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Abstract: The exposure to Alternaria toxins from grain and grain-based products has been reported to
be related to human esophageal cancer in China. In this study, a total of 370 freshly harvested
wheat kernel samples collected from Anhui province of China in 2015 were analyzed for the
four Alternaria toxins tenuazonic acid (TeA), tentoxin (TEN), alternariol (AOH) and alternariol
monomethyl ether (AME) by high performance liquid chromatography-tandem mass spectrometry
method (HPLC-MS/MS). TeA was the predominant toxin detected followed by TEN, AOH and
AME. The concentrations of the four Alternaria toxins varied geographically. The samples from
Fuyang district showed higher TEN concentration levels than the other regions studied (p < 0.05).
Furthermore, 95% (352/370) of the wheat samples were positive for more than one type of Alternaria
toxins. Positive correlation was observed between concentration levels of TeA and TEN, AOH and
AME, TeA and AOH, and the total dibenzopyrone derivatives (AOH + AME) and TeA. Results
indicate that there is a need to set the tolerance limit for Alternaria toxins in China, and more data on
the contamination of these toxins in agro-products is required.
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1. Introduction

Alternaria species are pathogenic, endophytic and saprophytic fungi that have been reported to
cause extensive spoilage of crops such as grain, tomato, potato, citrus, apple and sunflower seed in the
field or after harvest [1–8]. The invasion of agricultural commodities by Alternaria species are universal
and result not only in considerable loss of crops due to decay but also contamination by Alternaria
toxins. Alternaria species can produce more than 70 toxins, of which only a small proportion have
been chemically characterized. These Alternaria toxins can be classified into three main categories: the
dibenzo-α-pyrones, which include alternariol (AOH), alternariol monomethyl ether (AME), altenuisol
(AS) as well as altenuene (ALT); tetramic acid derivatives including tenuazonic acid (TeA); and the
perylene derivatives altertoxins I, II and III (ATX I, II and III) [9,10]. Alternaria toxins show cytotoxic
activity among mammalian cells, and fetotoxicity and teratogenicity among mice and hamsters [11].
Some individual mycotoxins such as AOH and AME, though not acutely toxic, are mutagenic and
genotoxic in various in vitro systems [12]. TeA is considered to be of the highest toxicity among the
Alternaria toxins, and has been proven to be toxic to several animal species, e.g., mice, chicken and
dogs [8].

The key contribution of dietary exposure to Alternaria toxins is from grain and grain-based
products, especially wheat products [12]. Wheat is one of the most important foods for the Chinese
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population. More than half of Chinese people live on wheat as a stable food, particularly in the north
part of China [13]. For example, Anhui province is a major wheat-producing region and a major
outbreak of human intoxication attributed to the consumption of wheat-based foods contaminated
with Fusarium toxins (mainly deoxynivalenol) occurred in 1991, with over 130,000 people being
affected by gastrointestinal disorder [14]. Our recent research showed that Alternaria species were
the predominant invading fungi in wheat collected from Anhui province in 2015 [15]. Further, the
intake of grains contaminated by Alternaria toxins has been related to human esophageal cancer in
some areas of China [16]. Therefore, the Alternaria toxins in wheat represent a potential hazard to the
Chinese population.

Due to limited data available on natural occurrence of these toxins in foods and their toxicity to
humans and animals, regulations for Alternaria toxins in food and feed have not been set nationally
or internationally. The purpose of this study is to elucidate the natural occurrence of four major
Alternaria toxins, namely TeA, tentoxin (TEN), AOH and AME, using the wheat samples from Anhui
province collected in 2015. The results obtained will provide a scientific basis for assessing the impact
of Alternaria toxins on Chinese public health resulting from consumption of wheat products.

2. Results

2.1. High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) Method Validation

The multiple reaction monitoring (MRM) chromatograms of the four Alternaria toxins standards
and a naturally contaminated wheat sample are shown in Figure 1. The mean retention times (RTs)
of the four toxins were 4.85 min for TeA, 6.12 min for TEN, 6.00 min for AOH and 6.37 min for
AME, respectively. The RTs of these four toxins in wheat samples were set within ±2.5% difference
with those of standards materials, in compliance with the requirements of European Union Decision
2002/657/EEC [17]. Excellent linearity of the standard curve was obtained for all four Alternaria toxins
(coefficient r2 > 0.99 for all curves). The limits of detection (LOD) and limits of quantification (LOQ)
for each toxin in wheat samples were 0.6 and 1.9 µg/kg for TeA, 0.1 and 0.4 µg/kg for TEN, 1.3 and
4.2 µg/kg for AOH, and 0.04 and 0.1 µg/kg for AME, respectively (see Supplementary Table S1).
The recoveries at five spiked concentrations ranged from 87.0% to 103.3% for all these four toxins in
wheat samples, and the relative standard deviation (RSD) for all these four toxins were from 1.6%
to 10.7%, which were both within the acceptable range recommended by the European Commission
(Table 1) [18]. Regarding repeatability, the RSDr were 4.9% for TeA, 9.8% for TEN, 10.6% for AOH
and 6.3% for AME, respectively. As for reproducibility, the RSDR were 4.2% for TeA, 5.6% for TEN,
8.1% for AOH and 9.6% for AME, respectively. Based on the above results, it is concluded that the
HPLC-MS/MS method for Alternaria toxins detection meets the requirements of our study.
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Figure 1. MRM chromatograms of (a) the four Alternaria toxins standards at concentrations of 250 µg/kg
for TeA, 50 µg/kg for AOH, 50 µg/kg for TEN and 25 µg/kg for AME; (b) a naturally contaminated
wheat sample with 112.9 µg/kg for TeA, 8.8 µg/kg for AOH, 3.3 µg/kg for TEN and negative for AME.
1 = TeA; 2 = AOH; 3 = TEN; 4 = AME.

Table 1. The recovery (%) of the four Alternaria toxins in spiked wheat samples (No. of repeat = 6).

Mycotoxin Spiked Level (µg/kg) Recovery (%, χ ± S) RSD, %

TeA

2 95.3 ± 8.1 8.5
10 95.8 ± 1.7 1.8
20 98.9 ± 4.3 4.3
40 96.3 ± 2.6 2.7
100 99.3 ± 1.6 1.6

TEN

5 101.2 ± 4.1 4.1
25 97.1 ± 5.4 5.6
50 95.2 ± 3.4 3.6
100 95.0 ± 4.7 4.9
250 95.0 ± 2.6 2.7

AOH

0.5 103.3 ± 8.4 8.1
2.5 95.3 ± 6.2 6.5
5 97.6 ± 7.1 7.3

10 98.1 ± 3.4 3.5
25 96.2 ± 4.9 5.1

AME

0.5 91.7 ± 5.0 5.5
1 87.0 ± 9.3 10.7
2 100.3 ± 9.6 9.6
5 94.0 ± 4.0 4.3

10 98.1 ± 2.4 2.4

2.2. Natural Occurrence of the Four Alternaria Toxins in Chinese Wheat

The contamination of the four Alternaria toxins in 370 freshly harvested wheat kernel samples
are presented in Table 2. TeA is the predominant toxin in both frequency and concentration. It was
found in all samples analyzed with an average level of 289.0 µg/kg (range: 6.0 µg/kg–3330.7 µg/kg,
median = 150.0 µg/kg). Of all samples analyzed, 23 samples were contaminated with TeA at levels
higher than 1000 µg/kg, 36 between 500 µg/kg and 1000 µg/kg, 184 between 100 µg/kg and 500 µg/kg,
and 127 below 100 µg/kg. For TEN, 286 out of 370 (77%) samples were detectable, with levels ranging
between 0.4 µg/kg and 258.6 µg/kg (mean = 43.8 µg/kg, median = 29.7 µg/kg). Among which, four
samples were contaminated with TEN at a level higher than 200 µg/kg. One hundred and seventy
three (47%) samples were positive for AOH, with a concentration range of 1.3 µg/kg–74.4 µg/kg
(mean = 12.9 µg/kg, median = 7.9 µg/kg). There were three samples with AOH at a level higher
than 50 µg/kg. AME was found in 55 (15%) samples at levels ranging from 0.3 µg/kg to 54.8 µg/kg
(mean = 9.1 µg/kg, median = 4.2 µg/kg).
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Table 2. Natural occurrence of the four Alternaria toxins in wheat kernel samples harvested in 2015
from Anhui province of China (n = 370).

Mycotoxin Range (µg/kg) Average (µg/kg) Median (µg/kg) Frequency, %

TeA 6.0–3330.7 289.0 150.0 100
TEN 0.4–258.6 43.8 29.7 77
AOH 1.3–74.4 12.9 7.9 47
AME 0.3–54.8 9.1 4.2 15

2.3. Geographical Distribution of the Four Alternaria Toxins in Anhui Province

Wheat samples analyzed were collected from eight regions that covered almost all
wheat-producing areas in Anhui province (Figure 2). The concentrations of the four Alternaria toxins
in samples from different regions are shown in Table 3. It was demonstrated that the contamination of
wheat kernels by the four Alternaria toxins varied geographically. The higher concentrations of the
four toxins in terms of either average or median were found in samples from Fuyang, an area where,
following a large scale flood, a major outbreak of human red mold intoxication caused by moldy wheat
occurred in 1991, with 130, 141 people affected [14]. Fuyang is also adjacent to Henan, a province
with high incidence of human esophageal cancer and where the contamination of Alternaria toxins in
wheat-based products is relatively high [19]. Particularly, all (93/93) wheat samples from Fuyang were
positive for TeA with a mean level of 582.6 µg/kg, which was significantly higher than those from the
other regions (Mann-Whitney U Test, p < 0.05) except Huainan. TEN was detected in 99% (92/93) of
wheat samples from Fuyang with an average level of 77.2 µg/kg, significantly higher than those from
the other seven regions (p < 0.05). AOH was detected in 67% (62/93) of wheat samples from Fuyang,
with a mean level of 18.3 µg/kg, significantly higher than those from the other regions (p < 0.05) except
Chuzhou. Besides, 38% (35/93) of wheat samples from Fuyang were positive for AME with an average
level of 8.5 µg/kg, significantly higher than those from the other regions (p < 0.05) except Huainan
and Lv’an. The geographical distribution of the mean concentration of the four toxins (as well as most
of the median) from high to low were in the following order : Fuyang > Huainan > Others > Bozhou
> Lv’an > Chuzhou > Bengbu > Suzhou for TeA; Fuyang > Bozhou > Others > Bengbu > Chuzhou
> Lv’an > Suzhou > Huainan for TEN; Huainan > Fuyang > Lv’an > Chuzhou > Others > Bozhou >
Bengbu > Suzhou for AOH; Lv’an > Suzhou > Bengbu > Huainan > Fuyang > Chuzhou > Bozhou >
Others for AME, respectively. Notably, the germination, growth and toxin production of Alternaria
species would be influenced by environmental conditions [10]. Although these eight regions were
all situated in Anhui province, the differences in temperature and precipitation among these areas
during wheat earring, flowering, maturing and harvest season may lead to the significant differences
in Alternaria toxin production.
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Table 3. Natural occurrence of the four Alternaria toxins in the 2015 wheat samples from different
regions of Anhui province.

Region Mycotoxin Range (µg/kg) Average (µg/kg) Median (µg/kg) Frequency, %

Chuzhou (n = 53)

TeA 6.0–3330.7 205.6 108.1 100 (53/53)
TEN * 0.9–83.0 20.4 15.3 43 (23/53)
AOH 1.3–57.1 12.1 7.8 87 (46/53)
AME 2.1–17.6 6.2 3.9 9 (5/53)

Fuyang (n = 93)

TeA 53.7–2518.1 582.6 412.8 100 (93/93)
TEN * 2.3–258.6 77.2 66.5 99 (92/93)
AOH 1.3–74.4 18.3 16.0 67 (62/93)
AME 0.3–46.1 8.5 4.2 38 (35/93)

Huainan (n = 13)

TeA 116.2–587.7 311.6 294.9 100 (13/13)
TEN * 5.5–22.3 11.0 10.7 69 (9/13)
AOH 4.3–47.3 26.8 26.6 46 (6/13)
AME 1.4–16.4 8.8 10.6 38 (5/13)

Suzhou (n = 86)

TeA 13.2–832.3 125.0 86.5 100 (86/86)
TEN * 0.4–76.7 14.2 8.7 58 (50/86)
AOH 1.3–15.5 3.9 2.8 23 (20/86)
AME 18.7 18.7 18.7 1 (1/86)

Bozhou (n = 35)

TeA 19.0–826.7 250.7 183.3 100 (35/35)
TEN * 1.2–220.9 54.6 41.2 97 (34/35)
AOH 1.6–30.3 6.5 3.2 46 (16/35)
AME 0.9–9.8 4.2 3.1 11 (4/35)

Lv’an (n = 22)

TeA 21.1–1591.6 225.9 108.2 100 (22/22)
TEN * 1.9–83.2 15.1 10.2 82 (18/22)
AOH 1.3–33.9 12.5 9.6 50 (11/22)
AME 0.9–54.8 20.7 13.4 18 (4/22)

Bengbu (n = 41)

TeA 21.2–616.2 131.1 93.4 100 (41/41)
TEN * 0.5–101.5 21.6 14.1 80 (33/41)
AOH 1.7–9.9 4.1 2.8 12 (5/41)
AME 10.2 10.2 10.2 2 (1/41)

Others (n = 27)

TeA 47.3–1280.2 294.1 220.7 100 (27/27)
TEN * 6.6–123.1 48.0 45.6 100 (27/27)
AOH 2.3–12.8 7.3 7.5 26 (7/27)
AME 0 0 0 0 (0/27)

* The concentration of TEN in samples from Fuyang was significantly higher than those from the other seven
regions (p < 0.05).

2.4. Co-Occurrence of the Four Alternaria Toxins in Wheat Kernels

Co-occurrence of the four Alternaria toxins in wheat samples was frequent: 19% of samples
(72/370) were contaminated by all four toxins, 30% (110/370) by three toxins, 46% (170/370) by two
toxins and 5% (18/370) by only one toxin (TeA). Regarding the co-occurrence of the three toxins,
53 (48%, 53/110) samples were positive for TeA, TEN and AME, 20 (18%, 20/110) samples for TeA,
TEN and AOH, 19 (17%, 19/110) samples for TeA, AOH and AME, and 18 (16%, 18/110) samples for
TEN, AOH and AME, respectively. In terms of wheat co-contamination by the two Alternaria toxins,
TeA and TEN was the most frequent combination detected in 60 (35%, 60/170) samples, followed by
TeA and AME as well as TEN and AME, with the prevalence of 21% (35/170) for both combinations
(Table 4). TeA and AOH occurred together in 14 (8%, 14/170) samples, whereas both AOH with
TEN and AOH with AME in 13 (8%, 13/170) samples, respectively. Moreover, a significant linear
correlation in concentrations was observed between TeA and TEN (r = 0.675, p < 0.05), AOH and AME
(r = 0.558, p < 0.05), TeA and AOH (r = 0.407, p < 0.05), and also the total dibenzopyrone derivatives
(AOH + AME) and TeA (r = 0.431, p < 0.05), respectively (Figure 3). These results are similar to
those reported by Zhao et al. [19], of which a significant linear correlation in toxin concentration was
found between AOH and AME (r = 0.877, p < 0.01), TeA and TEN (r = 0.747, p < 0.01), and the total
dibenzopyrone derivatives (AOH + AME) and TeA (r = 0.860, p < 0.01).
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Figure 3. Correlation in concentrations of the four Alternaria toxins in wheat samples harvested in
2015 from Anhui province of China. (a) TeA vs. TEN, r = 0.675, p < 0.05, (b) AOH vs. AME, r = 0.558,
p < 0.05, (c) TeA vs. AOH, r = 0.407, p < 0.05, (d) TeA vs. AOH + AME, r = 0.431, p < 0.05.

Table 4. Co-occurrence of the four Alternaria toxins in wheat samples harvested in 2015 from Anhui
province of China.

Contamination by Toxin Combinations Frequency, %

Two mycotoxins
(46%, 170/370)

TeA-TEN 35 (60/170)
TeA-AME 21 (35/170)
TEN-AME 21 (35/170)
TeA-AOH 8 (14/170)
AOH-TEN 8 (13/170)
AOH-AME 8 (13/170)

Three mycotoxins
(30%, 110/370)

TeA-TEN-AME 48 (53/110)
TeA-TEN-AOH 18 (20/110)
TeA-AOH-AME 17 (19/110)
TEN-AOH-AME 16 (18/110)

Four mycotoxins
(19%, 72/370) TeA-TEN-AOH-AME 19 (72/370)
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3. Discussion

Alternaria species are widely distributed in various habitats such as the surface of buildings,
cellulose, paper, and textiles as well as in the soil as normal components of its microflora [20]. They are
also known to frequently occur in agricultural commodities. As Alternaria mycotoxins can contaminate
agro-products across the food chain, and little information on their toxicity and occurrence is available,
it has become an emerging concern for public health.

The contamination trends of the four Alternaria toxins in Chinese wheat analyzed in our study
is in line with those described by the European Food Safety Authority (EFSA), of which TeA, TEN,
AOH and AME were generally found in grain and grain-based products and TeA was the most
predominant. When compared with the results from a 10-year study of a total of 1064 wheat samples
between 2001 and 2010 conducted by German scientists [21], the prevalence of TeA (100%), AOH (47%)
and AME (15%) found in the present study was much higher than that in German wheat (30%, 8%
and 3%, respectively). However, the maximum levels of TeA, AOH and AME obtained in our study
(3330.7 µg/kg, 74.4 µg/kg and 54.8 µg/kg, respectively) were lower than those reported in Germany
(4224 µg/kg, 832 µg/kg and 905 µg/kg, respectively). To our knowledge, the highest concentrations
of TeA, AOH and AME were found in Argentinean wheat at 8814 µg/kg for TeA, 1388 µg/kg for
AOH and 7451 µg/kg for AME [22]. Although the contamination rates of TeA, AOH and AME in
Chinese wheat were higher than those of Argentinean wheat samples (19% for TeA, 6% for AOH and
23% for AME), the average and maximum concentrations were much lower in our study. Thus, the
geographical location plays an important role in toxin production.

In contrast to the average levels of Alternaria toxins in 22 Chinese weather-spoiled wheat samples
(2419 µg/kg for TeA, 335 µg/kg for AOH and 443 µg/kg for AME) reported by Li et al. [23], the average
levels of TeA, AOH and AME in this study were much lower. Moreover, our findings demonstrated
that levels of TeA and TEN in wheat kernels were higher than those in wheat flour samples being
collected also from Anhui province in 2014 as reported by Zhao et al. [19]. The mean and maximum
levels of TeA in this current study were 2.4-fold and 6.4-fold, respectively, higher than those in wheat
flour samples; for TEN it was 1.2-fold and 2.7-fod higher, respectively. Contrarily, AOH mean and
maximum concentrations in wheat flour were 2.9-fold and 1.3-fold, respectively, higher than those of
wheat kernels. Whereas, the AME concentration was very similar in both wheat kernel and wheat
flour samples. The industrial procedures may be a factor in the different levels of the four Alternaria
toxins among wheat kernel and wheat flour samples.

It is known that Alternaria toxin production is associated with the Alternaria species that invade,
and their competition for energy with other fungal types [12]. Alternaria species are widespread in both
humid and semi-arid regions. Furthermore, different species of Alternaria might be of different toxigenic
profile. For example, the species of Alternaria alternata isolated from Argentinean wheat kernels could
produce TeA, AOH and AME, but the species of Alternaria infectoria only produce TeA [24]. Interactions
between Alternaria and Fusarium species and consequently their impact on toxin production has been
reported by Muller et al. [25]. It was found that the increased population of Alternaria on ripening ears
of wheat coincided with reduced population of Fusarium species [25,26]. Therefore, the increase of
Alternaria toxins in cereals was often accompanied by the decline of Fusarium toxins.

The type of crop and variety of wheat as substrates for fungal growth, the agricultural practice and
the climate condition might be responsible for the different levels of Alternaria toxins contamination in
different geographical areas. Study shows that the contamination level of Alternaria toxins in freshly
harvested wheat kernels was likely to be dependent on preceding year crop type and tillage [21].
Additionally, environmental conditions may influence the germination, growth and toxin production
of Alternaria species. According to Magan et al. [27], the optimum temperature for Alternaria species
invasion and toxin production was 25 ◦C with a water activity (aw) ranging between 0.88 and 0.99.
The germination occurs within the temperature range of 5–35 ◦C, with the minimum aw of 0.84–0.85 at
25 ◦C at pH 6.5. Therefore, a warm and humid climate during the period of wheat flowering, sprouting
and heading stage (late April to June) in Anhui province is favorable to Alternaria fungal growth.



Toxins 2016, 8, 308 8 of 11

These factors contribute to the different type of co-occurrence and correlation among Alternaria toxins
observed between our research and the German study [21].

The study demonstrates a frequent presence of Alternaria toxins and the co-occurrence of four
Alternaria toxins on wheat grain samples from Anhui province in China. The finding raises concern
given the high wheat consumption in many regions in China. There is a need for more occurrence
data to estimate the exposure to Alternaria toxins from cereal and cereal-based products in Chinese
populations. Further, an integrated risk assessment of these four toxins’ contamination in Chinese
wheat and the implications for public health needs to be carried out; strategies must be developed to
reduce the risk from these contaminants, and specific regulations are expected to be established.

4. Materials and Methods

4.1. Chemicals and Reagents

Methanol and acetonitrile, both HPLC grade, were purchased from Fisher Scientific (Fair Lawn,
NJ, USA). Ammonium bicarbonate and formic acid were of analytical grade (purity ≥ 95%) from Fluka
(Steinheim, NRW, Germany). Pure water was obtained from a Millipore Milli-Q System (Millipore,
Bedford, MA, USA). Standards of TeA (purity > 98%), TEN (purity > 98%), AOH (purity > 98%)
and AME (purity > 98%) were supplied by Fermenteck Ltd. (Jerusalem, Israel). All experimental
practice followed Environmental Health Safety Guidelines for the use of chemicals authorized by China
National Center for Food Safety Risk Assessment. Samples extraction should be handled with care.

4.2. Samples Collection

A total of 370 wheat kernel samples were collected from local farmers who were randomly
selected from main wheat production regions in Anhui province, China, namely Chuzhou, Fuyang,
Huainan, Suzhou, Bozhou, Lv’an, Bengbu and a few “other” regions where a very small amount of
samples were collected. All wheat samples were produced locally in 2015 and intended for human
consumption. Fresh wheat kernels were sampled in the field during harvesting and threshing, one
portion per household. Each portion was pooled from 4 subsamples (at least 600 grams each) that
were collected from four areas of a field (north west, south west, north east and south east of the
field). The sample were mixed thoroughly before a random quarter of the sample was selected, half of
which was then finely ground to a powder of 20 meshes using a Blender 8010ES (Warning Commercial,
Torrington, CT, USA). All ground samples were kept in the Ziploc plastic bags at 4 ◦C prior to analysis.

4.3. Toxin Analysis

All samples were analyzed for TeA, TEN, AOH and AME based on the methods reported
previously by Zhao et al. [19] with modifications. Briefly, a finely ground sample (5 g) was mixed with
20 mL acetonitrile-water-methanol (45:45:10, v/v/v), adjusted pH between 3 and 4, and sonicated
for 30 min before centrifugation. A 5 mL supernatant was loaded onto a HLB solid phase extraction
(SPE) cartridge (Waters, Milford, MA, USA), eluted with 5 mL methanol followed by 5 mL acetonitrile.
Both eluents were combined, dried and reconstituted in 1 mL methanol-water containing 2 mmol/L
ammonium bicarbonate (10:90, v/v). Following centrifugation, 2 µL of the extract was analyzed for the
four Alternaria toxins by HPLC-MS/MS method following the conditions described previously [28].
An Alternaria toxin-free wheat sample was used as a base for the matrix-matched calibration standards
for quantification.

4.4. HPLC Conditions

HPLC-MS/MS system equipped with a Shimadzu 20A HPLC (Shimadzu, Kyoto, Japan), Triple
Quard 3500 MS/MS system (AB Sciex, Foster City, CA, USA) was used to quantify the four Alternaria
toxins simultaneously, and an Analyst Version 1.6.2 software (AB Sciex, Foster City, CA, USA)
for data acquisition and analysis. Chromatographic separation was achieved using a C18 column
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(2.1 mm × 100 mm, 1.7 µm bead diameter, Waters, Milford, MA, USA). The temperature of both
column and autosampler were set at 24 ◦C. A binary gradient with mobile phase A (2 mmol/L
ammonium bicarbonate) and B (methanol) was programmed, and the flow rate was 0.3 mL/min.

4.5. MS/MS Conditions

The MS was operated in the negative electrospray ionization (ESI−) mode, set as MRM with an
optimized dwell time of 50 ms. The curtain gas was set to 35 psi, the collision gas to 7 psi, Gas1 to
60 psi and Gas2 to 50 psi. The source desolvation temperature was 600 ◦C. The ion spray voltage was
−4500 V in negative mode. Parent and fragment ions (quantifier and qualifier) for each analyte were
determined based on the optimal signal-to-noise ratios in a spiked sample. The parent ions (m/z) for
TeA, TEN, AOH and AME are 196.0, 413.2, 256.9 and 270.9, respectively. The most intense product
ion was employed for quantification, and the less intense signals were used for confirmation of toxin
identity. The quantitative/qualitative daughter ions are 138.8/111.8 for TeA, 140.9/271.0 for TEN,
212.9/214.9 for AOH and 255.8/227.8 for AME, respectively (see Supplementary Table S2).

4.6. Method Validation

To evaluate the method proficiency, Alternaria toxin-free wheat samples were spiked with the
four Alternaria toxins at five concentrations ranging from 2 to 100 µg/kg for TeA, from 5 to 250 µg/kg
for TEN, from 0.5 to 25 µg/kg for AOH, and from 0.5 to 10 µg/kg for AME, respectively. The spiked
samples (N = 6 repeat each level) were extracted and analyzed for recovery calculation. In terms
of the matrix-matched calibration, standards of the four Alternaria toxins were added to Alternaria
toxin-free wheat extracts to reach the final concentrations between 2.5 and 5000 µg/kg for TeA, 0.5
and 1000 µg/kg for both TEN and AOH, 0.25 and 500 µg/kg for AME, respectively. The LOD and
LOQ were determined based on the signal-to-noise ratios of 3:1 and 10:1, respectively. An Alternaria
toxins-positive wheat sample was extracted and analyzed 6 times within 1 day for interlaboratory
RSDr calculation. With regard to reproducibility, a naturally contaminated wheat sample was analyzed
for Alternaria toxins over 5 successive days according to the procedure described above. The data
obtained were used for RSDR calculation.

4.7. Data Analysis

Significant differences in concentrations of mycotoxins were tested using Kruskal-Wallis H test
or Mann-Whitney U test. Relationships of concentrations between any of the four mycotoxins were
tested with the Spearman correlation. All statistical analyses were computed using the SPSS statistical
package (version 20.0, IBM, Armonk, NY, USA).

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/8/11/308/s1,
Table S1: The parameters associated with the calibration curve and method sensitivity for the detection of
the four Alternaria toxins, Table S2: The MRM parameters of MS/MS conditions.
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