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Abstract: Bladder drug delivery via catheter instillation is a widely used treatment for recurrence of
superficial bladder cancer. Intravesical instillation of liposomal botulinum toxin has recently shown
promise in the treatment of overactive bladder and interstitial cystitis/bladder pain syndrome, and
studies of liposomal tacrolimus instillations show promise in the treatment of hemorrhagic cystitis.
Liposomes are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core that
can encapsulate hydrophilic and hydrophobic drug molecules to be delivered to cells via endocytosis.
This review will present new developments on instillations of liposomes and liposome-encapsulated
drugs into the urinary bladder for treating lower urinary tract dysfunction.
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1. Introduction

Instilling drugs directly into the urinary bladder can maximize local drug therapy while
minimizing systemic toxicity and side effects [1,2]. Local and topical intravesical treatment is a
standard treatment of superficial bladder cancer, and there has been interest in applying intravesical
therapy to treat lower urinary tract (LUT) dysfunctions with unmet medical needs [3].

Liposomes are self-assembling lipid vesicles that contain an aqueous core. These can be loaded
with drug molecules and facilitate drug delivery across the usually impermeable bladder urothelium.
They can also serve to protect the bladder from irritating urine solutes and promote healing of damaged
urothelium. Some bladder disorders/LUT dysfunctions that may benefit from liposomal intravesical
therapy include:

‚ Overactive bladder (OAB): A common disorder caused by neurogenic (or idiopathic) detrusor
muscle overactivity that results in increased urgency and frequency, nocturia, and urinary pain. A
large segment of the patient population has refractory OAB, which is usually not responsive to
common oral medications.

‚ Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS): A chronic inflammatory condition
with unknown origin that results in chronic pelvic pain, nocturia, and increased urgency
and frequency. Patients generally suffer from debilitating bladder pain. Current treatment
options include hyaluronic acid, amitryptaline, pentosan polysulfate, immunosuppressants and
topical anesthetics.

‚ Hemorrhagic Cystitis (HC): A serious condition that results in inflammation and chronic bleeding
in the bladder. It can be caused by radiation therapy, chemotherapy, or infection. There are
currently no approved treatments, and standard of care therapies, such as hyperbaric oxygen
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therapy, have a small effect in much of the patient population and can be very expensive. Unless
managed properly, HC may progress to a point where a cystectomy is necessary, and can ultimately
lead to death.

2. The Urothelium

The bladder wall has three well-defined layers consisting of the innermost portion called the
mucosa, the intermediate muscularis propria layer (detrusor muscle), and the outer adventitia/serosa
layer. The mucosa consists of the urothelium, which has three cell layers: umbrella cells, intermediate
cells, and basal cells, and a basement membrane and the underlying lamina propria. The lamina
propria contains afferent nerves, interstitial cells, and some smooth muscle cells called muscularis
mucosae, which are sometimes absent or not well defined in the human bladder. The mucosa is
covered by tight junctional proteins called uroplakins and a glycosaminoglycan (GAG) mucin layer
on the luminal surface, which help to provide barrier functionality. The urothelium is a relatively
impermeable layer that prevents many urine solutes and drugs from diffusing into the submucosal
layer [4]. Furthermore, many drugs have limited stability in the hostile urine environment within the
bladder [4,5]. The GAG layer may inhibit substances in the lumen of the bladder from adhering to
the urothelium. The tight junctions of the urothelium inhibit the transport of drugs after intravesical
administration [6]. Therefore, some drugs or biologic agents that are instilled into the bladder lumen
cannot reach desired therapeutic levels in the detrusor wall.

Urothelial damage, such as from IC/BPS, can cause increased permeability that can lead to pain
and inflammation. Animal studies have made use of agents that increase bladder permeability, such as
protamine sulfate, to simulate the diseased state and to examine drug uptake in the bladder. When
treating the bladder via intravesical therapy, it is unreasonable to use harsh agents such as protamine
sulfate to facilitate absorption of drugs; instead, drug uptake across the urothelium can be mediated by
liposomes in a relatively safe manner. Liposomes can be loaded with many types of drugs [7], but there
is growing evidence that empty liposomes can have a significant effect in the urinary bladder. Empty
liposomes can help patients with interstitial cystitis by coating and healing the damaged urothelium [8].
Liposomes can carry various drugs, such as botulinum neurotoxin serotype A (BoNT-A), to penetrate
urothelium and modulate afferent neurotransmission and potentially treat OAB [2,9].

3. Rationale for Intravesical Treatment of Bladder Dysfunction

One of the key reasons for local bladder therapy is to apply an effective dose of a therapeutic drug
only to the target organ (Figure 1). The bladder allows easy, safe, and gentle access with prolonged
drug exposure [3]. Some of the potential advantages of intravesical treatment include:

‚ Extending duration of drug contact with urothelium
‚ Minimizing systemic toxicity side effects
‚ Repair of urothelium
‚ Achieving higher drug concentrations in the bladder wall than systemic administration
‚ Modulating neurotransmission and sensory nerve function

Some patients with a small or sensitive bladder may not be able to hold the drug in their bladder
long enough for the drug to work. A reduced drug residence time can decrease therapeutic effects.
However, a vast majority of patients can hold a volume of 40–50 mL for 30–60 minutes. Patients
receiving bladder instillation therapy should avoid diuretics or excessive fluid intake before and during
intravesical therapy to reduce the risk of drug dilution via polyuria.

Liposomes can be used to improve the absorption of intravesically-instilled drugs via
endocytosis [7,10,11]. Biophysical studies on interactions of liposomes with cells have suggested that
liposomes can be adsorbed, fuse, or transfer lipids with the cell membrane, and that they can be
endocytosed [12], making them an ideal drug delivery mechanism. As such, liposomes are the component
used for topical application in body cavities such as the vagina and the cul-de-sac of the eye [13,14].
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Figure 1. Mechanism of action of intravesical liposome instillations. Liposomes can coat damaged
urothelium and protect it from harsh urine solutes.

Liposome uptake into urothelial cells is likely through an endocytotic process, as supported
by experiments demonstrating that liposome-encapsulated gold particles or fluorescently labeled
endosomes are taken into the urothelium [15,16]. (Figure 2A). The ability of liposomes to protect cells
was studied by inducing toxicity in primary cultured uroepithelial cells with acrolein. Acrolein caused a
reduction in cell proliferation and increased ATP release in unprotected cells, while liposome-protected
cells prevented injury-induced ATP release. (Figure 2B). Liposomal treatment had no toxic effects
on its own. It was shown that liposomes increase the survival of urothelial cells exposed to acrolein
and that liposomes bound to the cell surface are internalized via an endocytotic process [17]. The
application of BoNT-A was found to result in SNAP-25 cleavage. Figure 2C depicts SNAP-25 cleavage
in the urothelium by liposomal BoNT-A (lipo-BoNT) and inhibition of neurotransmitter release. In a
cyclophosphamide-inflamed urinary bladder, lipo-BoNT injection increased mucosal-nerve growth
factor (NGF) (Figure 2D), suggesting a decrease in released NGF (a marker of epithelium integrity)
and thus reduced pro-inflammatory signals. These findings suggest that liposomes can reduce
inflammation and repair urothelial barrier function.
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Figure 2. (A) Fluorescent labeled (green) liposome within cultured urothelial cell (Phalloidin-red-stains
actin filaments; Topro-blue nuclear marker); (B) Liposome (LIPO) treatment reduces injury (acrolein)
induced ATP release from cultured urothelial cells; (C) Urothelial cross section (rat) showing cleaved
SNAP-25 (red) following lipotoxin-treatment; (D) BoNT-A injection into inflamed (cyclophosphamide
(CYP)) rat urinary bladder is associated with increased mucosal-nerve growth factor (NGF) as compared
with CYP alone. This suggests that BoNT-A prevents NGF release from urothelium.
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4. Clinical Studies of Liposomes for IC/BPS

Clinical safety and efficacy of liposomes in the urinary bladder was initially reported by
Chuang et al. [8] in an open-label prospective study of 24 IC/BPS patients. Liposomes (80 mg/40 mL
distilled water) were instilled into the bladder once weekly and compared to oral pentosan polysulfate
sodium (100 mg) three times per day for a total of four weeks duration. Significant decreases in urinary
frequency and nocturia were observed in each treatment group, and statistically significant decreases
in the O'Leary-Sant symptom index, pain and urgency were observed in the liposome group (Figure 3).
No pain, infection, retention, incontinence, or any other serious side effects were reported by any
patients in the study.
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are summarized in Figure 5. BoNT-A, which has been approved by most international regulatory 

Figure 3. Effect of pentosane polysulfate sodium (PPS) active control vs. liposomes (LP-08) on pain
caused by IC/BPS. The active control and LP-08 cause a significant decrease in pain at week 4, but
the decrease persists only in the LP-08 group at week 8. * Significant difference (p < 0.05) vs. baseline.
Adapted from [8].

An open-label study in the United States of 14 IC/BPS patients treated with liposomes once a
week for four weeks was reported by Peters et al. [18]. Pain scores significantly decreased at eight
weeks (p = 0.01) post-treatment, and urgency scores showed improvement at eight (p = 0.076) and
12 weeks (p = 0.084) post treatment. The liposomes used in this study (LP-08) were well tolerated
and no treatment-related adverse events were reported. Efficacy with LP-08 was associated with
improvements in overall symptom score, pain, and urinary urgency (Figure 4).
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Figure 4. Liposomes instilled into the urinary bladder reduce urgency scores and pain in IC/BPS
patients. Probability density functions at baseline, 8 weeks, and 12 weeks are displaced on the two
panels. The leftward shift following liposome instillation indicates reduced urgency symptoms and
pain. Adapted from [18].
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5. Liposomal Delivery of Botulinum Toxin in Treatment of Bladder Dysfunction

There are likely multiple effects caused by BoNT-A in the reduction of OAB symptoms, which are
summarized in Figure 5. BoNT-A, which has been approved by most international regulatory agencies
for idiopathic overactive bladder and neurogenic detrusor overactivity [19], works by inhibiting
neurotransmitter release at the presynaptic neuron by cleaving the synaptic vesicle protein responsible
for exocytosis of synaptic vesicles [20]. BoNT-A can cause partial paralysis of the detrusor muscle,
which leads to an increase in residual urine [21]. BoNT-A can also inhibit afferent neurotransmission by
blocking release of sensory neurotransmitters, including substance P and adenosine triphosphate [22].
It has been successfully used via cystoscopic injection in the treatment of overactive bladder and
bladder pain syndrome, though this procedure carries risks for bleeding, infection, pain, and urinary
retention. Studies showing the depth of lipo-BoNT penetration into the bladder have not yet been
completed. Due to the large size of botulinum toxin, it is possible that any mechanism of action from
lipo-BoNT could differ slightly from injected BoNT-A due to any restrictions on the transport of the
toxin from the urothelium to deeper layers of the bladder.
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Figure 5. Summary of botulinum toxin effects via intravesical instillation. Potential sites of activity
with intravesical instillation of liposomal formulation of botulinum toxin include: 1. Urothelium,
2. Afferent nerves, 3. Efferent nerves.

BoNT-A is a high molecular weight (150 kDa) neurotoxin that may not be able to gain access to the
afferent nerves located immediately below the urothelium without needle injection. Pretreatment of
the urothelium with protamine sulfate has been attempted to increase urothelial permeability [23–25].
Protamine is a cationic polypeptide that interacts with the anionic GAG layer to increase urothelial
permeability [26]. The transport of BoNT-A across the urothelium via liposomes may be increased and
BoNT-A encapsulated within liposomes can be protected from degradation by proteases in the urine
without compromising efficacy [25].

A single center double-blind, randomized, parallel, controlled trial in 24 OAB patients treated
with lipo-BoNT was reported by Kuo et al. [9]. The subjects in this study were randomly assigned to
either normal saline control or lipo-BoNT (80 mg liposomes and 200 U BoNT-A). Primary outcome
was the change in urinary frequency as reported on bladder diary at one month post-treatment. The
primary outcome significantly improved in the lipo-BoNT group (n = 12; p = 0.008) but not in the saline
group. (n = 12; p = 0.79). The lipo-BoNT group showed a significant decrease in urgency episodes
(p = 0.01), and urgency in the saline group did not change (p = 0.2).

Lipo-BoNT was evaluated in a multi-center, double-blind, randomized, placebo (normal saline)
controlled study for patients with overactive bladder inadequately managed with antimuscarinics [27].
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The study enrolled OAB patients with a mean frequency of >8/day, and either urgency or urgency
urinary incontinence (UUI) episodes of >1/day. Lipo-BoNT was administered as a 50 mL instillation
solution and was retained for 1 h. The primary endpoint was mean change from baseline in the
frequency/day at week 4. Additional endpoints included mean change of urgency and UUI episodes,
OAB symptom score (OABSS), and urgency severity score (USS). In total, 55 patients (lipo-BoNT 28,
Placebo (saline alone) 27) were analyzed. Lipo-BoNT significantly decreased total frequency to 3/day
after four weeks (´4.6 for lipo-BoNT versus ´0.2 for placebo; p = 0.036) (Figure 6). Total urgency (´7.43)
and OABSS (´1.86) significantly decreased in lipo-BoNT group at week 4, and no significant difference
was observed in the placebo group. USS improved by 39% and 14% for lipo-BoNT and placebo. The
results were inconclusive on the effect of treatment on urge incontinence episodes since the sample
population had a relatively low baseline incidence. Global response assessment scale improvement
was 54% and 32% in lipo-BoNT and placebo group, respectively. Therapeutic effects were observed
at week 2 and resolved by week 12. There was no urinary tract infection, urinary retention, or other
adverse events in either group. The improvement in frequency and urgency without improvement in
incontinence or increasing residual urine volume suggest that the therapeutic effects of lipo-BoNT may
be mainly due to blockade of the release of sensory neurotransmitters from urothelium and inhibit
afferent activity, but may not have direct effect on the detrusor.

Toxins 2016, 8, 81 6 of 9 

 

after four weeks (−4.6 for lipo-BoNT versus −0.2 for placebo; p = 0.036) (Figure 6). Total urgency (−7.43) 

and OABSS (−1.86) significantly decreased in lipo-BoNT group at week 4, and no significant 

difference was observed in the placebo group. USS improved by 39% and 14% for lipo-BoNT and 

placebo. The results were inconclusive on the effect of treatment on urge incontinence episodes since 

the sample population had a relatively low baseline incidence. Global response assessment scale 

improvement was 54% and 32% in lipo-BoNT and placebo group, respectively. Therapeutic effects 

were observed at week 2 and resolved by week 12. There was no urinary tract infection, urinary 

retention, or other adverse events in either group. The improvement in frequency and urgency without 

improvement in incontinence or increasing residual urine volume suggest that the therapeutic effects 

of lipo-BoNT may be mainly due to blockade of the release of sensory neurotransmitters from 

urothelium and inhibit afferent activity, but may not have direct effect on the detrusor.  

 

Figure 6. Reduced urinary frequency and urgency associated with lipo-BoNT treatment vs. placebo. 

The treatment-associated frequency reduction (compared to placebo) statistically significant at  

4-weeks (p < 0.03). Adapted from [27]. 

The Chuang et al. study [27] demonstrated that the lipo-BoNT instillation did not cause an 

increased risk of urinary retention or need for self-catheterization. There is currently an ongoing 

double-blind, placebo-controlled, multicenter study of lipo-BoNT for IC/BPS listed at 

https://clinicaltrials.gov/ct2/show/NCT02247557.  

6. Liposomal Delivery of Tacrolimus in Treatment of Hemorrhagic and Radiation Cystitis 

Tacrolimus is a potent lipophilic immunosuppressive drug. Its mechanism of action involves the 

inhibition of IL-2-dependent T-cell activation. Topical use of tacrolimus has been shown to help 

inflammatory skin conditions without systemic side effects [28]. Tacrolimus is essentially insoluble 

in water, and a liposomal suspension of tacrolimus can increase its efficacy for bladder instillation. 

In a hemorrhagic cystitis model using cyclophosphamide, liposomal tacrolimus significantly inhibited 

cyclophosphamide-induced inflammatory cystitis and modulated interleukin, prostaglandin (PG)E2, 

Prostaglandin E receptor 4 (EP) and (IL)-2 function [29].  

Pharmacokinetics of tacrolimus encapsulated in liposomes (lipo-tacrolimus) was recently 

evaluated and results demonstrated that the area under the curve of lipo-tacrolimus in the blood at 0 

to 24 h was significantly lower than that of tacrolimus instillation or injection [30]. Urine tacrolimus 

content was significantly greater after intravesical vs. intraperitoneal injection of tacrolimus (p < 0.05). 

This study also demonstrated that intravesical liposomal tacrolimus significantly decreased systemic 

exposure to instilled tacrolimus.  

Liposomal delivery of tacrolimus has demonstrated efficacy in a radiation cystitis rat model [31]. 

A small animal radiation research platform (SARRP) was used to apply radiation to the rat bladder 

that was located via CT contrast imaging. It was found that 40 Gy of radiation most reliably produce 

cystitis symptoms. After 40 Gy radiation via SARRP, there was a significant reduction in 

Figure 6. Reduced urinary frequency and urgency associated with lipo-BoNT treatment vs. placebo.
The treatment-associated frequency reduction (compared to placebo) statistically significant at 4-weeks
(p < 0.03). Adapted from [27].

The Chuang et al. study [27] demonstrated that the lipo-BoNT instillation did not cause
an increased risk of urinary retention or need for self-catheterization. There is currently an
ongoing double-blind, placebo-controlled, multicenter study of lipo-BoNT for IC/BPS listed at
https://clinicaltrials.gov/ct2/show/NCT02247557.

6. Liposomal Delivery of Tacrolimus in Treatment of Hemorrhagic and Radiation Cystitis

Tacrolimus is a potent lipophilic immunosuppressive drug. Its mechanism of action involves
the inhibition of IL-2-dependent T-cell activation. Topical use of tacrolimus has been shown to help
inflammatory skin conditions without systemic side effects [28]. Tacrolimus is essentially insoluble in
water, and a liposomal suspension of tacrolimus can increase its efficacy for bladder instillation. In
a hemorrhagic cystitis model using cyclophosphamide, liposomal tacrolimus significantly inhibited
cyclophosphamide-induced inflammatory cystitis and modulated interleukin, prostaglandin (PG)E2,
Prostaglandin E receptor 4 (EP) and (IL)-2 function [29].

Pharmacokinetics of tacrolimus encapsulated in liposomes (lipo-tacrolimus) was recently
evaluated and results demonstrated that the area under the curve of lipo-tacrolimus in the blood at 0
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to 24 h was significantly lower than that of tacrolimus instillation or injection [30]. Urine tacrolimus
content was significantly greater after intravesical vs. intraperitoneal injection of tacrolimus (p < 0.05).
This study also demonstrated that intravesical liposomal tacrolimus significantly decreased systemic
exposure to instilled tacrolimus.

Liposomal delivery of tacrolimus has demonstrated efficacy in a radiation cystitis rat model [31].
A small animal radiation research platform (SARRP) was used to apply radiation to the rat bladder that
was located via CT contrast imaging. It was found that 40 Gy of radiation most reliably produce cystitis
symptoms. After 40 Gy radiation via SARRP, there was a significant reduction in intermicturition
interval (IMI) values (p < 0.05) vs. baseline. The animals were treated with either lipo-tacrolimus
or saline control four weeks after the radiation. After another four weeks, the mean IMI for the
lipo-tacrolimus treatment group returned to baseline levels (p > 0.5, baseline vs. treatment) while the
saline still showed decreased IMI levels (p < 0.5, baseline vs. placebo). Histology showed that the
lipo-tacrolimus treated bladder had minimal inflammation while the saline placebo treated bladder
exhibited epithelial changes including swelling and pseudocarcinomatous epithelial hyperplasia.

A case report of intravesical tacrolimus aiding hemorrhagic cystitis (HC) was recently
published [32]. An 81 year-old man with a history of prostate cancer was treated with radiation
therapy in 2004. There had been no history of prostate cancer recurrence, but the patient developed
progressive hemorrhagic cystitis. He was admitted to the hospital twice for nearly 30 days where
he required catheterization, bladder irrigation, eight units of blood transfusion for anemia, and two
surgeries for fulguration of bleeding. Instead of instillation of formalin as a last resort intervention, the
patient received two courses of intravesical tacrolimus without side effects and his gross hematuria
resolved and he was discharged after 48 h. His renal function remained stable and he had no further
bleeding during the next six months.

7. Conclusions

Bladder instillation of liposomes has demonstrated promising efficacy and safety in IC/BPS, OAB,
and hemorrhagic cystitis studies. Liposomes improve the delivery of drugs and biologic agents across
the urothelium. Liposome encapsulation has been shown to protect drugs such as botulinum toxin
and tacrolimus from degradation in the urine. A double-blind, placebo-controlled study of using
liposomes with botulinum toxin for IC/BPS is currently ongoing. Intravesical liposome therapy has
been shown to be safe in the conducted trials and liposome and liposomal drug delivery may be a
promising new therapy for lower urinary tract dysfunctions.

Conflicts of Interest: The authors are employees of Lipella Pharmaceuticals Inc., Pittsburgh, PA.

Abbreviations

The following abbreviations are used in this manuscript:

BoNT-A botulinum neurotoxin serotype A
GAG glycosaminoglycan
HC hemorrhagic cystitis
IC/BPS interstitial cystitis/bladder pain syndrome
IMI intermicturition interval
Lipo-BoNT liposomal botulinum neurotoxin serotype A
LUT lower urinary tract
OAB overactive bladder
OABSS overactive bladder symptom score
NGF nerve growth factor
RC radiation cystitis
SARRP small animal radiation research platform
SNAP-25 synaptosomal-associated protein, 25 kDa
UUI urgency urinary incontinence
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