disulfide bonds. Due to their stable structure, they are developed into protein 
scaffolds. For example, Vita et al. designed a metal binding activity on ChTx [27]. After combining 
with Kv1.2, their structure mildly adjusted. OsK-1 and AgTx-2 have little change after combining with 
Kv1.2, which indicate that its interaction mechanism with Kv1.2 is similar to ChTx (Figure 4C,F). MgTx 
shows the increased flexibility of α-helix and γ-core region (the last two β-folds and the turn region 
between them) (Figure 4D). MMTX shows the increased flexibility of N-terminal (Figure 4E).  

 
(A)

 
(B)

Figure 3. Cont.



Toxins 2017, 9, 354 5 of 19
Toxins 2017, 9, 354  5 of 18 

 

 
(C)

Figure 3. Structural flexibilities of four toxin-Kv1.2 complexes. (A) RMSDs of four toxin-Kv1.2 pore 
region complexes; (B) root-mean-square fluctuations (RMSFs) of the Cα atoms of Kv1.2 pore region in 
these four complexes from 15 ns to 40 ns. A–D indicate four different chains in Kv1.2. The range of A–
D chains’ pore region residue number is marked by red, blue, light blue, and green string, 
respectively. Turret regions are outlined by black rectangular boxes and pore helix and filter regions 
are outlined by pink rectangular boxes; (C) average Cα-RMSF of Kv1.2 pore region in sole Kv1.2 and 
these four complexes from 15 ns to 40 ns. Turret, pore helix, and filter in x-coordinate represent the 
turret, pore helix, and filter region of Kv1.2 channel. A–D indicate four different chains in Kv1.2. 
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Figure 3. Structural flexibilities of four toxin-Kv1.2 complexes. (A) RMSDs of four toxin-Kv1.2 pore
region complexes; (B) root-mean-square fluctuations (RMSFs) of the Cα atoms of Kv1.2 pore region in
these four complexes from 15 ns to 40 ns. A–D indicate four different chains in Kv1.2. The range of A–D
chains’ pore region residue number is marked by red, blue, light blue, and green string, respectively.
Turret regions are outlined by black rectangular boxes and pore helix and filter regions are outlined
by pink rectangular boxes; (C) average Cα-RMSF of Kv1.2 pore region in sole Kv1.2 and these four
complexes from 15 ns to 40 ns. Turret, pore helix, and filter in x-coordinate represent the turret, pore
helix, and filter region of Kv1.2 channel. A–D indicate four different chains in Kv1.2.
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2.4. The Interactions of α-KTxs with Kv1.2

Using LigPlot+ software, we analyzed the constructed complexes, together with ChTX-Kv1.2 for
comparison purposes. Their detailed interactions are shown in Figure 5 and Table 1. To ensure these
predicted hydrogen bonds and salt bridge are reliable, we calculated these bonds’ distances in 40 ns
(Figure 6).
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Figure 5. Interactions between toxins and Kv1.2. (A) A–D chains of Kv1.2 pore region; (B–F) showing 
the interaction residues of toxins and channel. H-bonds are shown in green and hydrophobic 
interactions in red. Interaction sites of toxins are highlighted in red and sites of the channel in blue. 
Sites involved in hydrophobic interactions are shown as lines and sticks in H-bonds or salt bridges. 
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Figure 5. Interactions between toxins and Kv1.2. (A) A–D chains of Kv1.2 pore region; (B–F) showing
the interaction residues of toxins and channel. H-bonds are shown in green and hydrophobic
interactions in red. Interaction sites of toxins are highlighted in red and sites of the channel in blue.
Sites involved in hydrophobic interactions are shown as lines and sticks in H-bonds or salt bridges.
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Figure 6. Hydrogen bonds and salt bridges distances of toxin-Kv1.2 complexes. (A,C,E,G) showing
the average distances of hydrogen bonds and salt bridges from 15 ns to 40 ns. (B,D,F,H) showing the
changes of hydrogen bonds and salt bridges distances between toxins and Kv1.2 channel in 40 ns.

Table 1. Interacting pairs between toxins and Kv1.2 pore region. Unconservative sites among
Kv1.1–Kv1.3 pore regions are marked by asterisks (*). Chain number of channel amino acids are
labeled in brackets.

Interaction Force Type ChTx AgTx-2 MgTx MMTX OsK-1

Hydrophobic contacts

T8-Q353(A) *
T8-D351(A) *
T9-S352(A)
S10-D375(A)
W14-Q353(B) *
R25-M376(B)
R25-Q353(B) *
M29-D375(D)
M29-G374(D)
N30-V377(A) *
N30-T379(A) *
N30-D375(D)
Y36-D375(B)
S37-T379(C) *

G10-T379(A) *
P12-Q353(A) *
F25-D375(A)
F25-G374(B)
F25-V377(B) *
F25-D375(B)
M29-D375(C)
M29-G374(D)
M29-V377(D) *

K11-Q353(A) *
S24-Q353(B) *
A25-Q353(B) *
G26-D375(B)
M30-G374(D)
M30-V377(D) *
N31-Q353(D) *
Y37-D375(B)
H39-M376(B)

V3-Q353(A) *
R7-V377(B) *
R7-T379(B) *
R16-K384(C)
I21-G374(D)
I21-D375(D)
Y28-G374(C)

I3-D375(C)
K7-Q353(A) *
L15-Q353(B) *
F25-Q353(B) *
G26-D375(B)
K27-G374(B)
M29-G374(D)
N30-T379(A) *
H34-D375(C)
P37-D351(C) *

H-bonds

K27-Y373(A)
K27-Y373(B)
K27-Y373(C)
K27-Y373(D)
Y36-G374(C)

S11-G374(A)
R24-S352(B)
R24-Q353(B) *
K27-Y373(A)
K27-Y373(B)
K27-Y373(C)
K27-Y373(D)
N30-Q353(D) *
N30-D375(D)

K18-Q353(B) *
Q23-S352(B)
K28-Y373(A)
K28-Y373(B)
K28-Y373(C)
K28-Y373(D)
Y37-G374(C)

Q11-Q353(B) *
N17-Q353(B) *
N17-G374(B)
K19-Y373(A)
K19-Y373(C)
K19-Y373(D)
Y28-Y373(B)

C8-Q353(A) *
S11-D351(B) *
K27-Y373(A)
K27-G372(B)
K27-Y373(C)
K27-Y373(D)
N30-G374(A)
N30-D375(D)

Salt bridges R34-D375(C) R31-D359(D)
K38-D351(B) *

K18-D351(B) *
K35-D375(C)

R7-D375(A)
K8-D351(B) *
R16-D359(B)
R16-D375(B)

K32-D375(D)
K38-R350(C) *
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Our complexes of Kv1.2 and toxins are consistent with the current experimental data. AgTx-2
have been reported that K27 and N30 are critical for binding affinity toward Shaker K+ channel [17].
In our AgTx-2-Kv1.2 model, K27 inserts into pore region and forms H-bond with Y373, and N30 forms
H-bond with Q353 and D375 (Figure 5C). Mutation experiments showed that MMTX interact with
rKv1.2 V379. In our MMTX-Kv1.2 model, R7 of MMTX interacts with V379 through hydrophobic
contact (Table 1) [13]. The OsK-1-Kv1.2 model suggest that E16 and K20 of OsK-1 does not interact
with Kv1.2. It accords that E16K and/or K20D mutations of OsK-1 do not change the effect on Kv1.2
(Table 1) [14].

As expected, these five toxins all present some commonalities in interacting with Kv1.2.
They depend on hydrophobic contacts, hydrogen-bonds (H-bonds), and salt bridges to stay close to
the channel where K27 inserts into the pore and forms H-bonds with Y373 (unless otherwise stated, all
toxins and the channel are numbered according to the ChTX-Kv1.2 complex [18]). An aromatic amino
acid (F or Y) belonging to the functional dyad interacts with D375 or Y373. With the exception of
MMTX, all the toxins use M29 and N30 to contact G374 and D375 in the channel filter region through
the van der Waals force. Furthermore, in our AgTx-2-Kv1.2 model, N30 also forms H-bond with Q353
and D375. These observations fully confirm the functional importance of K27 and N30 in this toxin
previously obtained by mutational analysis [17]. The turn region preceding the α-helix of the toxins
contacts the turret residue S353 and the filter D375/V377/T379 via a hydrophobic interaction force.
We also observed that the basic amino acids located at the last β-strand of the toxins, except MMTX,
form salt bridges with the acidic Asp of Kv1.2. R34 of ChTx, K35 of MgTx, and K32 of OsK-1 form salt
bridges with D359 of Kv1.2 and R31 of AgTx-2 form salt bridges with D359 of Kv1.2. These toxins have
conservative six cysteines that hardly participate in the interaction with Kv1.2, but they are related to
structural stabilization [28]. Compared with other toxins, MMTX forms more hydrogen bonds and salt
bridges with the channel. Especially, due to its shorter N-terminus, this toxin can enter more deeply
into the channel pore to form salt bridges between K8 or R16 and the residues derived from the chain
B of the channel during MD simulation. These noncovalent interactions could facilitate the formation
of a more stable toxin-channel complex [29]. In our MMTX-Kv1.2 model, R7 of the toxin interacts
with V377 of the channel through hydrophobic contact, in line with the mutational experiments that
highlighted this channel residue as a target site of MMTX [13]. Taken together, our MD simulation
results provide support for the toxins’ binding sites mainly locating at the Kv1.2 turret and filter region
and are thus a reasonable explanation for the lack of channel subtype selectivity in these toxins given
that in these regions most sites are highly conserved among Kv1.1–Kv1.3 (Figure 7).

2.5. Kv1.2-Specific Amino Acids

More importantly, through analysis of the interaction between these four toxins and Kv1.2 channel,
we observed four Kv1.2-specific amino acids (D355, Q358, V381, and T383 of rKv1.2) that can interact
with the toxins (Figures 7 and 8). In these interactions, D355 and Q358 form hydrogen bonds or salt
bridges whereas V381 and T383 form hydrophobic interactions with the toxins. This observation
could help answer the differential affinity of these toxins towards Kv1.1 to Kv1.3. For example, the
preferred inhibition of Kv1.2 and Kv1.3 over Kv1.1 by Aam-KTX is explained by the variation at site
355 (corresponding to the Kv1.2-specific amino acid Q358). In Kv1.1, this site is occupied by a larger
His that might hamper the toxin’s entry into its pore vestibule [30]. In addition, site 381(Val) has been
proposed as a main determinant of MMTX’s selectivity towards Kv1.2 over Kv1.1 [13], in agreement
with our MD simulation data. In the MgTx-Kv1.2 complex, K18 from the toxin forms an H-bond with
Q358 from the channel. The corresponding amino acid at this site is a His in Kv1.3. Because histidine
is the same kind of charge with lysine, their repulsion is adverse to the formation of an H-bond.
For Kv1.1, a glycine occupies this position and its shorter side chain also hampers the formation of
the H-bond. These observations could account for the differential in affinity of MgTx to these three
channels (Figure 1A). Relative to other toxins analyzed here, MMTX possess a shorter N-terminus and
is the only one without effect on Kv1.1. In our complex, its K8 forms salt bridges with D355, whereas
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sites Q11 and N17 form H-bonds with Q358. These extensive contacts likely provide a structural basis
for its high activity on Kv1.2.Toxins 2017, 9, 354  12 of 18 
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3. Discussion

It is long known that the evolutionary conservation of the pore region among Kv1.1 to Kv1.3 poses
a challenge to animal toxin-based drug design. To face this challenge, three kinds of protein engineering
technologies have been explored to improve their selectivity: (1) Site-directed mutation. Using this
technology, several highly selective scorpion toxins against Kv1.3 have been obtained [31]; (2) Phage
display technology. This technology led to the discovery of Mokatoxin-1, an engineering peptide that
blocks Kv1.3 at the nanomolar level without effect on Kv1.1, Kv1.2 and KCa1.1 [8]; (3) MD simulation.
This technology can guide molecular design based on the structural features of peptides [32].

In this work, through using MD simulation technology, we identified four Kv1.2-specific amino
acids that are involved in the interactions with different scorpion toxins (Figure 7). These Kv specific
sites might be the reason that toxins have different targets. Conservative sites of α-KTxs interact with
conservative sites of Kv channels. For example, K27 of α-KTxs insert into Kv channel pore region, form
H-bonds with Y373, and inhibit K+ pass. TVGYG motif is conservative among eukaryotic Kv channel
and important for binding K+ [19]. Nevertheless, unconservative sites of α-KTxs interact with Kv

specific sites which determine the selectivity of different toxins. Like scorpion Na+ channel, α-toxins
has a common bipartite bioactive surface: (1) Conserved core-domain are associated with toxin potency,
which interact with domain IV S1–S2 and S3–S4 of Nav channels; (2) Variable NC-domain dictate
toxin’s selectivity, which interact with domain I S5–S6 of Nav channels [33]. According to these facts,
we proposed that the evolution of toxins has a common rule: conservative domain ensures their
potency, which interacts with receptor and the variable domain convenient to adjusting their targets.

Furthermore, in combination with the MD simulation data presented here, we proposed a concept
of “triplet-motif” for channel blockade. This motif is composed of the dyad comprising a lysine located
at the first β-strand and an aromatic amino acid in a distance of 5–7 Å and an Asn in the loop linking
the first and second β-strands, two residues downstream from the Lys (i.e., LysCysXaaAsn. Xaa, any
amino acids). The location of these three functional sites (dyad-motif and N30) is shown on Figure 2.
The inclusion of this residue into the toxins’ functional motif is based on the following considerations:
(1) This residue is an evolutionarily highly conserved amino acid that belongs to the scorpion toxin
signature (STS), comprising Cys . . . CysXaaXaaXaaCys . . . LysCysXaaAsn . . . CysXaaCys; (2) Its
functional significance has been highlighted in some toxins (e.g., AgTx-2, navitoxin, etc.) [17]; (3) In
an NMR-based complex of KTX and KcsA-Kv1.3, N30 is close to D64 of KcsA-Kv1.3 [25]; (4) In
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our dynamics structures, this residue in AgTx-2, MgTx, and OsK-1 forms H-bonds or hydrophobic
interactions with Kv1.2.

The molecular mechanism of interaction between scorpion toxins and Kv channels has always been
controversial. There are currently two hypotheses: (1) The induced-fit model. Using high-resolution
solid-state NMR spectroscopy, Lange et al. observed chemical shifts occurring in some residues of
kaliotoxin (KTx) and KcsA-Kv1.3 during their interactions. For the channel, significant chemical shifts
appeared in the pore helix and the selectivity filter [25]. Because of these observations, they thought
that the toxin binds to the channel in an induced fit manner; (2) The lock-and-key model. This model
is based on the consideration of rigidity of the K+ channel pore region [34], evidenced by a crystal
structure study that resolved the structures of Kv1.2–Kv2.1 in complex with ChTx and the channel
alone. When the complex was superposed onto the Kv1.2–Kv2.1 structure, no discernible structural
changes were observed in the channel [18]. Therefore, they proposed that scorpion toxins bind to K+

channels in a lock and key manner. According to our molecular dynamics simulation result, the turret
region of Kv1.2 is the most flexible region. Therefore, we proposed that Kv channels interact with
different scorpion toxin mainly by modulating their turret region. Consider existing experimental data,
different sequence and structure toxins block Kv1.2 though pore region inhibition and these toxins
bind to more than one channel [2,35–38]. Our result and these experimental data all support induced
fit model.

4. Conclusions

By MD simulation analysis combined with previous experimental data, we reveal a common
mode adopted by scorpion K+ channel toxins in binding to the channels, in which the conserved and
variable toxin functional residues seem to interact with the conserved and subtype-specific channel
residues, respectively. This finding provides new candidate sites in the toxins for mutations to improve
their selectivity towards a specific channel subtype.

5. Materials and Methods

5.1. Atomic Coordinates and Kv1.2-Toxin Complexes

Atomic coordinates of ChTx-Kv1.2-Kv2.1 chimera (PDB: 4JTA), AgTx-2 (PDB: 1AGT), MgTx
(PDB: 1MTX), MMTX (PDB: 2CRD), and OSK1 (PDB: 1SCO) were retrieved from the Protein Data
Bank [39]. All toxin-Kv1.2 complex structures studied here were built by the Swiss PDB Viewer software
(http://spdbv.vital-it.ch/), in which ChTx-Kv1.2-Kv2.1 chimera was used as template. These four
toxins were aligned onto the ChTx-Kv1.2-Kv2.1 chimera and then deleted ChTx to build all toxin-Kv1.2
complexes. The channel pore region (residues 321 to 417) were used in this study.

About building the complexes of toxins and channels, some groups choose ZDOCK or HADDOCK
molecular docking software to obtain the complexes [20,40,41]. Since the structure of ChTx and
Kv1.2–2.1 chimera resolved, several groups use this resolved structure to build scorpion toxins and K+

channel complexes [42,43]. Nekrasova et al. performed homology modeling of Kv1.6-toxin complexes
instead of molecular docking to obtain a more reliable model [43]. Therefore, we choose ChTx and
Kv1.2–2.1 chimera to build our toxin-channel complexes.

5.2. Molecular Dynamics Simulation

Molecular dynamics simulations were performed using Gromacs 5.0.1, in which all-atom OPLS
force field was chosen [44,45]. The complex was solved with SPC water [46] and was immersed in a
cubic box extending to at least 5 nm of the solvent on all sides. Also, the system was neutralized by
K+ and Cl−. It was energy minimized by using the steepest descent algorithm for 5000 steps, and it
made a maximum force of less than 1000 kJ/mol/nm. After energy minimization, the system was
equilibrated in a constrained NVT (Number of Particles, Volume, Temperature) and NPT (Number
of Particles, Pressure, Temperature) running for 100 ps. NVT equilibration ensured the system be

http://spdbv.vital-it.ch/
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brought to the temperature (300 K) which we wish to simulate, and with which we seek to establish
the proper orientation about the protein. After NVT equilibration, we stabilize the pressure of the
system under an NPT ensemble. Through NVT and NPT equilibration, it was well-equilibrated at
300 K and 1 bar. Bond length was constrained using the LINCS algorithm [47]. Finally, MD simulations
of these complexes were carried out for 40 ns. Trajectories are saved every 10ps for analysis. For the
MD simulation, the Verlet cut-off scheme and a Leap-frog integrator with a step size of 2 fs were
applied. For temperature coupling, the modified Berendsen thermostat and the Parrinello-Rahman
barostat for pressure coupling were used. For long-range electrostatic interaction, the Particle Mesh
Ewald method was used. The method of four toxins’ molecular dynamics simulation is similar to the
toxin-Kv1.2 complex. The differences are that the toxins were neutralized by Na+ and Cl−, and they
were immersed in a cubic box extending to at least 1 nm of the solvent on all sides.

The mutagenesis and simulations indicated that the scorpion toxins bind with the extracellular
part of the K+ channels and the interaction is hardly affected by the membrane and the transmembrane
segment of channel [48–51]. We did not add the membrane into the simulation like the work of other
study groups [20,52–59]. Also, many simulation studies on the recognition between scorpion toxins and
K+ channels without a membrane have achieved good agreements with experimental data [53,58,59].
Discarding the lipid-protein interactions has also contributed to the reduction of the computational
burden and the extention of the MD simulation trajectories [19]. Certainly, a transmembrane protein
system could be more reliable if we take into account the membrane around the channel.

We did not perform similar MD simulations to toxins-channels Kv1.1 and Kv1.3, because the
Kv1.1–Kv1.3 channel only has eight unconservative sites (Figure 1B). And only Kv1.2–2.1 chimera
structure was resolved. In this work, we aim to obtain the Kv1.2-toxin complexes and understand the
detailed interaction between Kv1.2 and the toxins. This will help us to design mutations according to
these complexes and obtain a Kv1.2 specific selective toxin.

5.3. Analysis of MD Simulation Results

After molecular dynamics simulation, we obtained the last MD simulation frame of the complexes.
To analyse whether the protein was stable and close to the experimental structure, we measured the
root-mean-square displacement (RMSD) of all the structures of Cα. LigPlot+ software (http://www.
ebi.ac.uk/thornton-srv/software/LigPlus/) was used to analyze the detailed interactions between
the toxin and Kv1.2 [60]. LigPlot+ can analyze the hydrophobic interaction, hydrogen bonds, and
salt bridges between toxins and Kv1.2. To ensure the reliability of predicted hydrogen bonds and salt
bridges, we calculated the distances of hydrogen bonds and salt bridges in 40 ns using GROMACS.
Pymol (http://www.pymol.org/) was used to prepare all the structural images.

There is no unified standard about choosing which structure to analyse during molecular
dynamics simulation. Kohl et al. chose the structure with the highest number of H-bonds between the
toxin and the channel [42]. Nekrasova et al. chose 70 trajectory frames to analyse the hydrophobic
interaction, the hydrogen, and the ionic bonds of the toxin [43]. Also, Yi et al. analysed the last structure
of the toxin-channel structure [20,40]. Too short molecular dynamics simulation will cause proteins
to have not enough time to change their conformation [61]. Therefore, we gave 40 ns to stabilize the
structure and most toxin-channel dynamic studies only run several nanoseconds. Through calculating
the distances of H-bonds and salt bridges, these bonds became stable with the extension of simulation
time. As a result, we proposed that the last frame of the toxin-channel complex was reliable.
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