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Abstract: Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans),
is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential
biological threat agent due to its high availability and ease of production. The clinical manifestation of
pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome
(ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil
infiltration and severe edema. Currently, the only post-exposure measure that is effective against
pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is
passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment
depends on antibody affinity and the time of treatment initiation within a limited therapeutic time
window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular
trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of
antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating
lung injury. Immunomodulators and other pharmacological-based treatment options should be
tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review
focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies,
disease-modifying countermeasures, anti-ricin small molecules and their various combinations.

Keywords: ricin; pulmonary intoxication; countermeasures; antitoxins; disease-modifying agents;
anti-ricin small molecules

1. Introduction

Ricin toxin, derived from the castor bean plant Ricinus communis, is a highly toxic protein that
belongs to the type 2 ribosome-inactivating proteins (RIP) family [1]. Ricin binds to galactose residues
at the cell surface via its lectinic B subunit (RTB) and then internalizes and traffics to the endoplasmic
reticulum (ER), where the two subunits are reduced [2]. The catalytically active A subunit (RTA)
translocates into the cytoplasm, where it depurinates a conserved adenine residue located in the 28S
ribosomal RNA of the 60S subunit, thus leading to irreversible inhibition of protein synthesis and
ultimately to cell death. Ricin is classified as a Category B agent by the U.S. Centers for Disease Control
and Prevention (CDC) and is considered a potential bioterror agent mainly due to its high availability
and ease of preparation.

Despite many efforts invested over the past decades, no clinically approved treatment against
ricin poisoning has been established. To date, the only post-exposure measure found to be
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effective against pulmonary ricinosis in pre-clinical studies is passive immunization with anti-ricin
neutralizing antibodies [3–6]. Recent data suggests that small-molecule compounds that either interfere
with or inhibit the intracellular trafficking of ricin may also be beneficial against ricinosis [7–10].
Another approach has recently shown that the co-administration of antitoxin antibodies with
immunomodulatory drugs enables toxin neutralization while decreasing lung injury severity, thus
improving treatment outcomes [11,12].

In this review, we survey current treatment options for pulmonary ricin intoxication using
anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecule drugs or
combinations of drugs-antitoxin. The rationale for screening additional drug candidates for
combinatorial treatment is discussed, and suggestions for drugs that might be incorporated into
future post-exposure therapy regimens are provided.

2. Ricin-Induced Cytotoxicity and Pathophysiology of Pulmonary Ricinosis

A better understanding of the mechanisms underlying both the cellular and physiological effects
following pulmonary ricin poisoning are expected to assist in the development of novel treatment
modalities against this type of exposure. Manipulation of these pathological processes will hopefully
provide tools for clinical interventions that will attenuate lung damage and enhance therapeutic
outcomes. In the following section, the current knowledge of the pathological and biochemical changes
that occur following ricin intoxication is summarized.

2.1. Pathogenesis

Data regarding the pathological changes that occur following pulmonary ricin intoxication are
mostly available from experiments performed in rodents, non-human primates and swine. The overall
clinical picture is that the injury is mostly confined to the lungs and that the intoxicated animals suffer
from marked interstitial pneumonia associated with massive neutrophil infiltration, perivascular and
alveolar edema, fibrin deposition, hemorrhage and diffuse massive airway epithelial necrosis involving
all lung lobes [13–17]. Eventually, flooding of the lungs leads to respiratory insufficiency and death.
Recently, a swine model for pulmonary ricin intoxication was established by our group, allowing us
to further assess the physiological and pathological changes that occur over time. It was found that
the clinical manifestations comply with the accepted diagnostic criteria for acute respiratory distress
syndrome (ARDS). As in other tested animal models, the pattern of local pro-inflammatory cytokine
storming preceding massive neutrophil infiltration and increased vascular hyper-permeability was
demonstrated [18].

2.2. Biomarkers and Cellular Stress Pathways

While the final outcome of ricin activity within the cell is the cessation of protein synthesis, it also
leads to the activation of several cellular signaling pathways that in turn may activate multi-organ
responses (Figure 1). These signals are further exacerbated by the inflammatory response and damage
processes induced by the host, resulting in a “vicious cycle” of damage propagation.
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Figure 1. Ricin-induced activation of cell signaling pathways and downstream formation of damage
mediators. (1) The ribotoxic stress response characterized by MAP3K (PKR and ZAK) activation
of MAPK (p38 and JNK) signaling; (2) The nuclear factor kappa B pathway, which is activated
upon IκK-induced IκB phosphorylation and degradation; (3) NALP3 inflammasome-mediated IL-1β
activation; (4) Apoptotic cell death attributed to pro-apoptotic caspase activation; (5) Proinflammatory
cytokines and damage mediators released upon activation of the various signal transduction pathways
activated by ricin.

2.2.1. Ribotoxic Stress Response

Partial or complete ricin-mediated inactivation of ribosomes leads to the activation of a
proinflammatory signaling pathway termed the “ribotoxic stress response.” Ricin can trigger the
activation of JNK and p38 [19–21], which in turn increase the production of proinflammatory cytokines
and apoptosis-mediated cell death [8,20,22–24]. The claim that MAP3K ZAK serves as an upstream
activator of the ribotoxic stress response [23] is supported by the inability of ricin to activate p38 and
JNK in ZAK-knockout macrophages in vitro and the lower ricin-induced pathology score following
oral exposure in ZAK-knockout mice [25]. Another critical upstream mediator of the ribotoxic stress
response is ribosome-associated RNA-dependent protein kinase (PKR) (Figure 1) [26], which also
induces the activation of JNK and p38, as well as other signaling factors [27–29].

2.2.2. Nuclear Factor Kappa B Pathway

An additional central downstream signaling pathway in the ricin-elicited stress response is the
activation of nuclear factor kappa B (NFκB) (Figure 1). NFκB translocates to the nucleus upon IκB
kinase (IκK)-induced IκB degradation and transactivates proinflammatory genes [30–32]. Activation
of this signaling pathway is associated with many types of sterile lung injuries [33–36] and specifically
with pulmonary ricinosis, where nuclear localization of NFκB was detected in mice intratracheally
exposed to ricin [37]. Ricin was also shown to activate NFκB in pulmonary epithelial cell cultures [38].

2.2.3. Proinflammatory Cytokines and Damage Mediators

As mentioned above, one of the hallmarks of pulmonary exposure to ricin is the activation of a
massive inflammatory response in the lungs. The NALP3 inflammasome (also known as the NLRP3
inflammasome) promotes the cleavage of pro-IL-1β to active IL-1β by caspase-1 (Figure 1) and has a
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major impact on neutrophil infiltration and exacerbation of the overall inflammatory-mediated damage.
It has previously been demonstrated [39] that inflammation— in particular pulmonary neutrophil
infiltration and ensuing edema formation—is initiated by macrophage-dependent IL-1β signaling
in mice exposed intratracheally to ricin and that ricin-induced IL-1β secretion from macrophages
is dependent on NALP3 inflammasome activity. This primary event of IL-1β production is critical
for the development of lung injury because the depletion of this cytokine significantly attenuates
inflammation, as well as neutrophil pulmonary infiltration.

In addition to the early macrophage-dependent production of IL-1β in the lung tissue, various
other pro-inflammatory cytokines and damage mediators (Figure 1) have been detected. Our laboratory
has previously demonstrated an early and transient secretion of TNFα into the broncho-alveolar fluid
(BALF) of pulmonary ricin-intoxicated mice [11]. TNFα is a major mediator of neutrophil-dependent
vascular hyperpermeability [40], which plays a key role in lung pathologies, including ARDS [41].

Other cytokines and chemokines have also been detected in the BALF of ricin-intoxicated mice.
For example, a rapid and significant rise in IL-6 levels was discerned as early as 6 h post-exposure [11].
This cytokine, identified as an early biomarker of acute lung injury and a predictive marker of morbidity
and mortality, acts as a major proinflammatory mediator for the induction of an acute-phase response
leading to a wide range of effects, including leukocyte recruitment and activation [42–45].

In addition to the proinflammatory cytokines described above, diverse damage mediators,
such as secretory phospholipase A2 (sPLA2), vascular endothelial growth factor (VEGF),
matrix-metalloproteinase-9 (MMP-9) and xanthine oxidase (XO), were detected in the BALF of mice
following intranasal ricin intoxication [11]. The levels of the lipolytic enzyme sPLA2, a potent mediator
of inflammation via hydrolysis and degradation of surfactant phospholipids [46–48], are significantly
elevated following ricin intoxication. In rodent acute lung injury models, sPLA2 was found to promote
neutrophil infiltration and edema formation [49,50].

An altered lung fluid balance, leading to increased permeability pulmonary edema, is a major
pathophysiological characteristic of intranasal ricin intoxication. VEGF, which promotes vascular
permeability and interstitial edema [51], is significantly increased following ricin intoxication.
Consistent with this finding, the levels of the serum-resident enzyme cholinesterase, as well as total
protein, are increased significantly in the BALF of intoxicated mice, indicating that the blood-lung
barrier is severely impaired. Increased Evans Blue dye extravasation, as a marker for increased vascular
permeability, has also been reported [12,39].

Consistent with these findings, the levels of the gelatinolytic enzyme MMP-9 rapidly increase
after ricin intoxication, displaying a peak level equivalent to a >100-fold increase as soon as
24 h post-exposure. MMP-9 plays an important role in lung injuries [52] and correlates with
alveolar-capillary permeability [53].

Increased levels of XO, an enzyme associated with oxidative damage and endothelial
dysfunction-mediated edema formation [54], were measured after ricin intoxication and displayed
a three-fold increase over control levels at 48 h post-exposure, followed by a ~10-fold increase over
the next 24 h. The expression of XO, which results in localized formation of reactive oxygen species
(ROS), was found to correlate with the severity of lung damage [55,56]. Ricin-induced oxidative stress
has been reported in vivo following systemic intoxication of mice [57–60], and it has been suggested
that NALP3 activation promotes ROS generation, which indirectly activates the inflammasome [61].
Hence, XO-derived ROS may also enhance inflammation via this route. Furthermore, ROS have been
reported to mediate ricin-induced apoptotic cell death [62], a pathological process that will be further
discussed below.

We have recently observed a significant increase in vasoconstrictor peptide endothelin-1 (ET-1)
in the BALF of ricin-intoxicated pigs [18]. ET-1, the most abundant isoform of the endothelin
peptide family, is produced by a variety of cells, including the airway epithelium and alveolar
epithelial cells [63–65], and is known to be released in response to various pathological states [66,67].
Elevated levels of circulating ET-1 are considered a marker for endothelial dysfunction [68] and also
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correlate with increased pulmonary water contents [69]. Recent studies have suggested that ET-1 not
only induces edema accumulation but also prevents edema resolution by impairing alveolar fluid
clearance [64,70].

2.2.4. Apoptosis and Changes in Cell Morphology

The induction of an apoptotic response following ricin intoxication (Figure 1) has been
demonstrated in several cell types, including epithelial cells [16], endothelial cells [71–73] and
macrophages [22,74,75]. This effect is associated with caspase-3 and PARP cleavage, which might be
counteracted by the anti-apoptotic protein Bcl-2 [76,77]. It has also been suggested that ricin-induced
apoptosis is mediated by p38 activation and is associated with TNFα production [22]. A single in vitro
study demonstrated that the redistribution of intracellular zinc ions occurs early during ricin-induced
apoptosis and that the exogenous addition of zinc ions may reduce apoptosis by inhibiting caspase 3, 6
and 9 activation, without affecting protein synthesis inhibition [24]. In addition to apoptotic events
per se, ricin stimulates very rapid and dramatic morphological changes in primary endothelial cells,
including the rounding of cells and formation of intercellular gaps, resulting in the passage of molecules
through cell monolayers in vitro. These changes precede protein synthesis inhibition and may explain
the vascular leak syndrome, which is associated with systemic ricin intoxication [78]. The enhanced
sensitivity of endothelial cells may also explain ricin-induced vascular hyper-permeability in the setting
of pulmonary exposure, similar to the vascular leak syndrome developed following systemic exposure.

3. Countermeasures for Ricin Intoxication

To date, there are no clinically approved post-exposure medical countermeasures against ricin
intoxication. Pre-clinical studies indicate that anti-ricin small molecules may confer protection
against pulmonary ricinosis, but only if administered before or shortly after intoxication. To obtain
significant surviving ratios at clinically relevant time points following intoxication, the only effective
countermeasure, to the best of our knowledge, is anti-ricin antibody-based therapy (“antitoxin”).
The combination of antitoxin with small molecules that are anti-ricin targeted, or with compounds that
attenuate pathological outcomes (“disease-modifying agents”) may improve protection in comparison
to antitoxin treatment alone.

The next part of this review summarizes the current knowledge regarding the following potential
countermeasures for ricin intoxication: (i) antitoxins; (ii) disease-modifying agents and (iii) small
molecules. While some of the reviewed studies use systemic models of ricin intoxication, it is
reasonable to assume that these therapies would also be beneficial, to some extent, during the course
of pulmonary ricinosis.

3.1. Antitoxins

Over the years, various polyclonal and monoclonal ricin-neutralizing antibodies exhibiting a
range of protection efficiencies have been described as post-exposure measures. The ricin molecule
participates in many protein-carbohydrate and protein-protein interactions during the intoxication
process. Accordingly, antibodies that effectively block the different binding steps have been found.
For example, antibodies directed against the B-subunit of the toxin molecule can block the attachment
of the toxin to the cell surface and thus inhibit its ability to enter the cell [4,79]. Antibodies directed
against other epitopes located either on the A- or the B- subunit of ricin can interfere with its ability to
interact with proteins involved in the retrograde transport of RTA into the cytosol [4,79,80]. Antibodies
directed against the A-subunit of the toxin inhibit the catalytic activity of ricin in vitro [10,80–82] and
are also found effective in vivo [5,6]; however, because these antibodies may dissociate from RTA
during the retrograde transport process, it is highly possible that other mechanisms are responsible for
the neutralizing activity of these antibodies.

From a clinical perspective, an extended therapeutic time window may be required for efficient
treatment, because under various scenarios, therapeutic intervention may be implemented only after
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the passage of a considerable span of time following exposure. Taking into account the existing assays
for the reliable and sensitive detection of ricin in a variety of samples, it can be reasoned that the
trigger to treat, namely, the identification of ricin as the cause of intoxication, will be in the range of
24–48 h post-exposure. Unfortunately, the protection efficiencies of most of the reported antibodies
decline sharply if they are not applied within several hours of exposure [11,83,84]. Table 1 enlists the
monoclonal antibodies that were shown to elicit post-exposure protection. Importantly, extensive
efforts are being made to improve the efficacy of the antibody [5] and to shorten the identification time
in clinical samples. In this respect, we recently developed a unique method to detect active ricin in
clinical samples. This method enables identification of the toxin in samples from pulmonary-intoxicated
mice at early time points such as 3 h following intoxication [85]. In another set of experiments, we also
demonstrated as a proof-of-concept that a combined treatment of anti-ricin antibodies with diverse
drugs (“add-on therapy”) improved the survival outcome of intoxicated animals when treatment was
initiated at 24 h post-exposure (described in detail below). In the following sections, other appealing
possibilities of drugs that may be synergistically combined with anti-ricin antibodies and improve the
treatment outcome are discussed.

Table 1. Monoclonal antibodies shown to be protective against ricin when administered post-exposure.

Antibody Name Antibody Type Target Reference

RAC18 murine; chimeric

RTA

[86]
PB10 chimeric [87]
RA36 murine [88]

43RCA-G1 humanized [89]
GD12 murine; chimeric [90]
MH1 chimeric [6]

MH36 chimeric [6]

JB4 chimeric

RTB

[87]
RB34 murine [88]
RB37 murine [88]

D9 murine; humanized [91,92]
MH2 chimeric [6]

MH73 chimeric [6]
MH75 chimeric [6]
MH77 chimeric [6]

3.2. Disease-Modifying Countermeasures

At later times following pulmonary ricin exposure, the pathophysiological condition of the
intoxicated animals may have deteriorated due to the concomitant activation of several stress
pathways, which exacerbate the pathological outcome. Accordingly, it can be hypothesized
that by mitigating the activation of these pathways, a more favorable outcome will be attained.
Such disease-modifying countermeasures can target the stress pathways described above, i.e.,
proinflammatory cytokines, pathologic damage mediators, inflammasome activation, stress-activated
signaling pathways, apoptosis and many others (Table 2).

Table 2. Summary of disease-modifying countermeasures.

Pathway Target Inhibitors

Proinflammatory cytokines
IL-1β anakinra, immunomodulators
TNFα anti-TNFα agents, immunomodulators
IL-6 tocilizumab, immunomodulators

Damage mediators

XO allopurinol, febuxostat, antioxidants
sPLA2 Mepacrine
ET-1 bosentan, tezosentan

MMP-9 Doxycycline
VEGF bevacizumab, aflibercept
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Table 2. Cont.

Pathway Target Inhibitors

NFκB pathway NFκB NFκB inhibitors, ‘Compound A’
IKK IκK inhibitors, auranofin, BMS-345541

MAP3K
PKR 2-AP, C16, imoxine, PKRi
ZAK sorafenib, nilotinib, DHP-2

MAPK
p38 PW66, UM101, p38 inhibitors
JNK PW66, SP600125, JNK inhibitors

NALP3 inflammasome
NALP3 inflammasome MCC950, parthenolide, glyburide, BHB, isoliquiritigenen

IL-1β Anakinra

Apoptosis Apoptosis antioxidants, zinc, apoptosis inhibitors
caspases 3, 6, 7, 9 PW69, bithionol

3.2.1. Attenuation of Proinflammatory Cytokines and Damage Mediators

As mentioned above, the proinflammatory cytokines IL-1β, TNFα and IL-6 are elevated in
the lungs of all animal models in which they are tested. Clinically approved drugs are frequently
used to target these cytokines in many inflammatory-related pathologies [93]. Therefore, it is highly
reasonable to apply anti-cytokine treatment in the course of pulmonary ricinosis. IL-1β and TNFα
are early-formed cytokines; therefore anti-IL-1β or anti-TNFα drugs should be administered as soon
as possible following intoxication, even if a co-administrated antitoxin is administered at a later time
point. Supporting this notion, the clinically approved IL-1R antagonist (IL-1Ra) anakinra, a competitive
inhibitor interfering with binding of IL-1α and IL-1β to their related receptors, attenuated lung injury
in mice intratracheally intoxicated with ricin [39]. Consequently, this treatment induced a significant
attenuation of cytokine storming and neutrophil recruitment, an improved histological score and
extension of the mean time to death of ricin-intoxicated mice [39].

Inhibitors of other proinflammatory cytokines, such as TNFα and IL-6, have not yet been tested in
ricin-intoxicated animals. Several anti-TNFα drugs are available clinically and can be chosen according
to the species or effect requested (chimeric vs. humanized anti-TNFα, among others). Regarding IL-6,
tocilizumab is a clinically approved anti-IL-6 drug, and additional anti-IL-6 agents are under clinical
development [94], yet the proper animal model should be chosen carefully because tocilizumab does
not cross-react with murine-IL-6 [95]. While most studies suggest that there is a positive correlation
between the severity of the pulmonary damage and IL-6 levels following ricin intoxication, it should
be noted that in other models of pulmonary damage, IL-6 attenuates lung injury [96,97].

Inhibitors of the enzymes involved in lung tissue degradation following ricin intoxication,
namely sPLA2, MMP-9 and XO, which are markers of lipolytic, proteolytic, and oxidant activities,
respectively, should also be tested. Although there are no approved specific inhibitors for MMP-9,
doxycycline, as well as other tetracyclines were shown to directly interact with this enzyme, thus
inhibiting its activity [98]. Several inhibitors of sPLA2 and XO are clinically available for diverse
pathological indications. For example, mepacrine, an anti-malarial drug [99], is a potent inhibitor
of sPLA2, demonstrating anti-inflammatory activities in lung pathologies. Specifically, mepacrine
attenuated pulmonary vascular leakage following the intratracheal instillation of IL-1 [49,100], which,
as stated above, is an important early mediator of murine pulmonary ricinosis [39]. The clinically
approved XO inhibitor allopurinol significantly attenuated edema and improved the histological
score in ventilator-induced lung injury [101]. In the setting of bleomycin-induced lung injury in
mice, allopurinol reduced both pulmonary neutrophil infiltration and IL-1β levels [102]. Febuxostat,
a non-purinic XO inhibitor, protected rats from LPS-induced lung injury, as reflected by decreased
oxidative stress markers and reduced TNFα levels [103]. Furthermore, febuxostat significantly
attenuated pulmonary neutrophil infiltration in acid-induced acute lung injury in mice [104].

XO is a representative marker of oxidative stress-induced damage. However, experimental
evidence supports the notion that oxidants and oxidative stress are strongly associated with
acute lung injury, having many more potential sources of ROS. These ROS may lead to direct
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DNA damage, lipid peroxidation, protein oxidation and proinflammatory gene upregulation [105].
There are many antioxidants used clinically, including N-acetylcysteine (NAC)—a widely used
mucus-dissolving over-the-counter medication—which was shown to suppress the release of IL-1β
from bone marrow-derived macrophages incubated with ricin [21]. Epigallocatechin gallate (EGCG),
an antioxidant found in green tea, diminished ricin-induced cytotoxicity in cell cultures [106,107].
Several antioxidants, such as butylated hydroxyanisole (BHA) and vitamin E succinate, were also
shown to provide protective effects in vivo against systemic ricin intoxication [58]. Although the
pathological outcomes of systemic ricin exposure are considerably different from those following
pulmonary exposure, it is worthwhile to evaluate the above-mentioned antioxidants in a pulmonary
ricinosis model because the efficacy of these compounds have also been demonstrated in various types
of lung pathologies. For example, vitamin E effectively reduced the oxidative burst and neutrophil
pulmonary infiltration in endotoxin-induced lung injury in mice [108]. EGCG attenuated LPS-induced
lung injury in mice by reducing neutrophil accumulation, edema formation and pulmonary damage
severity [109]. In another study, EGCG was found to reduce seawater aspiration-induced acute lung
injury in rats via the regulation of inflammatory cytokines [110].

The elevated levels of VEGF following intranasal ricin intoxication [11] are closely related
to pulmonary vascular hyperpermeability and edema formation [51,111], the ultimate cause of
respiratory failure and death following pulmonary ricinosis. There are various clinically approved
drugs antagonizing the effect of VEGF, i.e., bevacizumab (Avastin) [112] and aflibercept [113], which
can be used in the setting of pulmonary ricinosis. Yet, it should be noted that the presence of VEGF in
the alveolar space could be protective against diverse settings of murine lung injury [114]; therefore,
an anti-VEGF regimen should be assessed carefully. The elevated levels of ET-1 measured in pig
BALF following intratracheal ricin intoxication [18] may also be associated with edema formation
and progression. Several ET-1 antagonists are clinically available, for example, bosentan [115] and
tezosentan [116], which should be evaluated for their efficacy in pulmonary ricin intoxication.

In addition to ET-1 and VEGF, many other pathological effectors involved in the process of edema
can also be targeted using a large repertoire of clinically approved and preclinically tested drugs.
For example, iloprost improves endothelial barrier function in a murine model of LPS-induced lung
injury [117]. Enhancing vascular endothelial barrier integrity with the Tie2-agonist Vasculotide,
a patented molecule under experimental investigation, improved survival in murine models of
influenza even when administered as late as 72 h following infection [118]. β-agonists, e.g., salbutamol,
which is frequently used for the treatment of asthma and other pulmonary pathologies, may accelerate
the clearance of extravascular lung water and promote anti-inflammatory effects [119–121].

An additional disease-modifying approach is to use wide-range anti-inflammatory drugs
or immunomodulators for the treatment of pulmonary ricinosis. In that respect, we have
previously shown that doxycycline [11] and ciprofloxacin [12], antibacterial agents repurposed as
immunomodulators, significantly attenuated various proinflammatory markers, such as IL-1β, IL-6,
XO, neutrophil lung count and edema markers. These highly effective drugs are widely available and
are not expensive, rendering them attractive as anti-ricin therapies. Supporting the notion that the
coverage of as many damage mediators in parallel would achieve a better impact, it was demonstrated
in several non-ricin-mediated lung pathologies that a combinational treatment of two drugs obtained
a better outcome than each drug alone. For example, a combinatory treatment with vitamin E and
the corticosteroid dexamethasone resulted in a sharper decrease in BALF neutrophil content and
less severe oxidative damage following endotoxin-induced lung injury than each drug alone [108].
Similarly, the co-administration of NAC with steroids and deferoxamine improved the outcome of
chlorine-induced [122] or LPS-induced [123] acute lung injury in mice and rats.

3.2.2. Ribotoxic Stress Response Inhibitors

It has previously been demonstrated that the inhibition of p38 protects cells from ricin-induced
effects [22]; however, p38 inhibitors are often toxic and therefore exhibit very limited success in clinical
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trials. Recently, using computer-aided drug design, UM101, a novel inhibitor of p38α, the major isoform
responsible for the proinflammatory effects of this MAPK, was evaluated [124]. This compound
was more potent than the non-selective p38 inhibitor SB203580 in stabilizing endothelial barrier
function and reducing inflammation in the course of LPS-induced murine acute lung injury. In a
high-throughput cell-based assay, one of the few identified compounds, PW66, was found to diminish
the ricin-induced ribotoxic stress response by interfering with the activation of p38 and JNK as well
as inhibiting TNFα secretion [8]. The status of current JNK inhibitors was recently reviewed by
Cicenas [125], and it is worth mentioning that several JNK inhibitors, particularly SP600125, exhibit
protective effects against acute lung injury in vivo [126–129].

The MAP3Ks ZAK and PKR, which are upstream activators of p38 and JNK, may also serve as
targets for the treatment of pulmonary ricinosis. Indeed, sorafenib and nilotinib, which are clinically
approved inhibitors with a high affinity for ZAK, decreased the ricin-induced ribotoxic stress response
(activation of both p38 and JNK) in macrophages [21]. The ZAK inhibitor DHP-2 decreased the p38 and
JNK-induced ribotoxic stress response in epithelial cells, increased cell viability and further decreased
caspase-3 activation and proinflammatory gene transcription following incubation with ricin [23].
Small molecule inhibitors of PKR were also identified [130] and were found to be effective both in vitro
and in vivo. For example, 2-AP and C16 suppressed the production of the proinflammatory cytokine
IL-8 in monocytes [131], whereas PKRi was effective in a mouse model of long-term memory [132].
In addition, the PKR inhibitor imoxine, as well as 2-AP, improved glucose hemostasis and performed
anti-inflammatory activities in an obese diabetic murine model [133].

3.2.3. NFκB Inhibitors

Activation of the NFκB signaling pathway induces the transactivation of proinflammatory genes
and plays a major role in ricin-mediated pathogenesis. A screen of 2800 clinically approved drugs and
bioactive compounds was conducted to identify novel NFκB inhibitors [134], of which 19 exhibited very
high potency, including bortezomib, daunorubicin, digitoxin, emetine, sorafenib, sunitinib, tioconazole
and zafirlukast. Additional NFκB-inhibiting drug candidates, including IκB kinase inhibitors, are
discussed elsewhere [135,136]. Importantly, some NFκB inhibitors were found to be effective in animal
models of pulmonary inflammation, such as Bayer’s ‘Compound A,’ which demonstrated broad
anti-inflammatory activity in mice and rats following intraperitoneal administration of LPS [137].
In addition, using the BMS-345541 IκK inhibitor, the levels of lung-activated NFκB, proinflammatory
cytokine levels, neutrophil influx and edema formation were all reduced in LPS-challenged mice [138].

3.2.4. NALP3 Inflammasome Inhibitors

In addition to the direct induction of the NALP3 Inflammasome by ricin [21,39], the extracellular
release of endogenous molecules such as uric acid [102], ATP [139] and neutrophil-derived extracellular
histones [140], may stimulate inflammasome activation following ricin-mediated cell necrosis.
This highly efficient activation of the NALP3 inflammasome by both ricin and the proinflammatory
mediators released by dying cells may be a target for a potential therapeutic intervention. Several
NALP3 inhibitors, including parthenolide, glyburide (a clinically approved anti-diabetic drug),
5-chloro-2-methoxy-N-[2-(4-sulfamoylphenyl) ethyl]benzamide and isoliquiritigenen (a chemical
compound found in licorice) [141–144], are currently under investigation. The small molecule MCC950
was recently suggested as a therapy for NALP3-associated syndrome, exhibiting a specific and highly
potent inhibitory activity that resulted in reduced IL-1β production in mice [145]. Likewise, the
ketone metabolite β-hydroxybutyrate (BHB) reduced NALP3 inflammasome-induced IL-1β and IL-18
production [146]. Additional inflammasome inhibitors have been extensively reviewed by Shao [147].
These include clinically approved non-selective inhibitors (interferons-α/β), autophagy-enhancing
agents (resveratrol, arglabin and HU-308, which is a representative cannabinoid receptor 2 agonists),
and microRNAs (microRNA-223).
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3.2.5. Compounds Counteracting Apoptosis and Cell Morphology Changes

Ricin-induced apoptosis may be mediated by various stimuli, such as p38, TNFα [22], ROS [62]
and zinc redistribution [24]. Accordingly, there are many options to reduce apoptosis, including the
above-mentioned drugs that target these stimuli. In this respect, zinc deficiency aggravates several
types of lung injury via NFκB activation, VEGF overexpression and alveolar epithelial/macrophage
cell dysfunction [148–150]. The administration of zinc ions alleviates several types of lung injury in
rodents [151,152] by decreasing the levels of XO, oxidative stress markers, lung neutrophil recruitment
and NFκB activation. Importantly, a link between zinc, caspase-3 and adherent junction-related
cell-to-cell contact was demonstrated. Zinc deprivation in the presence of pro-apoptotic stimuli
accelerated caspase-3 activation and E-cadherin and β-cathenin proteolysis and induced an increase in
paracellular leak across epithelial cell monolayers. Zinc supplementation, but not caspase inhibition,
protected the lung epithelial barrier [153]. Consequently, it might be hypothesized that zinc also
inhibits changes in cell morphology that might be associated with the vascular leak syndrome [78].

Reducing the progression of apoptotic-mediated cell death may also be achieved by interfering
with the apoptotic machinery using clinically approved drugs or compounds that are under clinical
investigation [154,155]. For example, the compound PW69 was demonstrated as a ricin-induced
caspase 3/7-mediated apoptosis suppressor [8]. Excitingly, a recent work revealed that the antiparasitic
drug bithionol potently inhibited caspases- 3/7, 6, and 9 and exhibited pronounced protection against
ricin-induced cell death [156].

3.3. Anti-ricin Small Molecules

Anti-ricin antibodies are expected to be non-active when administered after the toxin has
already entered the cell, while small molecules that can penetrate the cells might be effective at
that time point. Over recent years, an extensive search was held for small molecule inhibitors of
ricin. High-content screens have revealed attractive, potentially effective compounds that may be
used therapeutically; however, all are still under preliminary investigation. The mechanisms of action
of these small molecules are diverse, targeting different cellular pathways of ricin, e.g., membrane
binding, intracellular trafficking and the active site (Figure 2 and Table 3). Importantly, there are
some limitations and prerequisites for such small-molecule-drug candidates, including safety issues
concerning their clinical use. Additionally, they should preferably be water soluble and well absorbed
from the GI tract if taken orally. Drug candidates aimed at targeting the active site or inhibiting
intracellular trafficking are required to penetrate cell membranes as well.

Toxins 2017, 9, 311  10 of 27 

 

related cell-to-cell contact was demonstrated. Zinc deprivation in the presence of pro-apoptotic 

stimuli accelerated caspase-3 activation and E-cadherin and β-cathenin proteolysis and induced an 

increase in paracellular leak across epithelial cell monolayers. Zinc supplementation, but not caspase 

inhibition, protected the lung epithelial barrier [153]. Consequently, it might be hypothesized that 

zinc also inhibits changes in cell morphology that might be associated with the vascular leak 

syndrome [78]. 

Reducing the progression of apoptotic-mediated cell death may also be achieved by interfering 

with the apoptotic machinery using clinically approved drugs or compounds that are under clinical 

investigation [154,155]. For example, the compound PW69 was demonstrated as a ricin-induced 

caspase 3/7-mediated apoptosis suppressor [8]. Excitingly, a recent work revealed that the 

antiparasitic drug bithionol potently inhibited caspases- 3/7, 6, and 9 and exhibited pronounced 

protection against ricin-induced cell death [156]. 

3.3. Anti-ricin Small Molecules 

Anti-ricin antibodies are expected to be non-active when administered after the toxin has already 

entered the cell, while small molecules that can penetrate the cells might be effective at that time point. 

Over recent years, an extensive search was held for small molecule inhibitors of ricin. High-content 

screens have revealed attractive, potentially effective compounds that may be used therapeutically; 

however, all are still under preliminary investigation. The mechanisms of action of these small 

molecules are diverse, targeting different cellular pathways of ricin, e.g. membrane binding, 

intracellular trafficking and the active site (Figure 2 and Table 3). Importantly, there are some 

limitations and prerequisites for such small-molecule-drug candidates, including safety issues 

concerning their clinical use. Additionally, they should preferably be water soluble and well absorbed 

from the GI tract if taken orally. Drug candidates aimed at targeting the active site or inhibiting 

intracellular trafficking are required to penetrate cell membranes as well. 

It is a great advantage if the drugs are already clinically approved for other indications 

(repurposed drugs) and also commonly available and not expensive. A list of candidate anti-ricin 

small molecule drugs categorized by their mode of actions is provided below. 

 

Figure 2. Cellular targets for anti-ricin small molecule compound-based treatment. (1) Receptor 

mimicry; (2) Blockers of endocytosis; (3–5) Retrograde trafficking blockers; (6) Active-site inhibitors. 

TGN: trans-Golgi network; ER: endoplasmic reticulum. 

Table 3. Small molecule anti-ricin inhibitors-mechanisms and targets. 

Mechanism Cell Target Inhibitors 

1

2 3

4

5
6

ER

TGN

Receptor
Early endosome

Endosome

Ribosome

Nucleus

Figure 2. Cellular targets for anti-ricin small molecule compound-based treatment. (1) Receptor
mimicry; (2) Blockers of endocytosis; (3–5) Retrograde trafficking blockers; (6) Active-site inhibitors.
TGN: trans-Golgi network; ER: endoplasmic reticulum.



Toxins 2017, 9, 311 11 of 28

Table 3. Small molecule anti-ricin inhibitors-mechanisms and targets.

Mechanism Cell Target Inhibitors

Receptor mimicry RTB Derivatives of glycosphingolipids, lactose and galactose

Endocytosis blockers Early endosome NaN3, cytochalasin D, colchicine
Endosome

Trafficking blockers TGN Retro-2, DA2MT, atorvastatin, brefeldin A, mansonone D
ER benzyl alcohol, 3′-Azido-3′-Deoxythimidine

Reductive activation inhibitors
PDI, TrxR, TMX, auranofin, bacitracinglutathione disulfide oxidoreductase

Active site and RTA inhibitors Ribosomes

purine- pterin- and pyrimidine-based inhibitors,
4-fluorophenyl methyl

2-(furan-2-yl)quinolone-4-carboxylate,
difluoromethylornithine, aptamers, RIP-α-sarcin/ricin

loop interface blockers, baicalin

It is a great advantage if the drugs are already clinically approved for other indications (repurposed
drugs) and also commonly available and not expensive. A list of candidate anti-ricin small molecule
drugs categorized by their mode of actions is provided below.

3.3.1. Receptor Mimicry (RTB Binders)

Asialofetuin (ASF), which contains 12 terminal galactose residues per molecule [157,158] and
binds ricin 1000 times better than monovalent galactose [159], is an excellent in vitro scavenger of
ricin. However, it is rapidly cleared from the circulation and therefore cannot be used clinically.
Extensive work has been performed to obtain better receptor mimicry. Glycosphingolipid (GSL)-,
lactose-, and galactose-based derivatives (Table 3) were found to be potentially good candidates for
this manner. The gangliosides GM1 and GM3 protect cells from ricin-induced intoxication [160],
while the synthetic GSL analogues beta-lactosyl-ceramide, beta-d-galactosyl ceramide, asialo-GM1
and serum albumin-based neoglycoconjugates were shown to be selective and potent ricin binders
in vitro [161,162]. Lactose-based glycopolymers were found to be effective for capturing ricin in a
cell-free system, as well as for inhibiting cell binding [163,164]. In a different experimental setting, a
synthetic galactose-based surfactant efficiently sequestered ricin from aqueous solution, but due to its
water-insolubility, it must be formulized prior to its application for ricin intoxication therapy [165].
A galactose-based biantennary oligosaccharide effectively bound to ricin in a cell-free system [166],
whereas a chemically modified glycoprotein containing triantennary N-linked oligosaccharides
reduced the cytotoxicity of ricin more than 1000-fold in cultured cells [167]. Additional studies were
performed with the closely related protein Ricinus communis agglutinin (RCA), demonstrating potent
binding to Galβ1-4GlcNAc, with specificity for highly branched glycans containing this structure [168].
EGCG, a potent antioxidant possessing anti-inflammatory properties [109,110], was also suggested to
interfere with the binding of RTB to lactose-conjugated sepharose [107].

Although all of these molecules effectively antagonize ricin in vitro or in cell free systems,
to our knowledge, there are no data available regarding the in vivo efficacy of anti-ricin receptor
mimetic-based small molecules.

3.3.2. Endocytosis Blockers

Research conducted decades ago revealed that the co-incubation of an inhibitor of glycolysis
(2-deoxyglucose) and an uncoupler of oxidative phosphorylation (sodium azide, NaN3) potently
inhibits ricin endocytosis and protects cells against intoxication, indicating that endocytosis is a critical
step in ricin cellular entry [169]. Later work demonstrated that cytochalasin D and the clinically
approved drug colchicine selectively inhibit the endocytic uptake of ricin from non-clathrin-coated
areas of cell membranes. Furthermore, colchicine reduces the catalytic activity of ricin (protein
synthesis arrest) in cell culture [170].
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3.3.3. Trafficking Blockers

After internalization into the cells, ricin is transported from early endosomes to the ER
via the Golgi apparatus, an entrance pathway termed the “retrograde trafficking route.” Several
molecules were found to block ricin translocation to the cytosol, e.g., brefeldin A (BFA) [171],
3′-azido-3′-deoxythimidine [172] and mansonone-D [173]. BFA, a fungal antibiotic, which inhibits
anterograde vesicular transport by disrupting the Golgi apparatus, is considered to be the first small
molecule identified that protects cells from ricin [171]. However, whereas BFA protects cells from the
cytotoxicity induced by ricin, it may under some circumstances enhance ricin toxicity in other cell
lines [174,175]. In addition, it was recently demonstrated that benzyl alcohol, which is widely used
as a food and medical preservative, inhibits ricin membrane trafficking between endosomes and the
trans-Golgi network, thus providing protection against ricin-induced cytotoxicity [176].

In the past decade, several high-throughput screens were conducted, including a high-content
screen of ~3000 compounds that identified several small molecule candidates that interfered in vitro
with the retrograde translocation of ricin or stabilized RTA in the ER [177]. With these screens, the
greatest progress in the field of ricin trafficking blockers was recently achieved. Small molecules that
selectively block retrograde trafficking at the early endosome/trans Golgi network interface were
identified. These highly selective, non-toxic molecules were efficient against pulmonary ricinosis in
mice, especially Retro-2 administered prophylactically. This molecule was found to be highly potent,
exhibiting bioactivity in the nanomolar range [178]. In a different experimental setting, characterization
of a common pharmacophore of retrograde trafficking inhibitors, such as Retro-2 and its achiral analog
DA2MT, offered new insights into lead compound identification and optimization for ricin and
other RIP antidote development [179]. Additional inhibitors of cellular trafficking are discussed
elsewhere [180], and some of the molecules may be potentially effective if proven safe when used
against ricin intoxication.

In addition to the trafficking inhibitors mentioned above, Bassik et al. demonstrated that ricin
trafficking to the ER was effectively blocked in vitro upon hydroxymethylglutharyl (HMG)–CoA
reductase inhibition with atorvastatin, a popular cholesterol-lowering drug [181].

3.3.4. Reductive Activation Inhibitors

A reduction-dependent disassociation of the RTA-RTB inter-subunit disulfide bond is required
for the intracellular activation of ricin, namely, the translocation of RTA from the ER to its target site,
the cytosol. Several enzymes responsible for this process have been identified, e.g., protein disulfide
isomerase (PDI), thioredoxin reductase [182], glutathione disulfide oxidoreductase [183] and TMX,
a transmembrane thioredoxin-related protein member of the PDI family [184]. Among these enzymes,
thioredoxin reductase and PDI may be inhibited by the clinically approved drugs, auranofin (used
therapeutically for rheumatoid arthritis, [185]) and the antibacterial agent bacitracin [186], respectively.
Indeed, auranofin significantly inhibits ricin-mediated cytotoxicity [182].

3.3.5. Active Site and RTA Inhibitors

The search for RTA active site inhibitors began decades ago and included purine-based inhibitors
and pterin-like and single ring pyrimidine-based derivatives, as extensively discussed elsewhere [10].
It should be mentioned, however, that many of these compounds are extremely insoluble and/or
toxic to cells. According to a single publication in the literature, the clinically approved polyamine
difluoromethylornithine, a positively charged compound, which was proposed to bind ribosomes and
RNA, prolonged the time to death in mice intraperitoneally intoxicated with ricin, likely by blocking
the active site of the toxin [58]. In addition, in a recent screening of ~80,000 compounds in vitro,
20 molecules with significant anti-ricin activity were identified, one of which (4-fluorophenyl methyl
2-(furan-2-yl)quinolone-4-carboxylate) exhibited significant therapeutic activity [9]. A computer
modeling identified this compound as a ricin active site blocker. More specific active site blockers
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targeting the ribosome inactivating protein (RIP)-α-sarcin/ricin loop (SRL) interface were found to
be effective, conferring up to 20% cell protection against ricin at nanomolar concentrations [187].
In addition, an RTA-ligand RNA aptamer-based approach demonstrated partial protection in a
cell-based cytotoxicity assay [188], supporting the potential use of anti-RTA aptamers as ricin inhibitors.

The identification of new classes of RTA inhibitors by virtual screening was also conducted.
Two compounds (out of 50,000) showed modest to strong ricin inhibition in a cell-based assay, which
was, however, accompanied by some cytotoxicity [189]. In a recent study [190], baicalin, extracted from
the plant Scutellaria baicalensis and used as a Chinese medical herb, reduced ricin-mediated cytotoxicity
in vitro and conferred significant post-exposure protection in mice intraperitoneally exposed to ricin.
Baicalin is an RTA inhibitor with a novel mechanism of action. Rather than occupying the active
site, it induces toxin oligomerization upon extensive hydrogen bond networking formation with RTA.
The potential protective effects of baicalin in pulmonary ricinosis remain to be evaluated.

3.4. Multiple Pathway-Interfering Anti-Ricin Agents

As mentioned earlier, auranofin inhibits the reductive activation of ricin by thioredoxin
reductase [182], yet it may also decrease NFκB activation via IκK inhibition [191]. Notably,
auranofin should be cautiously used since thioredoxin reductase inhibition is often associated
with a concomitant increase in ROS formation [192]. Baicalin, a direct anti-ricin agent that forms
oligomers through interactions with the RTA, may also function as an antioxidant [193,194] and
an anti-inflammatory agent, as reflected by attenuation of LPS-induced lung injury in rats and
mice [195–197]. In addition, resveratrol, an antioxidant [198] that may also act as a NALP3 inhibitor
through autophagy enhancement [147], may have a protective effect against ricinosis. The actin
depolymerizing agent cytochalasin D, which was reported to inhibit the uptake of ricin [170], may also
inhibit NALP3-dependent IL-1β production [199,200]. Amifostine, a potent antioxidant [201], inhibited
p53-dependent apoptosis by reducing apoptosis-related gene transcription [202,203]. Colchicine, a
selective blocker of the cellular endocytic uptake of ricin [170], is also a microtubule-depolymerizing
agent [204] that impairs the mobility and phagocytic activity of neutrophils. In particular colchicine
was reported to attenuate phosgene-induced lung injury and to improve mouse survival by reducing
neutrophil influx into the lungs even when given 30 min post exposure [205]. Atorvastatin, an
HMG–CoA reductase demonstrated to operate as a retrograde trafficking blocker of ricin [181],
as well as other HMG–CoA reductase inhibitors, were reported to attenuate non-ricin-mediated
acute lung injury parameters, as reflected by reduced levels of proinflammatory cytokines and markers
of edema [206–208].

3.5. Drug-Drug Combinational Treatment

Due to the multiplicity of ricin-induced damage pathways and effectors, an improved
therapeutic outcome may be achieved upon combinational treatment of several drugs. Pathogenesis
characterization of any treatment should assist tailoring the optimum additive countermeasure for
efficient damage coverage. Clearly, there are many combinational treatment options, and therefore, the
use of concomitant medication should be established wisely. For example, ZAK inhibition attenuates
p38 and JNK activation in cell culture without any influence on NALP3 activation [21]. Therefore, if
relevant to in vivo settings, ZAK inhibition should be combined with NALP3 inhibitors or anakinra
following pulmonary ricin intoxication. As mentioned above, auranofin is a good candidate for
ricin intoxication therapy due to its dual inhibition activity on both NFκB signaling and thioredoxin
reductase. However, as mentioned earlier auranofin sensitizes cells to oxidative stress-mediated
damage [192]. Accordingly, the co-administration of an antioxidative compound could improve
treatment outcomes. NFκB knockdown in vitro [38] decreases the levels of several proinflammatory
mediators but not IL-6. Hence, combined NFκB inhibition with anti-IL-6 medication is worth
attempting. In the same experiment, incubating cells with anti-TNFα did not have any influence
on NFκB activation, implying a beneficial effect of NFκB/TNFα combined inhibition, pending the



Toxins 2017, 9, 311 14 of 28

relevance of this finding to pulmonary ricin intoxication in vivo. Miller et al. reported that some NFκB
inhibitors promote caspase 3/7 activation [134]; therefore, targeting these effectors in parallel to NFκB
inhibition may be advantageous. In addition to the aforementioned classical drug-drug combination,
inhibition of these stress-related processes with the co-administration of anti-ricin small molecules, i.e.,
trafficking blockers may be useful.

3.6. Antitoxin-Drug Combinational Treatment

Administration of anti-ricin antibodies is less effective if applied at late time points following
intoxication [83,84]. However, it was previously shown that the co-administration of antitoxin together
with various anti-inflammatory drugs could significantly expand the therapeutic time window [11,12].
In the first study, the survival rates of mice treated with anti-ricin antibodies at 24 h post-pulmonary
intoxication were considerably improved by the co-administration of doxycycline [11], an antibacterial
agent with broad anti-inflammatory activity [209–213]. Doxycycline promoted a significant reduction
of proinflammatory cytokines and damage mediators (IL-1β, IL-6, XO, VEGF and pulmonary ChE)
in intoxicated mouse BALFs. Because doxycycline treatment per se did not confer protection, an
“add on” effect obtained following antitoxin-doxycycline combination treatment was monitored.
Indeed, doxycycline or antitoxin administration as monotherapies did not decrease the levels of BALF
MMP-9; however, a combined drug-antitoxin treatment resulted in a significant reduction of this
mediator [11]. The second efficient combinational drug-antitoxin-based therapy was achieved using
ciprofloxacin as the co-administered drug. Ciprofloxacin is an antibacterial agent that also possesses
potent immunomodulatory properties, a feature that is mainly associated with decreased synthesis
of proinflammatory cytokines [214]. Co-administration of ciprofloxacin with antitoxin dramatically
improved survival through effective attenuation of neutrophil infiltration and edema. These findings
illustrated that ciprofloxacin led to a significantly decreased proinflammatory cytokine response.

Thus, in BALFs of ciprofloxacin-treated ricin-intoxicated mice, IL-6 levels decreased by ~90%,
while a significant increase in levels of the anti-inflammatory cytokine IL-10 was observed. Pulmonary
levels of the damage markers XO, protein, ChE and Evans Blue dye extravasation were also
significantly attenuated upon ciprofloxacin treatment [12]. It appears that ricin, by virtue of being
highly inflammatory, persistently stimulates acute inflammatory responses with which doxycycline
or ciprofloxacin alone cannot cope. Antitoxin-based treatment is therefore required to halt any
further propagation of proinflammatory signals by virtue of toxin neutralization, while the combined
drugs exert their beneficial effects by dampening the inflammation-related assaults that have
already developed.

Indeed, although treatment with the drugs alone reduced inflammation-related factors to a
considerable extent, the values remained higher than in control mice. It appears, therefore, that
keeping the inflammation at bay promotes the expansion of the therapeutic time window for antitoxin
intervention. Supporting this argument, the time to death was delayed in IL-1-knockout mice
compared with naïve mice following intratracheal ricin intoxication [39]. It is important to mention,
that we have also examined the combination of antitoxin with dexamethasone, a highly potent
corticosteroid, as it may be assumed that patients exhibiting an unknown inflammatory syndrome will
be treated with these agents long before the specific cause is known. Surprisingly, although steroids
possess broad anti-inflammatory activities and seem ideal for use in suppressing the ricin-induced
inflammatory pathways, co-administration of dexamethasone did not confer any improvement
in surviving ratios, unless given before, or shortly after the onset of intoxication. Under these
circumstances we believe that non-steroidal-based immunomodulators are better candidates for
combinational antitoxin-drug treatment. Nevertheless, we do believe that the usage of steroids in
ricin-intoxicated victims, whether the treatment is given early, or at late times following exposure,
should be beneficial. This argument is supported by the fact that treating mice with dexamethasone in
combination with the antitoxin-doxycycline regime, conferred enhanced protection as compared to
antitoxin-doxycycline alone [11].
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Taken together, drug-antitoxin concomitant medication is emerging as the best approach for the
treatment of pulmonary ricinosis, and the drugs and small-molecules that were reviewed above may
help to improve this therapy.

4. Summary and Future Prospects

To date, the only applicable countermeasure for pulmonary ricinosis at clinically relevant time
points following exposure is antitoxin administration. Small molecules inhibiting the intracellular
trafficking of ricin (e.g., Retro-2) or interacting with RTA (baicalin) were shown to be efficient in vivo
only when administered shortly after intoxication (the latter was not tested in pulmonary ricin
exposure). Drug-antitoxin based therapy improves treatment outcome, however, the timing of each
pharmacological intervention should be carefully chosen. For example, treatment with anti-IL-1β
or anti-TNFα should be optimal when administrated at early times following intoxication, while
immunomodulators and stress-activated pathways inhibitors may be beneficial also at later time
points. Anti-ricin small molecules should be administered as soon as possible following intoxication.

To improve treatment outcomes, it is highly reasonable to simultaneously target several stress
pathways, as well as cellular components related to the toxicity of ricin (binding, trafficking, catalytic
activity etc.), as long as the additive toxicity of this combinational treatment does not pose a problem.
Even small molecules that were not demonstrated to confer protection in vivo may be beneficial when
included in an anti-ricin drug cocktail.

In addition to the countermeasures discussed in this review, several other therapeutic strategies
should be considered following pulmonary ricinosis. Because this pathology complies with the clinical
criteria for ARDS, pharmacologic treatments tested for this syndrome should be evaluated. As it is
suggested that treatment against pulmonary ricin intoxication includes an antitoxin, drugs which
were tested for ARDS and demonstrated only partial efficacy in clinical trials should be reconsidered
as components of a combined drug-antitoxin treatment modality. The relevant pharmacological
options include corticosteroids (as mentioned above), vasodilators, decreased alveolar surface tension,
thromboxane synthase and 5-lipoxygenase inhibitors, antioxidants, immunonutrition, increased
clearance of alveolar edema, enhanced repair of the alveolar epithelium, anticoagulants, hematopoietic
colony-stimulating factors, and prevention of fibrosis, all of which have been extensively reviewed
elsewhere [215–218].

Targeting the cytokine storm is also an attractive strategy to manipulate the overwhelming
inflammation process that develops in the lungs following pulmonary ricin intoxication.
Pharmacological strategies for this purpose were exhaustively discussed by D’Elia et al. and include
stimulation of the cholinergic anti-inflammatory pathway, e.g., by GTS-21, which is a selective
α7-acetylcholine (ACh) nicotinic receptor agonist found in clinical trials, and CNI-1495, an α7ACh
agonist under pre-clinical testing. Prostaglandin-, cyclooxygenase- and platelet-activating factor-
inhibitors, as well as chemokine manipulation, may also attenuate cytokine storm. The active resolution
of tissue damage by resolvins, lipoxins and protectins is also relevant [219]. In particular, the activation
of the cholinergic anti-inflammatory pathway following nicotine administration two hours after
systemic ricin exposure significantly delayed and reduced mortality in mice [220], although the
relevance to pulmonary ricinosis remains to be elucidated.

Neutrophils are considered a major hallmark of pulmonary ricinosis. Aggressive or prolonged
neutrophil responses result in deleterious inflammatory conditions and tissue destruction. Potential
new drug candidates to control of neutrophil activity were reviewed by Burgos et al. [135]. It is of great
importance to follow the progression in this field and consider using agents counteracting neutrophil
activity in the course of pulmonary ricinosis. Targeting p38 may be of a specific interest because
it is involved in both neutrophil migration and chemotaxis in vivo [221] and in the ribotoxic stress
response, as mentioned above. Comprehensive understanding of intravascular danger signals (e.g.,
formyl-peptide signals released from necrotic cells) that guide neutrophils to the site of sterile injury
should be harnessed in an effort to attenuate neutrophil-derived injury [222].
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Pharmacological interventions against systemic capillary leak syndrome were reviewed by
Druey et al. [223]. Several clinically used drugs were offered to alleviate this syndrome, and these
should be tested for their beneficial effects in pulmonary ricinosis.

Immune selective anti-inflammatory derivatives (ImSAIDs), based on salivary gland-derived
peptides, should also be considered for evaluation in pulmonary ricin exposure. The tripeptide
ImSAID Phe-Glu-Gly (FEG) attenuated both systemic [224] and pulmonary [225,226] inflammation.
FEG significantly ameliorated endotoxin-induced lung injury in both a prophylactic and therapeutic
manner in rats [227].

In addition, regenerative therapies should also be applied for the treatment of lung pathology following
ricin intoxication. These therapies include the aforementioned resolving/lipoxin/protectin-based therapy, as
well as keratinocyte growth factor (KGF)-mediated enhanced repair of the alveolar epithelium [216,228,229].
Cell therapy using a mesenchymal stromal cell-based approach, reviewed by Johnson et al., can also be
performed, depending on its clinical progress [230].

Small molecules that interfere with the cell trafficking of ricin were comprehensively discussed
in this review. Although considerable progress was achieved following the development of Retro-2,
additional work should be performed to improve the effectiveness of trafficking blockers. Bassik
et al. [181] used a mammalian genetic approach to reveal pathways underlying ricin susceptibility.
Many intracellular factors, familiar as well as unexpected, were found to be involved in the toxicity
of ricin. Knockdown of several of these factors was strongly protective, while knockdown of others,
increased the sensitivity to ricin. Profound sensitization to ricin was found upon depletion of coat
protein I (COPI) components, which are normally involved in retrograde transport. This is presumably
due to the upregulation of compensatory alternative pathways or to the fact that COPI normally
functions in transport steps that divert ricin from ER. Additionally, in contrast to all depleted ribosomal
components, which sensitize cells to ricin, the knockdown of the ribosomal proteins RPS25 and ILF2/3,
whom interact with RPS25 conferred ricin resistance. The depletion of the two poorly characterized
genes WDR11 and C17orf75 sensitized cells to ricin. Specifically, WDR11 was suggested to participate
in autophagy-mediated ricin degradation. The clinical aspects of this work have not been elucidated,
but it is reasonable to assume that targeting novel proteins that may be related to ricin susceptibility
should be utilized in the future to develop novel anti-ricin therapeutic strategies.

In conclusion, anti-ricin post-exposure treatment should include the following: antitoxin,
as an obligatory component, combined with (i) a disease modifying countermeasure (i.e.,
anti-inflammatory/immunomodulator agent); and/or (ii) a small molecule anti-ricin inhibitor (i.e.,
cell trafficking blocker). Pending clinical progression, the treatment at later stages may include
regenerative therapies, gene- and cell-based treatments, and any other beneficial therapy that remains
to be discovered. Optimum treatment should be tailored based on thorough pathological studies,
specifically focusing on damage mediators that were not effectively attenuated following a treatment
of choice.
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