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Abstract: Lethal Toxin from Clostridium sordellii (TcsL), which is casually involved in the toxic
shock syndrome and in gas gangrene, enters its target cells by receptor-mediated endocytosis.
Inside the cell, TcsL mono-O-glucosylates and thereby inactivates Rac/Cdc42 and Ras subtype
GTPases, resulting in actin reorganization and an activation of p38 MAP kinase. While a role of
P38 MAP kinase in TesL-induced cell death is well established, data on a role of p38 MAP kinase
in TesL-induced actin reorganization are not available. In this study, TesL-induced Rac/Cdc42
glucosylation and actin reorganization are differentially analyzed in P38a1pha7/ ~ MSCV empty vector
MEFs and the corresponding cell line with reconstituted p38,j,n, expression (p38a1pha’/ - MSCV
P38aipha MEFSs). Genetic deletion of p38,j,p, results in reduced susceptibility of cells to TesL-induced
Rac/Cdc42 glucosylation and actin reorganization. Furthermore, SB203580, a pyridinyl imidazole
inhibitor of p38a1pha/beta MAP kinase, also protects cells from TesL-induced effects in both p38’/ B
MSCV empty vector MEFs and in p38a1pha_/ ~ MSCV p38,pna MEFs, suggesting that inhibition
of p38peta contributes to the protective effect of SB203580. In contrast, the effects of the related
C. difficile Toxin B are responsive neither to SB203580 treatment nor to p38,j,ha deletion. In conclusion,
the protective effects of SB203580 and of p38,ph, deletion are likely not based on inhibition of the
toxins’ glucosyltransferase activity rather than on inhibited endocytic uptake of specifically TesL into
target cells.
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1. Introduction

Toxin-producing strains of C. difficile and C. sordellii cause intestinal infections, including
C. difficile-associated diarrhea (CDAD) in humans and horses, and C. sordellii-induced hemorrhagic
enteritis and enterotoxemia in cattle, sheep, and other ruminants [1-4]. The major virulence
factors involved in these infections are toxin A (TcdA) and toxin B (TedB) of C. difficile,
and lethal toxin (TcsL) and hemorrhagic toxin (TesH) from C. sordellii. These single chained
toxins exhibit an AB-like toxin structure with the C-terminal delivery domain mediating
cell entry of the N-terminal glucosyltransferase domain by receptor-mediated endocytosis [5,6].
The endocytosed glucosyltransferase domain associates with membrane phosphatidylserine
facilitating mono-O-glucosylation of small GTPases of the Rho and Ras subfamilies in a monovalent
and divalent metal ion-dependent manner [7-9]. The acceptor amino acid of toxin-catalyzed
mono-O-glucosylation is Thr-35 in Racl, Cdc42, and (H/K/N)Ras and Thr-37 in Rho(A/B/C).
Mono-O-glucosylated Rho/Ras GTPases are incapable of coupling to their regulatory and effector
protein and thus are functionally inactive [10-13]. Treatment of cultured cells with the glucosylating
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toxins results in a breakdown of the actin-based cytoskeleton (“cytopathic effect”) and (at higher toxin
concentrations) in cell death (“cytotoxic effect”) based on inhibition of Rho/Ras-dependent signaling
pathways regulating actin dynamics [14], cell-matrix binding [15,16], cell cycle progression, and cell
survival [17-19].

The family of p38 MAPKs encompasses the four isoforms p38;ipha, P38petas P38gamma,
and p38eita- P38Balpha and p38peta are ubiquitously expressed, while p38gamma and p384eyta exhibit
a more restricted expression patterns. The best characterized isoform is p38,jpna, which is involved
in the regulation of the main cellular functions, including actin dynamics, differentiation, and cell
death and survival [20,21]. TcsL (as well as TcdA and TcdB) has been shown to activate the family of
mitogen-activated protein kinases (MAPKs) involving ERKSs (extracellular signal-regulated kinases),
JNKSs (c-Jun-N-terminal kinases) and p38 MAPKSs [22]. MAP kinase signaling cascades have been
shown to be involved in the cytopathic as well as the cytotoxic effects of the glucosylating toxins.
In particular, TesL-induced activation of JNK has been suggested to facilitate TcsL-catalyzed GTPase
substrate glucosylation and subsequently TesL-induced actin reorganization [22]. p38,1,n, MAP kinase
signaling has been implicated in TesL-induced expression of the cell death-regulating GTPase RhoB [23].
Finally, TesL-induced cell death has been shown to be responsive to inhibition by SB203580, a pyridinyl
imidazole inhibitor of p38apha/beta MAP kinase, suggesting a role of p38,1pha/peta in TesL-induced cell
death [24].

In this study, TesL-induced Rac/Cdc42 glucosylation and subsequent actin reorganization
were analyzed for an involvement of p38,jpn, in murine embryonic fibroblasts (MEFs). In this
study, TesL-induced Rac/Cdc42 glucosylation and actin reorganization are differentially analyzed
in p38a1pha’/ ~ murine stem cell virus empty vector MEFs (p38alpha7/ ~ MSCV EV MEFs) and
the corresponding cell line with reconstituted p38,j,na expression (p38alpha’/ ~ MSCV p38iipha
MEFs) [25,26]. We show that genetic deletion of p38,1,n, as well as SB203580 protects cells from
TesL-catalyzed glucosylation of Rac/Cdc42 subtype GTPases and TesL-induced actin reorganization.

2. Results

2.1. Prevention of TesL-Induced Actin Re-Organization upon Inhibition of p38aiphaypeta

TesL time-dependently induced actin reorganization in p38,jpp,-proficient p38a1pha_/ -~ MSCV
P38aipha MEFs (Figure 1), with TesL treatment for 4 h being sufficient for almost complete cell rounding
(Figure 1). In contrast, TesL-induced rounding of p38,j,n,-deficient p38alpha7/ ~ MSCV EV MEFs was
clearly delayed, suggesting a reduced susceptibility of p38a1pha_/ ~ MSCV EV MEFs to TcsL. Next,
TesL-induced cell rounding was analyzed in p38a1pha_/ ~ MSCV p38,1pna MEFs treated with SB203580,
a pyridinyl imidazole inhibitor of p38,1pha/beta MAP kinase [27]. SB203080 concentration-dependently
reduced TesL-induced cell rounding, with a SB203580 concentration of 10 uM being sufficient for almost
complete prevention of TesL-induced cell rounding (Figure 2A,B). A pronounced protective effect of
SB203580 was also observed in a time-dependent experiment (Figure 2C). SB203580 (10 pM) alone did
not change fibroblast morphology (Figure 2A). Finally, the protective effect of p38,ph, inhibition was
analyzed in TesL concentration-dependent experiments (Figure 3). Either genetic deletion of p38;jpha
or SB203580 treatment delayed TesL-induced cell rounding. Interestingly, SB203580 treatment of
p38aipha-deficient p38alpha7/ ~ MSCV EV MEFs further delayed TcsL-induced cell rounding, suggesting
a role of p38yp,t, inhibition in the reduced susceptibility to TesL.

TedB is highly related to TesL (identity of 75% at amino acid level), as both TcdB and TesL
enter their target cells by receptor-mediated endocytosis and both cause changed actin dynamics
by mono-O-glucosylation of small GTPases. Interestingly, neither genetic deletion (Figure 4A,B)
nor treatment with the p38,jpha/beta inhibitor SB203580 (Figure 4C,D) changed the kinetics of
TedB-induced actin reorganization. p38,1pha/beta inhibition thus mediates protection of fibroblasts from
TesL-(not TedB-) induced actin reorganization.



Toxins 2017, 9,2 3 of 14

mock-treated MEFs TcsL-treated MEFs
p387-MSCV p38.pna p387MSCVEV | p38"MSCV p38ypna P38 MSCV EV
£ '
B Ly
¢
L
: - .
(6]
3
C
p<0.01
g 100 +/ —_ 7-
o +/
< 80+ /
(3]
g el |
2 o/
2 404
e}
S
o ——-/-

time [h]

Figure 1. Effects of genetic deletion of P38alpha ON TesL-induced changes of cell morphology (time-dependency). p38a1pha_/ ~ MSCV empty vector (EV) MEFs and
the corresponding cell line with reconstituted p38,j,n, expression (p38a1pha*/ ~ MSCV p38y1pha MEFs) were treated with TesL (1 pg/mL) for the indicated times.
Cells were then washed, fixed, permeabilized, and stained with thodamine-phalloidin and DAPI. Cell morphology was visualized using fluorescence microscopy
(20x amplification). TesL-induced changes of the morphology were time-dependently quantified in terms of the number of rounded per total cells. Six representative
microscopic fields were chosen and 300 cells total were counted for characteristic cell rounding. Values are the mean =+ SD from three independent experiments
performed in triplicates. p < 0.01 indicates significant differences comparing p38,ph,-proficient with p38,,n,-deficient cells using Student’s t-test.
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Figure 2. Effects of SB203580 treatment on TesL-induced changes of cell morphology: (A) P38a1pha_/ ~ MSCV p38,1pha MEFs were treated with TesL (1 pg/mL) or
buffer in the presence of the indicated concentrations of SB203580 for 4 h. Cell morphology was visualized using phase contrast microscopy (10x amplification).
(B) TesL-induced changes of the morphology were quantified in terms of the number of rounded per total cells. Six representative microscopic fields were chosen and
300 cells total were counted for characteristic cell rounding. Values are the mean £ SD from three independent experiments performed in triplicates. (C) p38a1pha_/ -
MSCV p38,1pha MEFs were treated with TesL (1 ug/mL) in the presence of SB203580 (10 uM) or DMSO alone for the indicated times. TesL-induced changes of the
morphology were quantified in terms of the number of rounded per total cells. Values are the mean + SD from three independent experiments performed in triplicates.
p < 0.01 indicates significant differences comparing SB203580-treated with DMSO-treated cells using Student’s f-test.
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Figure 3. Effects of genetic deletion of p38,j,h, and of SB203580 treatment on TesL-induced changes of cell morphology (concentration-dependency). p38alpha_/ B
MSCV p38,1pna MEFs and p3831pha_/ ~ MSCV empty vector (EV) MEFs were treated with the indicated concentrations of TesL in the presence of SB203580 (10 uM) or
DMSO alone for 4 h. Cell morphology was visualized using phase contrast microscopy (10x amplification). TesL-induced changes of the morphology of p38~/~
MSCYV p38,1pna MEFs and of p38~/~ MSCV empty vector MEFs were quantified in terms of the number of rounded per total cells. Six representative microscopic
fields were chosen and 300 cells total were counted for characteristic cell rounding. Values are the mean =+ SD from three independent experiments performed in
triplicates. */** indicates significant differences, p < 0.05/p < 0.005 as analyzed using Student’s ¢-test.
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Figure 4. Effects of genetic deletion of p38,pp, and of SB203580 treatment on TedB-induced changes of
cell morphology: (A,B) p38a1pha*/ ~ MSCV p38;1pha MEFs and p38a1pha*/ ~ MSCV empty vector (EV)
MEFs were treated with TcdB (1 ng/mL) for the indicated times; and (C,D) p3831pha’/ ~ MSCV p38i1pha
MEFs and p38alpha7/ ~ MSCV empty vector MEFs were treated with the indicated concentrations of
TcdB in the presence of SB203580 (10 uM) or DMSO alone for 4 h. Cell morphology was visualized
using phase contrast microscopy (10 x amplification). TedB-induced changes of the morphology were
quantified in terms of the number of rounded per total cells. Six representative microscopic fields were
chosen and 300 cells total were counted for characteristic cell rounding. Values are the mean 4 SD
from three independent experiments performed in triplicates.

2.2. Prevention of TesL-Induced Glucosylation of Rac/Cdc42 Subtype GTPases upon Inhibition of p38apnayeta

Actin reorganization has been attributed to TcsL-/TedB-catalyzed glucosylation of Rac/Cdc42
subtype GTPases and the subsequent loss of cell-matrix binding [15,28,29]. For the analysis of
TesL-catalyzed glucosylation of Rac/Cdc42, lysates from p38a1pha*/ ~ MSCV p38,1pha MEFs were
analyzed by immunoblot analysis using the Racl(clone 102) antibody. This antibody is specific
for non-glucosylated Rac/Cdc42 subtype GTPases [30,31]. Once Rac/Cdc42 subtype GTPases
are glucosylated by TcsL, the antibody does not detect its epitope, resulting in a lost signal.
TesL-treated p38a1pha_/ ~ MSCV p38,1pna MEFs exhibited time-dependent glucosylation of Rac/Cdc42
subtype GTPases (Figure 5A). The cellular level of Racl was not changed upon TcsL treatment
(as analyzed using the Racl(clone 23A8) antibody) (Figure 5A), confirming that decreasing detection
of Rac/Cdc42 subtype GTPases by the Racl(Mab 102) antibody was due to glucosylation but not
due to degradation. TcsL-catalyzed Rac/Cdc42 glucosylation results in dephosphorylation of the
FA component p2l-associated kinasel/2 (PAK1/2), which is a Rac/Cdc42 effector protein [15,16].
TesL treatment time-dependently resulted in decreasing levels of pS144/141-PAK1/2 (Figure 5A),
indicating PAK1/2 deactivation [32]. The levels of total PAK?2 also time-dependently decreased in
TesL-treated cells (Figure 5), showing that PAK1/2 deactivation was based on both dephosphorylation
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and degradation. TesL-catalyzed Rac/Cdc42 glucosylation (i.e., inactivation) was thus reflected by
deactivation of its effector kinase PAK1/2. Finally, p38 MAP kinase activity was tracked in terms
of phosphorylation of its downstream target MAPKAPK2. TcsL treatment resulted in a transient
increase of pT222-MAPKAPK2, indicating transient MAPKAPK2 activation. In p38,ph,-deficient
p38~/~ MSCV empty vector MEFs, in which MAPKAPK? activation was hardly observed, Rac/Cdc42
glucosylation was clearly delayed as compared with p38alpha_/ ~ MSCV p38,1pha MEFs (Figure 5).
In a TesL concentration-dependent experiment, TesL turned out to be at least three fold more potent in
inducing Rac/Cdc42 glucosylation (Figure 6) and PAK1/2 deactivation (Figure 6) in p38~/~ MSCV
P38aipha MEFs as compared with p38~/~ MSCV empty vector MEFs. In contrast to TcsL, the kinetics of
TedB-induced Rac/Cdc42 glucosylation and of PAK1/2 deactivation were comparable in p38a1pha_/ -
MSCV p38,1pha and p38~/~ MSCV empty vector MEFs (Figure 7). TcdB-catalyzed Rac/Cdc42
glucosylation was thus not susceptible to genetic p38,pp, inhibition (Figure 7), consistent with above
observations on TcdB-induced actin reorganization (Figure 4). These observations show that genetic
P38aipha inhibition protects fibroblasts specifically from TesL-(not TedB-) induced cytopathic effects.
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Figure 5. Effects of genetic deletion of p38,jpn, and of SB203580 treatment on TcsL-catalyzed
Rac/Cdc42 glucosylation (time-dependency). p38a1pha_/ ~ MSCV p38,1pha MEFs and p38a1pha_/ -
MSCV empty vector (EV) MEFs were treated with TcsL (1 pg/mL) in the presence of SB203580
(10 uM) or DMSO alone for the indicated times. The cellular levels of non-glucosylated Rac/Cdc42,
total Racl, pS144/141-PAK1/2, PAK2, pT222-MAPKAPK2, MAPKAPK2, and beta-actin were analyzed
by immunoblotting using the indicated antibodies. Quantifications of immunoblots were performed
using Kodak software and relative amounts of non-glucosylated Rac/Cdc42 versus the total levels
of Racl, respectively, are expressed as mean =+ SD of three independent experiments. * indicates
significant differences, p < 0.05, as analyzed using Student’s -test.
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Figure 6. Effects of genetic deletion of p38,j,1, and of SB203580 treatment on TesL-catalyzed Rac/Cdc42
glucosylation (TesL concentration-dependency). p38alpha7/ ~ MSCV p38,1pha MEFs and P38alpha7/ -
MSCV empty vector (EV) MEFs were treated with the indicated concentrations of TcsL in the presence
of SB203580 (10 uM) or DMSO alone for 4 h. The cellular levels of non-glucosylated Rac/Cdc42,
total Racl, pS144/141-PAK1/2, PAK2, and beta-actin were analyzed by immunoblotting using
the indicated antibodies. Quantifications of immunoblots were performed using Kodak software
and relative amounts of non-glucosylated Rac/Cdc42 versus the total levels of Racl, respectively,
are expressed as mean £ SD of three independent experiments. * indicates significant differences,
p < 0.05, as analyzed using Student’s ¢-test.

TesL-induced Rac/Cdc42 glucosylation were next analyzed upon pharmacological inhibition
of pP38aipha/beta- SB203580 treatment of either p38a1pha*/ ~ MSCV p38,1pha and p38a1pha*/ - MSCV
empty vector MEFs resulted in an almost complete loss of pT222-MAPKAPK?2, confirming effective
p38 inhibition (Figures 5 and 6). TcsL-catalyzed Rac/Cdc42 glucosylation and PAK1/2 deactivation
were responsive to SB203580 treatment in both p38alpha7/ ~ MSCV p38,1pha and p38alpha7/ -~ MSCV
empty vector MEFs, both in time- (Figure 5) and concentration-dependent (Figure 6) experiments.
The observation that cell rounding and Rac/Cdc42 glucosylation in p38a1pha_/ ~ MSCV empty
vector MEFs are responsive to SB203580 suggests that the protective effects of SB203580 involve
inhibition of both p38,jph, and p38peta- Taken together, p38a1pha,beta inhibition-mediated protection
of fibroblasts from TesL-induced actin reorganization coincides with protection from TcsL-catalyzed
Rac/Cdc42 glucosylation.
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Figure 7. Effects of genetic deletion of p38,,, on TcdB-catalyzed Rac/Cdc42 glucosylation
(time-dependency). p38a]pha_/ ~ MSCV p38,1pna MEFs and p38alpha_/ ~ MSCV empty vector (EV)
MEFs were treated with TedB (1 ng/mL) for the indicated times. The cellular levels of non-glucosylated
Rac/Cdc42, total Racl, pS144/141-PAK1/2, and beta-actin were analyzed by immunoblotting using
the indicated antibodies. Quantifications of immunoblots were performed using Kodak software
and relative amounts of non-glucosylated Rac/Cdc42 versus the total levels of Racl, respectively,
are expressed as mean + SD of three experiments.

2.3. SB203580 Preserves TesL-Induced Loss of Epithelial Barrier Function

C. sordellii-associated disease include necrotic and hemorrhagic enteritis, whereby TcsL has been
shown to alter epithelial permeability [33,34]. To check if SB203580-mediated inhibition of TcsL
might be useful with regard to disease treatment, TcsL-induced loss of epithelial barrier function was
next analyzed in terms of the loss of the transepithelial resistance (TER) of a Madin-Darby canine
kidney (MDCK-C?7) monolayer [9,35]. TcsL treatment time-dependently decreased the TER of the
MDCK-C7 monolayer (Figure 8A). In the presence of SB203580, TesL-induced loss of TER was markedly
attenuated (Figure 8A). SB203580 alone did not affect the TER (Figure 8A). In contrast, TcdB-induced
loss of the TER of the MDCK-C7 monolayer was not responsive to SB203580 treatment (Figure 8B),
consistent with above observations showing that TedB-induced actin reorganization was not responsive
to SB203580 treatment (Figure 4). SB203580 treatment thus might be useful in the light of treatment of
the TesL-induced loss of epithelial barrier function.
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Figure 8. SB203580 preserves TesL-induced loss of epithelial barrier function. Madin-Darby canine
kidney (MDCK-C7) monolayers grown on Transwell filter inserts were treated with TesL (30 ug/mL
(A)) and TedB (30 ng/mL (B)) in the presence of SB203580 (10 uM) or DMSO alone as indicated.
Transepithelial electrical resistance (TER) was monitored for the indicated times. TER values are given
as means £ SD of three independent experiments.
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3. Discussion

In this study, SB203580, a pyridinyl imidazole inhibitor of p38,jpha/beta MAP kinase, has been
presented to efficaciously prevent TcsL-induced loss of epithelial barrier function of MDCK-C7
monolayers and to prevent TcsL-induced cell rounding, Rac/Cdc42 glucosylation, and PAK
deactivation in murine fibroblasts. Furthermore, genetic deletion of p38,ph, is also sufficient for
preventing TesL-induced cell rounding, Rac/Cdc42 glucosylation, and PAK deactivation in murine
fibroblasts. Interestingly, p38a1pha_/ ~ MSCV empty vector MEFs turn out to be still sensitive to
SB203580, suggesting that the protective effects of SB203580 involves inhibition of both p38,1ph, and
P38peta- How does p38 inhibition mediate the protective effect against TesL?

TedB and TesL both are mono-O-glucosyltransferases that modify small GTPases. Their N-terminal
glucosyltransferase domains are structurally and functionally highly related, as they share Rac/Cdc42
as substrate GTPases (with threonine-35 being the acceptor amino acid) and UDP-glucose as a
sugar donor [36]. From the observation that TcdB-induced Rac/Cdc42 glucosylation is insensitive
to p38 inhibition, it can be concluded that SB203580 does not interfere with the intracellular
glucosyltransferase activity of the toxins. This leads to the new hypothesis that p38aipha,beta
inhibition affects endocytic uptake of TcsL into target cells. In fact, members of the p38 MAP
kinase family are important regulators of endocytosis, as they control endocytic trafficking via the
GDI-Rab5 complex [37]. In particular, p38 MAP kinase regulates stress-induced internalization of
the epidermal growth factor receptor (EGFR) and p opioid receptor endocytosis [38—40]. Against
this background, inhibition of p38ajpha,/beta might prevent cell entry of specifically TesL (not TedB)
by receptor-mediated endocytosis. This hypothetic model implies that TesL and TedB enter their
target cells by exploiting distinct cell surface receptors, with the TesL cell surface receptors being
internalized in a p38,ipha/beta-dependent and the TedB cell surface receptors being internalized in a
P38alpha/beta-independent manner.

In a former study, the responsiveness of TcsL-induced effects such as apoptotic cell death to
inhibition by SB203580 has been interpreted in terms of an involvement of p38,1pha/beta in TesL-induced
cell death [24]. The observations of this study have led to the conclusion that the protective effect of
SB203580 is based on rather inhibition of TesL uptake than on a role of p38 in the cytopathic effects
of TesL. Against this background, the responsiveness of TesL-induced cell death to inhibition by
SB203580 must be re-interpreted in terms of reduced TcsL uptake and subsequently reduced GTPase
substrate glucosylation as the cause of cell death inhibition. In autophagy research, the pyridinyl
imidazole inhibitors SB203580 and SB202190 have been shown to interfere with the autophagic flux
independently of p38 MAP kinase [41]. These observations have led to the recommendation that
pyridinyl imidazole class inhibitors should not be used as pharmacological tools in the analysis of
MAPK11-MAPK14/p38-dependence [42]. The latter recommendation seems to be applicable also in
the field of protein toxins.

The protective effect of the pyridinyl imidazole SB203580 is most interesting with regard to the
development of non-antibiotic treatment for diseases caused by toxigenic C. sordellii. Further research
will address the characterization of those pathways mediating the protective effect against TcsL upon
inhibition of p38a1pha/beta- Furthermore, a screening of additional pyridinyl imidazole compounds
capable of inhibiting the effects of TcsL is under way in our laboratory.

4. Conclusions

e  Genetic deletion of p38,,n, or treatment with SB203580 protects MEFs from Rac/Cdc42
glucosylation and actin reorganization induced by TcsL (not by the related TedB).

e Treatment with SB203580 protects epithelial monolayer from loss of epithelial barrier function
induced by TesL (not by TedB).

e  The protective effects of SB203580 treatment and of p38,jh, deletion are likely based on inhibition
of endocytic uptake of TcsL rather than on inhibition of the toxins” glucosyltransferase activity.
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5. Materials and Methods

5.1. Materials

The following reagents were obtained from commercial sources: SB203580 (4-(4-fluorophenyl)-2-
(4-methylsulfinylphenyl)-5-(4-pyridyl)imidazole) (Calbiochem, Darmstadt, Germany); DAPI
(40.6-diamidino-2-phenylindole) (Sigma-Aldrich, St. Louis, MO, USA); and rhodamine-conjugated
phalloidin (Sigma-Aldrich, St. Louis, MO, USA).

Toxins: TesL was prepared from C. sordellii IP82, which is the same strain as 6018, and TedB from
C. difficile VPI10463. Toxins were produced and purified yielding only one band on SDS-PAGE as
previously described [43,44]. In brief, a dialysis bag containing 900 mL of 0.9% NaCl in a total volume
of 4 liters of brain heart infusion (Difco, BD Life Sciences, Heidelberg, Germany) was inoculated with
100 mL of an overnight culture of C. sordellii or C. difficile. The culture was grown under microaerophilic
conditions at 37 °C for 72 h. Bacteria were removed from the dialysis bag solution by centrifugation.
Proteins from the culture supernatant from were precipitated by ammonium sulfate (Merck Millipore,
Darmstadt, Germany) at 70% saturation. The precipitated proteins were dissolved in 50 mM Tris-HCl
pH 7.5 buffer and extensively dialyzed against 50 mM Tris-HCI1 pH 7.5 buffer for 24 h. The protein
solution was loaded onto an anion exchange column (MonoQ, GE Healthcare Europe, Freiburg,
Germany). Either TcsL or TcdB were eluted with 50 mM Tris-HCl, pH 7.5, at 500-600 mM NaCl and
were subsequently dialyzed against buffer (50 mM Tris-HCI pH 7.5, 15 mM NaCl). The absence of
TedA (which eluted at 150-200 mM NaCl) in TedB preparations was checked by immunoblot analysis.

5.2. Cell Culture and Preparation of Lysates

p38~/~ MSCV empty vector MEFs and the corresponding p38~/~ MSCV P38aipha MEFs (kindly
provided by Dr. Angel Nebreda, Institute for Research in Biomedicine, Barcelona, Spain) were
cultivated in Dulbecco’s modified essential medium supplemented with 10% FCS, 100 pug/mL
penicillin, 100 U/mL streptomycin and 1 mM sodium pyruvate at 37 °C and 5% CO, according
to standard protocols [45]. Cells sub-confluently seeded in 3.5-cm dishes were treated with TcsL,
TedB, and SB203580 for different times and concentrations as noted in the figures. Thereby, cells were
pretreated with 10 uM SB202580 dissolved in DMSO (final DMSO concentration in the medium 2%)
for 20 min and subsequently treated with the toxins or buffer. Upon incubation time, the cells were
rinsed with 5 mL of ice-cold phosphate-buffered saline and scraped off in 200 uL of Laemmli lysis
buffer per dish. The cells were disrupted mechanically by sonification (five times on ice). The lysate
were submitted to immunoblot analysis.

5.3. Immunoblot Analysis

Cells lysates were separated on 15% polyacrylamide gels and transferred onto nitrocellulose
for 2 h at 250 mA, followed by blocking with 5% (w/v) nonfat dried milk for 1 h. Blots were
incubated with the appropriate primary antibody with dilution according to the manufacturers’
instructions (beta-actin, Mab AC-40, Sigma-Aldrich, St. Louis, MO, USA; dilution 1:5000); MAPKAPK-2
(Cell signaling 3042, dilution 1:1000); pT222-MAPKAPK-2 (Cell signaling 3316, dilution 1:1000);
PAK?2 (Cell signaling 2608, dilution 1:1000); phospho-5144/141-PAK1/2 (Abcam ab40795; dilution
1:2000); Racl (BD Transduction Laboratories 610650, clone 102; dilution 1:1000); Rac1(Millipore 05-389,
clone 23A8; dilution 1:1000) in buffer B (50 mM Tris-HCI, pH 7.2, 150 mM NaCl, 5 mM K],
0.05% (w/v) Tween 20) for 18 h and subsequently for 2 h with a horseradish peroxidase-conjugated
secondary antibody (mouse: Rockland 610-1034-121; dilution 1:3000; rabbit Rockland 611-1302;
dilution 1:3000). For the chemiluminescence reaction, ECL Femto (Fisher Scientific, Schwerte, Germany)
was used. The signals were analyzed densitometrically using the KODAK 1D software (2004, Rochester,
MN, USA).
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5.4. Visualization of the Actin Cytoskeleton

p38alpha7/ ~ MSCV empty vector MEFs and the corresponding p38alpha7/ ~ MSCV p38a1pha MEFs
were grown on coverslips, fixed with formaldehyde (4%) in PBS and permeabilized with 0.1% Triton
X-100 (Sigma-Aldrich, St. Louis, MO, USA). The actin cytoskeleton and the nuclei were labeled using
rhodamine-phalloidin and DAPI, respectively. Fluorescence images were recorded using a Zeiss
Axiovert M (Jena, Germany).

5.5. Transepithelial Resistance of Epithelial Monolayers

Madin-Darby canine kidney (MDCK-C7) cells were cultured under standard conditions
(37 °C, 5% COy) as described [35]. Briefly, MDCK-C7 cells were cultured in minimum essential medium
(MEM) enriched with Earle’s salts, non-essential amino acids, glutamic acid and 10% fetal calf serum
(Biochrom, Berlin, Germany) and split twice weekly using standard culture techniques. MDCK-C7
cells were seeded onto 12 well filter transwell inserts (pore size 0.4 uM, BD Life Sciences, Heidelberg,
Germany). The transepithelial electrical resistance (TER) was determined by a Voltohmmeter equipped
with Endom 24 chamber (EVOM, World Precision Instruments, Berlin, Germany). MDCK-C7
monolayers were cultivated up to an initial resistance of >2 kQ-cm?. The toxins and SB203580
(final DMSO concentration in the medium 2%) were applied on the basolateral site of the monolayer
and toxin-induced loss of TER was analyzed in a time-dependent manner.
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