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Abstract: Contamination of maize with fumonisins depends on the environmental 

conditions; the maize resistance to contamination and the interaction between both factors. 

Although the effect of environmental factors is a determinant for establishing the risk of 

kernel contamination in a region, there is sufficient genetic variability among maize to 

develop resistance to fumonisin contamination and to breed varieties with contamination at 

safe levels. In addition, ascertaining which environmental factors are the most important in 

a region will allow the implementation of risk monitoring programs and suitable cultural 

practices to reduce the impact of such environmental variables. The current paper reviews 

all works done to address the influence of environmental variables on fumonisin 

accumulation, the genetics of maize resistance to fumonisin accumulation, and the search 

for the biochemical and/or structural mechanisms of the maize plant that could be involved 

in resistance to fumonisin contamination. We also explore the outcomes of breeding 

programs and risk monitoring of undertaken projects. 
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Fumonisin are among the most prevalent mycotoxins worldwide found in maize and maize based 

foods and feeds. Fusarium verticillioides and F. proliferatum are the most relevant fungal species for 

fumonisin contamination because of their ample geographic distribution, prevalence, and toxigenic 

capacity. Other fungal species have also been found to produce fumonisins in vitro, such as Alternaria 

alternata f. sp. lycopersici and Aspergillus niger [1,2]. High levels of naturally occurring fumonisins in 

kernels have been reported worldwide; in regions from Europe [3,4], Unites States [5–7], Brazil and 

Argentina [8,9], China [10,11], Iran [12], Nigeria and Benin [13,14] and South Africa [15]. 

It is known that fumonisin consumption can cause several disorders in humans and  

animals—leukoencephalomalacia in horses and pulmonary edema in swine, both accompanied by liver 

and heart damage, hepatic necrosis and kidney and liver cancer in rodents—and can impair growth in 

poultry and liver function in cattle, among other damages [15–17]. Regarding their toxic effects on 

humans, several epidemiological studies have related the consumption of fumonisin-contaminated maize 

to the high incidence of esophageal cancer in populations from South Africa, China and Iran [10,12,18], 

and to the occurrence of neural tube defects in human embryos in the USA after observing this effect in 

mice [19,20]. Fumonisins are classified as possibly carcinogenic to humans by the International Agency 

for Research on Cancer [21], and regulations and guidance for fumonisin concentrations in foods and 

feeds have been established in several countries including Europe, USA, and Brazil. 

Contamination of maize with fumonisins depends on environmental conditions, maize resistance to 

contamination and the interaction between both factors. As natural infection of maize plants by Fusarium 

and fumonisin accumulation occur in the field, the environmental conditions during the cultivation 

period are decisive for the fumonisin contamination levels reached in the kernels at harvest, but plant 

characteristics are also relevant for both infection and fumonisin accumulation. The appropriate use of 

the maize genetic variability for fumonisin resistance and the avoidance of critical environmental 

conditions by means of suitable agronomic practices are necessary tools to reduce the contamination of 

kernels with fumonisin below safety levels. In this review, we address the most critical factors for the 

occurrence of fumonisin accumulation in maize kernels in the field, the progress achieved by plant 

breeding and the current knowledge on the relationship between biochemical and physical characteristics 

of maize plant and resistance to fumonisin contamination.  

1. Environmental Factors Affecting Fumonisin Contamination in Maize Kernels  

1.1. Effect of Temperature and Water Activity in Vitro Studies 

As establishing the importance of each environmental factor for fumonisin contamination is very 

complex under field conditions due to the high number of variables changing from one location to 

another or from one year to another, diverse studies on the influence of temperature and water 

availability—the main environmental factors affecting fumonisin production—on F. verticillioides 

performance have been conducted under laboratory conditions.  

In general, fumonisin production by F. verticillioides increases with increasing water activity (aW) in 

the substrate, from 0.92 up to 0.98–1.00 aW. Optimal temperature for production ranges between 20 and 

30 °C, depending on the isolate, but can occur at 10–37 °C [22–25]. At optimal aW, cyclical temperature 

conditions, resembling those that occur naturally in the field, can favor fungal growth and fumonisin 
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production more than isothermal conditions; thus, under daily variations between 10 or 15 °C and 25 °C, 

F. verticillioides produce more fumonisins in vitro than at a constant temperature of 25 °C [26,27]. 

Some studies reported that under suboptimal temperatures for growth (15 °C), relative fumonisin 

production can be stimulated at moderate aW (≤0.95 aW) [23,27]. Similarly, moderate water stress 

conditions and moderate temperatures (15–20 °C) have shown to increase F. verticillioides FUM1 gene 

expression [28–30]. Other genes of the fumonisin biosynthetic cluster, instead, are regulated differently 

by temperature and aW [25]; for example, the optimal temperature for FUM21 expression has been 

reported both at 15 and at 25 °C [30,31]. Field experiments also suggest that exposure to  

suboptimal temperatures and water availabilities that can occur during kernel drying may trigger  

fumonisin biosynthesis [32].  

1.2. Environmental Factors Affecting Fumonisin Contamination in the Field  

1.2.1. Temperature, Air Humidity and Rainfall 

It is considered that, in temperate zones, F. verticillioides and fumonisin contaminations are 

predominant in maize kernels in warmer and drier regions, and conversely, other mycotoxigenic 

Fusarium species such as F. graminearum or F. subglutinans develop better in cooler or/and wetter 

climates [3,32–41]. The fumonisin producer F. proliferatum is less distributed and often co-occurs with 

F. verticillioides in maize ears in warmer regions in lower frequencies, although relevant levels of  

F. proliferatum have been reported in some regions of southern Europe, central Argentina, Benin or  

Iran [8,14,42–45]. However, there is not a direct relationship between dryness and temperature and 

kernel contamination with fumonisins across different environments. For example, in temperate Spain, 

contamination of maize kernels with fumonisins is generally very low in the dry and warm areas of the 

northeast (≤1 µg/g) [46,47], while, in the mild and wetter areas of the northwest, fumonisin levels are 

higher and closer to the safety levels of 4 µg/g established by the European Union for human 

consumption [4,32]. In surveys located in tropical Africa, F. verticillioides and fumonisin abundances 

have been related to warm and less wet regions in Zambia [48], but to more humid regions in Benin, 

Zimbabwe, or Uganda [14,49,50]. Fandohan et al. [14] suggested that fumonisin contamination in the 

more humid regions of Benin may be favored by more than one crop per year, considerable insect infestation 

and fungal infection in the field. Similarly, in Uganda, the higher fumonisin contamination in maize 

from high altitude fields was attributed to higher humidity and inadequate agronomic practices [50].  

In addition to geographical variation for fumonisin contamination, occurrence of F. verticillioides 

and fumonisins in maize kernels can vary greatly from one year to another. Although greater fumonisin 

contaminations were often associated to warmer or drier years [5,6,38,48,51,52], some studies have 

pointed out the lack of a clear association between drought and fumonisin contamination because years 

with combined conditions of warm weather and high precipitation before harvest resulted in higher 

fumonisin accumulation, or greater fumonisin levels occurred associated to higher humidity or rainfall 

independently of temperature conditions [53–58]. For example, in a three-year evaluation in northern 

Italy conducted by Maiorano et al. [59], lower fumonisin contamination was found in the year with the 

driest and warmest conditions during the flowering and ripening months while higher contamination 

occurred in the year with higher rainfall in the same periods.  
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General climatic characteristics cannot satisfactorily explain differences for fumonisin contamination 

among environments, because the fungus develops inside maize kernels which suffer dramatic changes 

during the processes of kernel filling and drying. Moreover, the impact of external variables on those 

processes, as well as their direct impact on the fungus, will determine the amount of fumonisin in maize 

kernels at harvest. Meteorological patterns throughout the season, insect and fungal diversity, or cultural 

practices have been identified as determinants for the final amount of fumonisin in maize kernels. 

1.2.2. Critical Periods during Maize Development 

Climatic characteristics during two periods of maize development, flowering and kernel drying, seem 

to be critical for kernel contamination with fumonisin [60–64]. In general, low rainfall and hot 

temperature around flowering, and high rainfall or high temperature just before harvest, were found 

conducive for fumonisin contamination. The exposed silks are the main pathway for F. verticillioides to 

naturally enter into the ear and reach the kernels, although kernels wounds made by insects or other 

biotic or abiotic agents could also favor kernel infection [7,37,60]. In a wide survey across different 

locations in USA, fumonisin contents were inversely correlated with precipitation near flowering [61]. 

A critical period around silking was also identified by de la Campa et al. [62] in a study developed in 

Argentina and Philippines. Fewer days of precipitation >2 mm from two to 14 days after silking resulted 

in higher contamination levels and explained most of the variability in fumonisin content, followed by 

more days of maximum temperatures >34 °C and fewer cool days of minimum temperatures <15 °C 

around silking. Similarly, in an evaluation conducted in northwestern Spain, maximum temperature 

around the flowering period was the most influential variable; specifically, more days of maximum 

temperatures ≥30 °C increased fumonisin contamination [63]. Precipitation, humidity, and cool days 

around flowering, however, were negatively related to F. verticillioides infection and fungal growth, but 

not to fumonisin contamination [63]. In accordance with these results, Maiorano et al. [64] reported that 

rain during flowering can be favorable for fumonisin contamination when daily rain intensity is below 

2 mm/h. Rain and humidity seem favorable conditions to kernel infection by F. verticillioides and the 

consequent contamination with fumonisinsm, since water splashing disperses fungal propagules and 

moisture favors spore germination and mycelial growth; however, hard rain could limit spore dispersal 

and wash off inoculum reservoirs counteracting the positive effect of wetness [22,65].  

Some authors have pointed out that drought stress in maize during flowering increases susceptibility 

to fungal infection and insect attack [51,66]. However, under controlled irrigation, drought stress did not 

seem to be an important factor for fumonisin accumulation in maize kernels [7,57,67,68]. It has been 

alternatively suggested that dry and warm conditions during flowering could favor the movement of 

insects inside the ears, and, consequently increase the chance of fumonisin contamination [7,37]. 

The other critical period for fumonisin accumulation is the kernel drying period. Kernel colonization 

by F. verticillioides can start a few weeks after flowering and trace amounts of fumonisins can be 

detected in kernels from the blister-milk stage [32]. The dent stage appears to be the most conducive for 

fumonisin biosynthesis [69] and establishes the starting point for fumonisin accumulation, which reaches 

the highest amounts after physiological maturity during kernel drying in the field [8,32,52,69]. 

Precipitation during the weeks before harvest has been associated with greater F. verticillioides 

incidence and subsequent fumonisin contamination [37]. In this regard, more moderate-hard rainfall 
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during the kernel drying period has been shown to contribute to increased fumonisin contamination at 

harvest [63]. Rainfall probably maintains moisture conditions conducive for fumonisin production inside 

the kernels because kernel drying is slowed down. Other reports, instead, found no positive correlation 

between rainfall before harvest and fumonisin levels [48], or that maximum temperature in the months 

preceding harvest was a more influential variable than precipitation comparing different localities [41].  

1.2.3. Fungal Diversity 

It seems obvious that the primary factor for fumonisin contamination is the presence of  

fumonisin-producing fungi. Most F. verticillioides strains are able to produce fumonisin, and there is a 

wide variability in their production capacity and pathogenicity [18,70,71]. Under natural inoculation 

conditions, symptomatic kernels usually have the highest contents of fumonisin, but relevant contents 

can be obtained from kernel samples with low levels of visible infection [52,70]. This can be related to 

the endophytic behavior of F. verticillioides and the fact that fumonisins are products of the secondary 

metabolism, so fumonisin production and fungal growth can respond differently to environmental 

conditions [22]. In addition, the interaction of F. verticillioides with other fungal species in maize kernels 

may affect F. verticillioides growth and fumonisin production. In vitro, some Aspergillus, Penicillium, 

Fusarium, Alternaria and Thrichoderma species have been found to inhibit or enhance fumonisin 

production by F. verticillioides [22]. In field studies, the co-occurrence of F. graminearum and  

F. verticillioides in the ears did not change the net content of fumonisin in the kernels [69,72]. Studies 

conducted with A. flavus showed some competition effects on F. verticillioides growth, although aflatoxin 

and fumonisin levels were found positively correlated in maize ears naturally infected [6,73,74]. 

1.2.4. Insect Infestation  

Frequently, visible mycelium grows around and from kernel wounds produced by insects. Many 

insect species have been associated with fungal diseases since their activity disperses the fungus and 

provides routes of entry into the ear and kernels [75–77]. In addition, some common pest species of 

maize have been directly related with fumonisin contamination such as the European corn borer (ECB; 

Ostrinia nubilalis) [58,67,78,79] and the Mediterranean corn borer (MCB; Sesamia nonagrioides) [80]. 

Other species associated with fumonisin contaminations and responsible for kernel injuries are corn 

earworm (Helicoverpa zea) and ear thrips (Frankliniella spp.), which showed low and  

high correlations, respectively, with fumonisin content in kernels [7,81,82], Angoumois grain moth  

(Sitotroga cerealella) [32,63], fall armyworm (Spodoptera frugiperda) and sap beetles (Carpophilus 

spp.), among others [83]. Damages caused by Diatrea saccharalis, H. zea and O. furcanalis contributed 

moderately to the variability for fumonisin contents in maize kernels in the study conducted by de la 

Campa et al. [62], and natural ear damage by MCB was the most influential environmental factor 

affecting fumonisin contamination in evaluations in northwestern Spain [63]. The use of Bt hybrids and 

insecticide treatments achieved significant reductions in the concentration of fumonisin in kernels 

supporting the hypothesis that insect injuries have a relevant effect on contamination [78,79]. The use 

of maize genotypes resistant to ear damage could contribute to the reduction of fumonisin contamination 

in the kernels, however, in particular environments, other factors can influence fumonisin contamination 

more than damage by borers [84]. 
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1.2.5. Agronomic Practices 

The application of suitable agronomic practices is a tool for modulating the effect of environmental 

conditions conducive for fungal infection and fumonisin accumulation and minimizing the risk of 

contamination [85,86]. An appropriate choice of sowing and harvest dates may help in avoiding adverse 

conditions during the critical periods, flowering and kernel drying. In temperate zones, earlier sowings 

often result in lower fumonisin contamination of maize kernels than later sowings [53,64,79,87].  

Earlier sowings reduce the risk of overlapping the flowering with drier and warmer weather, when the 

environmental conditions are the most favorable for fungal spread and ear colonization by some insect 

species such as thrips and corn earworms [7], and bring forward the ear development avoiding the period 

with more ECB activity [79]. On the contrary, in environments where Angoumois grain moth incidence 

is an important factor, maize sown earlier has shown to be more susceptible to kernel damage and 

subsequent fungal and fumonisin contamination, possibly due to it reaching sooner the threshold kernel 

moisture that allows moth infestation [32,63].  

On the other hand, maize harvested earlier usually presents lower fumonisin contamination levels. 

Early harvests reduce the time that fumonisins are accumulated in the field and exposure to seasonal 

rainfalls that can delay kernel drying [32,52,57,59,63,87]. 

Insecticide treatments, removal of debris, or moderate nitrogen fertilization are other proposed 

practices to reduce fungal infection and fumonisin accumulation [59,79,86,88]. Plant density, irrigation 

regimes and tillage showed no consistent effects on fumonisin contamination [7,57,59,68,88], and 

fungicide treatments are not effective in reducing fumonisin in kernels, except when combined with an 

insecticide treatment [44,58]. Contrary to what has been observed in other cereals, maize cultivated in 

organic agriculture does not accumulate less fumonisins than conventional maize [46,89]. 

1.3. Modeling Fumonisin Contamination 

The use of models to predict fumonisin accumulation in maize becomes an integrative tool which 

incorporates different genetic and environmental factors required to assess the risk of exceeding safety 

levels. Several predictive models have been proposed for F. verticillioides infection and fumonisin 

contamination by including different combinations of climatic, agronomic and maize genotype factors. 

De la Campa et al. [62] developed a multiple regression model for predicting fumonisin 

contamination with two year data from Argentina and Philippines. They focus on the weeks around 

silking and identified four periods between 10 days and 14 days after silking where weather variables 

were critical. The weather variables used were days with maximum temperatures >34 °C, minimum 

temperatures <15 °C and rainfall >2 mm, and were introduced as binary values. When the insect damage 

was included, the model explained 82% of the variation for fumonisin amounts. Analyzing several 

temporal windows with silking as reference, Martínez et al. [90] developed a logistic regression model 

with data from Argentina including only meteorological variables and their interactions: daily maximum 

and minimum temperatures, rainfall and relative humidity. The most critical period was set between 

seven days and 10 days after silking, and the most influential variables, positively related to fumonisin, 

were based on a combination of rain and relative humidity. From a different approach, Battilani et al. [87] 

constructed a logistic regression model by considering only cultural practices, with data collected over 
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six years from fields in northern Italy. The crop system parameters recorded were soil texture, previous 

crop, debris management, tillage and other field operations, hybrid seeded, sowing period and 

investment, mineral nutrition, weeds control, irrigations, flowering period, crop injuries (borers, hail, 

and wind), chemical control of ECB, harvesting period, and moisture of kernels at harvesting. Planting 

maize hybrids with a maturity class below 128 days and harvesting at or before the 24th week after 

planting greatly reduced the risk of fumonisin contamination.  

Torelli et al. [57] tried a neural network model to predict fumonisin contamination based on several 

agricultural parameters in a more restricted region. Data were obtained from two year evaluations in 

northeast Italy and parameters included irrigation regime, ECB treatment, sowing and harvest dates, 

water content at harvest, crop duration, FAO class, years and locations. The model obtained achieved 

positive and moderate correlations between observed and predicted data.  

Maiorano et al. [64] developed a comprehensive risk assessment model of fumonisin production in 

maize kernels on the basis of the maize-F. verticillioides-ECB pathosystem, constructed with 

bibliographic and experimental data collected in northern Italy over four years. Meteorological data 

related to temperature, relative humidity, wind speed, and rain intensity were used to construct the model 

as influential factors for maize plant phenology, fungal development, and insect activity. Sowing dates, 

flowering, aW of silks and kernels, and dry-down information for each maize hybrid cultivated, and the 

application or not of chemical treatments against ECB were also included. Parameters affecting infection 

during flowering had the greatest weight on fumonisin contamination, followed by the parameters 

affecting ECB damage, and the parameters related to fumonisin biosynthesis in kernels.  

More recently, Cao et al. [63] assessed fumonisin contamination and F. verticillioides infection and 

growth on the basis of a factorial regression model involving environmental and genotype factors in a 

three year study in northwestern Spain. A wide set of climatic variables were measured in several 

temporal windows along the entire growing period, including the critical periods around flowering 

reported by de la Campa et al. [62], insect pressure and kernel damages. Plant characteristics, such as 

husk tightness, pericarp thickens or resistances to insect injuries were included as genotypic factors. 

Most of the variation for fumonisin contamination was explained by environmental factors; fumonisins 

were positively related mostly to ear damages by borers (mainly MCB), followed by days with maximum 

temperatures ≥30 °C during the flowering period (between 15 days before and 15 days after flowering), 

and days with daily rainfall ≥2 mm during the drying period. Genetic characteristics of the hybrids tested 

had a smaller influence on fumonisin accumulation than environmental factors; but maize resistance to 

damage by the Angoumois grain moth and thinner pericarps reduced fumonisin accumulation.  

However, maize genetic variability for fumonisin contamination and the probability of success in 

achieving higher resistance by implementing breeding programs have to be assessed in field experiments 

under artificial inoculation in order to guarantee a homogeneous distribution of the pathogen. 

2. Maize Breeding for Resistance to Kernel Contamination with Fumonisins 

Plant breeding has emerged as an effective and environmentally safe method to control fungal 

infection and reduce mycotoxin levels in susceptible crops [86,91]. Higher resistance levels and reduced 

fumonisin contamination in maize kernels are highly possible considering the high genetic variability 

observed for resistance to fumonisin accumulation and its moderate to high heritability [92–96]. 
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However, direct selection for reduction of mycotoxin contamination is expensive and time consuming, 

so indirect, cheaper and less time consuming selection criteria are necessary [97]. In this context, 

Fusarium ear rot has emerged as a suitable trait for performing indirect selection because high genotypic 

correlations between Fusarium ear rot and fumonisin contents have been reported [92,95–98].We also 

include those works focused on exploring genetic variability for Fusarium ear rot and/or to study maize 

genetics involved in resistance to Fusarium ear rot. 

2.1. Sources of Resistance to Fusarium Ear Rot and Fumonisin Contamination 

The search for sources of resistance can be done under natural inoculation when dispersion and 

quantity of inoculum is guaranteed, but the identified sources of resistance should be checked again 

under artificial inoculation. For example, two hybrids were identified as resistant to fumonisin 

contamination out of 10 hybrids evaluated under natural inoculation [4], but only the inbred  

EP10 × EC22 confirmed its resistance under artificial inoculations with F. verticillioides [27]. A detailed 

review on inoculation issues such as the type and quantity of inoculum, the method of inoculation and 

the best time for performing inoculations with F. verticillioides can be found in Mesterházy et al. [99]. 

The ideal inoculation technique must result in a sufficient level of infection to differentiate among 

genotypes for resistance but to be below the infection threshold at which differences become difficult to 

observe. The inoculation techniques most often tested include inserting a Fusarium-colonized toothpick 

into the ear or the silk channel, pinbar inoculation, spraying a spore suspension onto silks, and injecting 

a spore suspension down the silk channel or through the ear husks into the kernels [99–102]. Relevant 

authors have concluded that techniques involving injections in kernels or the silk channel are the most 

efficient to distinguish among genotypes resistant to Fusarium ear rot and fumonisin accumulation and 

appeared to be the best alternatives for artificial inoculation with F. verticillioides [91,100,102].  

The study by Schaafsma et al. [103] suggested that the kernel inoculation method would be more suitable 

when the goal is to screen genotypes for their resistance to fumonisin accumulation by using Fusarium 

ear rot as an indirect selection criterion, because consistent correlations between these two traits were 

only found after kernel-wound inoculation. However, other studies showed high and significant genetic 

correlations, ranging from 0.76–1.00, between fumonisin content and Fusarium ear rot severity under 

silk channel inoculation [93,96]. A wide maize genetic diversity was evaluated under artificial 

inoculation with F. verticillioides in experiments located in Africa, Europe and America and sources of 

resistance to Fusarium ear rot and fumonisin contamination have been found among  

hybrids [54,100,104–107], inbreds [13,94–96,106,108–111], and landraces [112].  

2.2. Inheritance of Maize Resistance to Fusarium Ear Rot and Fumonisin Contamination 

Genetic architecture of resistance to ear rot by F. verticillioides and fumonisin contamination appears 

complex with many quantitative trait loci (QTL) of small effects controlling each trait; some of them 

with possible pleiotropic effects on both resistance traits [113–119]. In addition, meta-QTL analyses 

have shown that genes for improving resistance to kernel infection by F. verticillioides and/or fumonisin 

accumulation could have pleiotropic effects on resistance to other mycotoxigenic fungi such as 

Aspergillus flavus and F. graminearum or to be linked to genes for resistance to those species.  

On this sense, although breeding for resistance to fumonisin accumulation would be hampered by the 
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quantitative inheritance of the trait, improved varieties could have effects on resistance to kernel 

accumulation by other mycotoxins [113,117]. Xiang et al. [113] reported two meta-QTL for Gibberella 

and Fusarium ear rots in chromosome 1, three in chromosome 2, four in chromosome 3, one in 

chromosome 4, two in chromosome 5, one in chromosome 6, and two in chromosome 7; they also 

reported 9 meta-QTL for Aspergillus and Fusarium ear rots in chromosomes 3, 4, 5, and 6. In a further 

work, Mideros et al. [117] localized 10 meta-QTL for resistance to fumonisin and aflatoxin accumulation 

on chromosomes 1, 3, 4, 5, and 8. In recent genome-wide association studies, several SNPs were 

significantly associated to Fusarium ear rot, but the value of selection of these SNPs for improving 

resistance to Fusarium ear rot is limited because each SNP explained only small percentages of  

trait variation [120,121]. 

Simultaneously, candidate genes for maize resistance to Fusarium ear rot have been proposed in 

transcriptome studies deployed to study maize response to infection to Fusarium verticillioides [122–127]. 

In these studies, maize genes specifically involved in maize response to F. verticillioides infection have 

been identified in resistant and susceptible inbreds. These genes can be considered as valuable resources 

to undercover maize resistance mechanisms to Fusarium ear rot. Moreover, resistance of some genotypes 

may be mainly due to constitutive defense mechanisms such as the constitutive reinforcement of cell 

walls by lignin and/or other phenolic compounds.  

QTL [115,116,119], inbred diallel [128–131], inbred testcross [111] and generation-mean [131,132] 

studies have addressed the importance of each genetic (additive, dominance and/or epistasis) effect on 

maize resistance to Fusarium ear rot and fumonisin accumulation; additive effects have been reported as 

the most important for the inheritance of resistance to Fusarium ear rot and fumonisin accumulation,  

but dominance as well as epistatic effects could play an important role in the inheritance of these  

traits [111,115,116,119,128–134]. Results from an 18-inbred line (inbreds belonging to different 

heterotic groups and showing different levels of resistance) diallel suggested that the most efficient way 

to improve Fusarium ear rot and fumonisin contamination would be to evaluate and select among inbreds 

before using resources to create and evaluate hybrids because genetic variation among inbreds was 

higher than among hybrids and a high and significant correlation coefficient (r ≥ 0.78) was found 

between per se performance of inbred lines and their general combining abilities (GCA) [129]. However, 

other authors [92] recommend doing selection for testcross performance of inbreds due to moderate 

genotypic correlation coefficients between lines and testcrosses. 

Although significant variances for the genotype-environment interaction have been reported for 

Fusarium ear rot and fumonisin content [92,135], genotypes tended to show stability for both  

traits across different environments even when genotype evaluations were done in a wide range of  

environments [93,129,136]. Robertson et al. [93] attributed the genotype-environment significant effects 

to heterogeneity of genotypic variance, rather than to the lack of correlation of genotype performance in 

different environments. Similarly, Butrón et al. [132] stated that genetic effect-environment interactions 

for Fusarium ear rot and fumonisin contamination could be attributed to differences of magnitude of the 

main genetic effects (additive and dominance) among environments, although the involvement of some 

specific genomic regions (QTL) in maize resistance could depend on the environment [114–116].  
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2.3. Breeding Programs for Reducing Kernel Contamination with Fumonisins 

In the USA, concerns of industry inspired researchers of the University of Illinois to initiate a breeding 

program for kernel resistance to fumonisin accumulation and Fusarium ear rot in the late 1990s [137]. 

In 1999, they developed over 1500 F1 hybrids using a large, genetically diverse collection of inbred lines 

that were crossed to the elite inbred FR1064 in order to find valuable sources of resistance. In later years, 

they developed F2, and BC1 generations from all F1 hybrids and F3 and BC1S1 generation from selected 

genotypes for performing studies of inheritance of resistance and for identifying molecular markers 

associated with resistance. To complement the search for sources of resistance performed by the 

University of Illinois, researchers at the North Carolina State University began to do screening trials for 

both Fusarium ear rot and fumonisin concentration. They used materials containing tropical germplasm 

selected by Dr. Mike Blanco from the Germplasm Enhancement of Maize (GEM) project or developed 

by Dr. Major Goodman’s breeding program at North Carolina State University [91], and reported the 

effectiveness of a backcrossing program for improving quantitatively inherited disease resistance traits 

based on phenotypic evaluations [97]. The North Carolina State University team also performed QTL 

studies that concluded that marker-assisted selection cannot be generally recommended for these traits, 

but marker-assisted backcrossing may be efficient to transfer alleles from resistant but agronomically 

poor lines to elite inbreds [91,116], although more recent studies, based on genome wide association, 

have suggested that marker-assisted introgression of resistance alleles from unadapted subpopulations 

should be done in combination with genomic selection for the polygenic background for both the target 

trait and general adaptation traits [120,121].  

In many parts of the world, public pedigree selection programs have also been successful in 

improving resistance to ear rot caused by several fungi, including F. verticillioides, either doing 

intentional or unintentional phenotypic selection [130,138–140]. In parallel, the private industry began 

to release inbreds and hybrids with above average resistance to Fusarium ear rot according to the seed 

patents from Pioneer Hi-bred Int Inc approved since 1997 [141–147]. More interestingly, breeding for 

resistance to one mycotoxigenic species could affect resistance to other ones [98,130,132].  

3. Genotypic Traits Influencing Fusarium Ear Rot and Fumonisin Contamination 

The best way to reduce or prevent fumonisin contamination is to limit their biosynthesis during 

cultivation of maize plants. Identifying maize factors associated with resistance to infection by Fusarium 

and fumonisin accumulation helps in the understanding of genetic mechanisms controlling resistance 

and also facilitates maize breeding because indirect selection on characteristics strongly associated to 

resistance can be performed. Maize cultivar characteristics, such us precocity, husk coverage,  

silks duration, or the chemical composition of the kernels may influence fungal infection and subsequent 

fumonisin production. 

3.1. Precocity of the Plant 

Attending to maturity, disease may be minimized on ears of early-maturing inbreds and hybrids if 

kernels mature quickly and kernel moisture drops rapidly below levels that are favorable for growth and 

sporulation of Fusarium spp. [148,149]. Late-maturing maize cultivars in which grain moisture content 
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decreases slowly below 30% are most susceptible to Fusarium disease [150]. Hybrid maturity class was 

the cultural factor with the greatest effect on fumonisin contamination in a six-year study in northern 

Italy performed by Battilani et al. [87]. However, some other studies noted that the final fumonisin 

concentration in maize kernels does not seem to be primarily influenced by hybrid maturity [55,151–154]. 

In this regard, Battilani et al. [154] pointed out that hybrids with the slowest kernel drying rate were the 

most favorable for fumonisin accumulation, irrespective of their maturity classification. The variation 

of water content in maize kernel during ripening (measured as aW and kernel moisture) influences 

fumonisin production and can be used to predict contamination, but is not related to the FAO class of 

the hybrids tested. Factors, such as air temperature and hybrid characteristics such as thickness of the 

kernel pericarp, may be more decisive for the water loss rate and, hence, for fumonisin accumulation in 

kernels than hybrid maturity classification [64,154]. 

3.2. Husk Coverage 

The presence of fumonisins seems to be strongly linked to maize characteristics, among them, the 

husk coverage has been consistently implicated in the susceptibility of maize hybrids to infection by  

F. verticillioides. Failure of the husk to protect the tip permits easier entry of insects and consequent 

fungal contamination [77,155–160]. Duncan and Howard [161] showed that growth and sporulation of 

F. verticillioides was evident only on the exposed pollinated silks, with a significant growth reduction 

on silks that were covered by the husk. Up-to-date, Butrón et al. [4] noted how hybrids with tighter husks 

and less exposed ear tips present more resistance to Fusarium infection.  

3.3. Silks’ Characteristics 

As the maize silks are considered to be major routes for entry of Fusarium species into  

non-damaged ears [155,162], physical and/or chemical characteristics of the silks and the silk channel 

could be key factors of resistance against the fungus. Traits such as delayed silk senescence could 

contribute to resistance of some genotypes by imposing a physical barrier between kernels and inoculum 

sources [149,163,164]. Brown silks may have been limited in moisture, resulting in slowed fungal 

growth, a lack of extensive surface colonization, and inhibition of development of symptoms on kernels. 

Several studies [165–167] reported field results of reduced fungal ear rot correlated with accelerated silk 

senescence and longer intervals of time between silk emergence and silk channel inoculations. Lately,  

a strong correlation has been reported between levels of fumonisin contamination in kernels and duration 

of silking and silk wetness [64].  

Plant defenses consist of physical barriers as well as chemical defense mechanisms that are induced 

in response to external stimuli. Results from Sekhon et al. [168] agree with those of Reid et al. [169] 

and suggest that the amount of phenolic and flavones present in the non-inoculated silk tissue is not a 

good indicator of maize resistance to Fusarium ear rots. However, upon fungal inoculation, some 

induction of 3-deoxyanthocyanidins was observed in the resistant line suggesting the role of these 

compounds in resistance to F. verticillioides [168]. 
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3.4. Kernel characteristics 

3.4.1. Color 

In the p1 locus the dominant P1 allele provides pigmentation selectively to plant floral organs,  

in particular pericarp and cob, due to accumulation of phlobaphene pigments derived by polymerization 

of flavan-4-ols [170]. Accordingly, Pilu et al. [171] indicate that the accumulation of flavonoid pigments 

in the seeds, in particular phlobaphenes, is able to reduce the level of fumonisins. Those authors 

conjecture that flavonoid compounds produced in high quantities by the presence of regulatory factors 

such as R1, B1, Pl and in particular P1 could act in some way to lower the fumonisin B1 accumulation. 

In these sense, the pigment accumulation is linked to a reduction of corn borer attacks and/or fungal 

infections and consequently mycotoxin accumulation. 

Shephard et al. [172] reported that in some years, fumonisin levels were significantly lower in yellow 

than in white maize, but the reverse situation was observed in other years; on the other side,  

Santiago et al. [94] noted that genotypes with white kernels presented higher fumonisin concentration 

at the 0.10 probability level. However, although white maize inbreds had higher levels of fumonisin than 

yellow maize inbreds, it was still possible to find white inbreds with comparable resistance to fumonisin 

accumulation to that of the most resistant yellow inbreds indicating that some other resistance traits  

are involved. 

3.4.2. Antioxidant Profile 

One of the first biochemical events following the plant infection by a pathogen is the production of 

reactive oxygen species (ROS), including hydrogen peroxide (H2O2), involved in many signaling 

transduction pathways. This mechanism induces perturbation of the oxidative state of the plant cell 

which may interfere with the fungus metabolism. Picot et al. [173] evaluated the potential involvement 

of antioxidants (α-tocopherol, lutein, zeaxanthin, β-carotene, and ferulic acid) in the resistance of maize 

varieties to Fusarium ear rot. On the basis of that study, α-tocopherol was to be a more potent inhibitor 

of fumonisin production than ferulic acid. Nevertheless, in planta, the latter is more abundant than the 

former, at any kernel stage. In this sense, ferulic acid has been previously described as a potent repressor 

of mycotoxins biosynthesis [174], although the in planta mode of action on fungal growth and/or 

fumonisin accumulation has yet to be elucidated. 

3.4.3. Lipidic Profile  

Shelby et al. [61] tested 15 maize hybrids and found no significant correlation between lipid content 

and fumonisin contamination. Nevertheless, contemporary studies have shown that the lipidic 

composition of maize kernels can influence fumonisin content. Polyunsaturated fatty acids, released 

from membranes by lipases in response to attacks by biotic agents, play a key role in plant-pathogen 

interaction either directly as free fatty acids or as precursors of oxylipins [175]. The key role played by 

fatty acids in the regulation of fumonisin production in maize has been suggested [176]. Fatty acids, 

such as linoleic acid, and some of its oxylipin-derivatives [e.g., 9-HODE] produced by the host in 

response to the attack of a mycotoxigenic fungus may trigger the synthesis of fumonisins [177].  
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In particular, Gao et al. [178] reported that, in a 9-oxylipin-deficient maize mutant, fumonisin produced 

by F. verticillioides was reduced by 200-fold. 9-HODE is produced by maize ears during ripening  

under field conditions and it is present in a higher amount in those maize samples with high  

fumonisin contamination [179].  

3.4.4. Proteic Profile 

Proteomic studies represent an alternative approach to evaluate the plant defense response to pathogen 

infection. In maize, few detailed molecular studies are available on its response to F. verticillioides 

infection. Induction of specific pathogenesis-related (PR) proteins and protein-kinases following fungal 

infection are reported [180,181]. Campo et al. [181] performed experiments in maize embryos to identify 

the response to F. verticillioides infection at the protein level. Different types of antioxidant enzymes 

were detected, such as Cu/Zn-superoxide dismutase, glutathione-S-transferase and catalase, which 

normally protect cells from oxidative damage. Proteins involved in the initiation of other protein 

synthesis or which participate in protein folding and stabilization were also identified [181]. Changes in 

detoxification enzymes, lipid transfer proteins, ribosomal proteins, aldolases, dehydrogenases, 

glucanases and chitinases have been also reported [123,125,181,182]. In addition, proteins with 

significant effect on aflatoxin accumulation resistance, such as glyoxalase, trypsin inhibitor, late 

embryogenesis abundant proteins, and heat shock proteins, could also contribute to the resistance to  

F. verticillioides [118,183]. 

3.4.5. Pericarp (Protection Tissue) 

Trying to elucidate a possible path for F. verticillioides entrance into the pericarp, Duncan and 

Howard [161] noted that the stylar canal would represent the only route to the pericarp cells from outside 

of the kernel in the absence of injury. They suggest that it may be useful to sort kernels of maize lines 

according to stylar canal architecture and then compare the groupings with kernel rot severity data 

observed under various conditions. However, the methodological complexity of these determinations 

made such assessments at a large scale unviable. 

Once pathogens enter into the ear, they have to pass through the pericarp tissue to gain access to the 

whole kernel. Therefore, pericarp may also play an important role as a barrier against fungal invasion. 

In later stages of kernel development, the pericarp is composed of dead cells that are cellulosic  

tubes [184]. The arrangements of these thick-walled cells account for the considerable strength of the 

pericarp. A thin pericarp might give the fungus greater access to the kernel, especially through minor 

wounds caused by feeding of insects. Hoenish and Davis [185] determined that thickness of the pericarp 

of kernels from intermediate and resistant groups of hybrids was significantly greater than the thickness 

of the pericarp of the susceptible hybrids. However, results from Ivic et al. [186] showed that no 

correlation exists between pericarp thickness and resistance in Croatian genotypes, and Cao et al. [63] 

noted that a thicker pericarp favored fumonisin accumulation. A thicker pericarp could slow down the 

kernel drying, moisture conditions within the kernel being longer favorable for fungal growth and 

fumonisin production.  

Wax content in outer pericarp layers and wax composition were identified as kernel factors in maize 

resistance to A. flavus infection and aflatoxin accumulation [187]. Removing wax from the pericarp 
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significantly increased fumonisin concentration and higher wax content on kernels was associated to 

lower fumonisin accumulation [188]. High wax content would be a broad base resistance mechanism in 

maize kernels against mycotoxin production by pathogenic fungi. However, it cannot completely explain 

the resistance observed, suggesting that other pericarp (phenolic composition) or inner kernel factors are 

also involved in resistance to fumonisins. 

With that assessment in mind, a wide variety of phenolics have been implicated in several biological 

processes including resistance or tolerance against abiotic and biotic factors [189]. Among them, the 

most common hydroxycinnamates found in a wide range of grasses, cell wall ferulates (FA) and  

p-coumarates (pCA). Cell wall hydroxycinnamates are derived from the phenylpropanoid pathway, 

which originates from phenylalanine and tyrosine. The diferulates (DFAs) are formed during cell wall 

deposition and lignification by peroxidase mediate coupling of ferulate monomers. They crosslink cell 

wall polysaccharides conferring pericarp hardness [190]. Hence, high contents of pericarp DFAs might 

act as a preformed structural barrier restricting fungal infection and mycelial progress from diseased to 

pericarp-intact neighbouring kernels. On the basis of the stepwise linear regression model, variability of 

fumonisin accumulation was best explained by 8-5’-DFA benzofuran, total DFAs and pCA [191].  

On average, contents of pCA and FA were four- and two-fold higher in moderately resistant genotypes 

than in the susceptible ones, and were negatively correlated to fumonisin accumulation and disease  

severity [191]. Cell wall DFAs also might have a direct inhibitory effect on mycotoxin production after 

ferulic acid released by fungal esterases and other extracellular enzymes during infection of  

F. verticillioides. The 8-5′-DFA benzofuran, the major DFA detected in the pericarp of the genotypes, 

showed in vitro to be as effective as ferulic acid to inhibit the biosynthesis of trichothecenes  

by F. graminearum [174]. 

3.4.6. Endosperm (Storage Tissue) 

Hard hybrids could be connected both to a more compact pericarp which is a more effective physical 

barrier to fungal infection and to a greater hardness and density of the endosperm fraction that could be 

a less susceptible substrate to toxinogenesis [192]. In this sense, grain hardness significant influenced 

fumonisin content with hard endosperm hybrids showing 50% lower contamination than  

soft hybrids [153].  

Zea mays var. indentata (dent) and Z. mays var. indurate (flint) are among the most common types 

of maize cultivated in Europe [193]. They differ in various properties such as plant growth, ear number 

per stem, ear size, and vegetation period, but particularly in morphology and anatomy of kernels. Kernels 

of flint type are characterized by a hard outer endosperm layer enclosing the soft endosperm, while dent 

maize does not contain the mentioned layer at the kernel top [194]. Flint maize showed higher resistance 

to fungal infection and fumonisin contamination than dent maize [94,104,151,195,196] which was 

attributed to higher amylase contents in kernels of the former one [197]. However, the opposite situation 

was also reported [135], whereas Hennigen [198] did not note any significant differences in the degree 

of contamination between genotypes of flint and dent maize. 

Concerning the chemical composition, one of the most striking changes during kernel development 

is the rapid accumulation of starch when kernels mature. The starch-rich endosperm of mature kernels 

supports significantly higher levels of fumonisin production by F. verticillioides than the protein- and 
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lipid-rich tissues of the embryo [199]. In this sense, numerous mutants with abnormal patterns of starch 

and proteins have been identified: maize mutant waxy (wx), amylose extender (ae), opaque-2 (o2), 

sugary 1 (su1), sugary enhancer 1 (se1) and shrunken 2 (sh2). Native maize starch from normal hybrids 

consists of amylose (27%) and amylopectin (73%) which each have a unique set of physical properties 

and macromolecular organization [200,201]. Mutant wx1 kernels are characterized by the accumulation 

of 100% amylopectin [202–204], while kernels of the ae1 mutant accumulate more than 50%  

amylose [204]. Waxy maize is more prone to fumonisin accumulation compared to the counterpart 

hybrids [94,205]. Diverse reasons can be pointed out: (i) the waxy maize starch granule sizes are slightly 

higher than those found in normal maize with a less compact and more branched structure [206],  

that should influence the penetration and colonization of the fungi into the core of the kernel; (ii) less 

hardness and density of the most external endosperm fraction can be a substrate more susceptible to 

toxinogenesis [207,208]; (iii) the lower dry down of waxy maize could maintain more favorable 

conditions for fungal colonization and growth [209]; and (iv) the presence of elevated content of 

amylopectin induces fumonisin production by F. verticillioides during colonization of maize kernels, 

since it affects the expression of fungal genes involved in fumonisin biosynthesis [210]. However,  

it must be noted that in field experiments maize kernel development was characterized by a rapid 

accumulation of amylopectin during the first stages of kernel development, while the enhancement of 

fumonisin production appeared three weeks after completion of the kernel with amylopectin, suggesting 

that amylopectin is not a sufficient condition to favor fumonisin biosynthesis but that other mechanisms 

may be involved [69]. 

The presence of the opaque-2 gene (o2), which increases the lysine and tryptophan contents  

in the endosperm, make the plant more susceptible to F. verticillioides [211,212]. However,  

Santiago et al. [94] noted that opaque inbreds have significantly less fumonisin accumulation than their 

corresponding wild versions.  

Harboring the su1 and se1 mutations accumulates high levels of glucose in kernels during milk and 

dough stages of development; however, kernels contain starch as a carbohydrate reserve at  

maturity [213]. Mutant sh2 encodes ADP-glucopyrophosphorylase, which mediates the rate-limiting 

step in starch formation; disruption of sh2 leads to the accumulation of glucose rather than starch in 

mature kernels [214]. It has been suggested that the high sucrose content in kernels of sh2 inbreds 

increased infection by F. verticillioides [215,216]. However, studies by Headrick et al. [149] determine 

that none of the individual carbohydrate tested was related to the F. verticillioides infection.  

In summary, our current knowledge shows that the contamination of maize with fumonisins is 

generally a consequence of complex interactions among diverse environmental factors, including 

climatic conditions (such as temperature, air humidity and rainfall), insect infestation and agronomic 

practices, and maize cultivar characteristics, such as precocity, husk coverage, silks duration, or the 

chemical composition of the kernels. The genetic architecture of resistance to fumonisin contamination 

appears complex with many quantitative trait loci of small effects controlling each trait. However, maize 

breeding that is successful in achieving higher resistance to fumonisin accumulation will be possible 

considering the high genetic variability observed for this species. 

  



Toxins 2015, 7 3282 

 

Acknowledgments 

This research was supported by the National Plan for Research and Development of Spain  

(AGL2009-12770). R. Santiago acknowledges postdoctoral contracts “Isidro Parga Pondal” supported by 

the Autonomous Government of Galicia and the European Social Fund and “Ramón y Cajal” supported by 

the Ministry of Economy and Competitiveness of Spain. 

Author Contributions 

A. Cao prepared the chapter 1 entitled “Environmental factors affecting fomonisin contamination in 

maize kernels”, A. Butrón contributed with the chapter 2 entitled “Maize breeding for resistance to 

kernel contamination with fumonisins”, and R. Santiago prepared the chapter 3 entitled “genotypic traits 

influencing Fusarium ear rot and fumonisin contamination”. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Abbas, H.K.; Riley, R.T. The presence and phytotoxicity of fumonisins and AAL-toxin in 

Alternaria alternata. Toxicon 1996, 34, 133–136. 

2. Frisvad, J.C.; Smedsgaard, J.; Samson, R.A.; Larsen, T.O.; Thrane, U. Fumonisin B2 production 

by Aspergillus niger. J. Agric. Food Chem. 2007, 55, 9727–9732. 

3. Logrieco, A.; Bottalico, A.; Mule, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi 

and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 

645–667. 

4. Butron, A.; Santiago, R.; Mansilla, P.; Pintos-Varela, C.; Ordas, A.; Ana Malvar, R.  

Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. J. Agric. Food Chem. 

2006, 54, 6113–6117. 

5. Abbas, H.K.; Williams, W.P.; Windham, G.L.; Pringle, H.C.; Xie, W.; Shier, W.T. Aflatoxin and 

fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. J. Agric.  

Food Chem. 2002, 50, 5246–5254. 

6. Abbas, H.K.; Cartwright, R.D.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of 

corn (maize, Zea mays) hybrids in Arkansas. Crop Prot. 2006, 25, 1–9. 

7. Parsons, M.W.; Munkvold, G.P. Associations of planting date, drought stress, and insects with 

Fusarium ear rot and fumonisin B1 contamination in California maize. Food Addit. Contam. Part A 

2010, 27, 591–607. 

8. Chulze, S.N.; Ramirez, M.L.; Farnochi, M.C.; Pascale, M.; Visconti, A.; March, G. Fusarium and 

fumonisin occurrence in Argentinian corn at different ear maturity stages. J. Agric. Food Chem. 

1996, 44, 2797–2801. 

9. Camargos, S.M.; Soares, L.M.V.; Sawazaki, E.; Bolonhezi, D.; Castro, J.L.; Bortolleto, N. 

Fumonisins in corn cultivars in the state of São Paulo. Braz. J. Microbiol. 2000, 31, 225–228. 



Toxins 2015, 7 3283 

 

10. Sun, G.; Wang, S.; Hu, X.; Su, J.; Huang, T.; Yu, J.; Tang, L.; Gao, W.; Wang, J.-S. Fumonisin 

B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. 

Food Addit. Contam. Part A 2007, 24, 181–185. 

11. Wang, H.; Wei, H.; Ma, J.; Luo, X. The fumonisin B1 content in corn from north China, a  

high-risk area of esophageal cancer. J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 139–141. 

12. Alizadeh, A.M.; Rohandel, G.; Roudbarmohammadi, S.; Roudbary, M.; Sohanaki, H.;  

Ghiasian, S.A.; Taherkhani, A.; Semnani, S.; Aghasi, M. Fumonisin B1 contamination of cereals 

and risk of esophageal cancer in a high risk area in northeastern Iran. Asian Pac. J. Cancer Prev. 

2012, 13, 2625–2628. 

13. Afolabi, C.G.; Ojiambo, P.S.; Ekpo, E.J.A.; Menkir, A.; Bandyopadhyay, R. Evaluation of maize 

inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical 

Africa. Plant Dis. 2007, 91, 279–286. 

14. Fandohan, P.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Natural occurrence of 

Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin,  

west Africa. Int. J. Food Microbiol. 2005, 99, 173–183. 

15. Marasas, W.F. Discovery and occurrence of the fumonisins: A historical perspective.  

Environ. Health Perspect. 2001, 109 (Suppl. 2), 239–243. 

16. Munkvold, G.P.; Desjardins, A.E. Fumonisins in maize—can we reduce their occurrence?  

Plant Dis. 1997, 81, 556–565. 

17. Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and 

toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. 

18. Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of fumonisin analogs by Fusarium 

species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. 

19. Gelineau van Waes, J.; Starr, L.; Maddox, J.; Aleman, F.; Voss, K.A.; Wilberding, J.; Riley, R.T. 

Maternal fumonisin exposure and risk for neural tube defects: Mechanisms in an in vivo mouse 

model. Birth Defects Res. Part A 2005, 73, 487–497. 

20. Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H.; Rothman, K.J.; Hendricks, K.A. 

Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. 

Environ. Health Perspect. 2006, 114, 237–241. 

21. IARC. Fumonisin B1: Some traditional herbal medicines, some mycotoxins, naphthalene and 

styrene. In 82 Monograph of the International Agency for Research of Cancer on the Evaluation 

of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2002; pp. 301–306. 

22. Marin, S.; Magan, N.; Ramos, A.J.; Sanchis, V. Fumonisin-producing strains of Fusarium:  

A review of their ecophysiology. J. Food Prot. 2004, 67, 1792–1805. 

23. Samapundo, S.; Devlieghere, F.; De Meulenaer, B.; Debevere, J. Effect of water activity and 

temperature on growth and the relationship between fumonisin production and the radial growth 

of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 2005, 68,  

1054–1059. 

24. Mogensen, J.M.; Nielsen, K.F.; Samson, R.A.; Frisvad, J.C.; Thrane, U. Effect of temperature and 

water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. 

BMC Microbiol. 2009, 9, 281. 



Toxins 2015, 7 3284 

 

25. Medina, A.; Schmidt-Heydt, M.; Cardenas-Chavez, D.L.; Parra, R.; Geisen, R.; Magan, N. 

Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of 

Fusarium verticillioides under different environmental factors. J. R. Soc. Interface 2013, 10,  

20130320. 

26. Ryu, D.; Munimbazi, C.; Bullerman, L.B. Fumonisin b1 production by Fusarium moniliforme and 

Fusarium proliferatum as affected by cycling temperatures. J. Food Prot. 1999, 62, 1456–1460. 

27. Cao, A.; Butron, A.; Ramos, A.J.; Marin, S.; Souto, C.; Santiago, R. Assessing white maize 

resistance to fumonisin contamination. Eur. J. Plant Pathol. 2014, 138, 283–292. 

28. Marin, P.; Magan, N.; Vazquez, C.; Gonzalez-Jaen, M.T. Differential effect of environmental 

conditions on the growth and regulation of the fumonisin biosynthetic gene fum1 in the maize 

pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum.  

FEMS Microbiol. Ecol. 2010, 73, 303–311. 

29. Jurado, M.; Marin, P.; Magan, N.; Gonzalez-Jaen, M.T. Relationship between solute and matric 

potential stress, temperature, growth, and fum1 gene expression in two Fusarium verticillioides 

strains from Spain. Appl. Environ. Microbiol. 2008, 74, 2032–2036. 

30. Fanelli, F.; Iversen, A.; Logrieco, A.F.; Mulè, G. Relationship between fumonisin production and 

fum gene expression in Fusarium verticillioides under different environmental conditions.  

Food Addit. Contam. Part A 2012, 30, 365–371. 

31. Lazzaro, I.; Susca, A.; Mulè, G.; Ritieni, A.; Ferracane, R.; Marocco, A.; Battilani, P. Effects of 

temperature and water activity on fum2 and fum21 gene expression and fumonisin B production in 

Fusarium verticillioides. Eur. J. Plant Pathol. 2012, 134, 685–695. 

32. Cao, A.; Santiago, R.; Ramos, A.J.; Marin, S.; Reid, L.M.; Butron, A. Environmental factors 

related to fungal infection and fumonisin accumulation during the development and drying of white 

maize kernels. Int. J. Food Microbiol. 2013, 164, 15–22. 

33. Leslie, J.F.; Pearson, C.A.S.; Nelson, P.E.; Toussoun, T.A. Fusarium spp. from corn, sorghum, 

and soybean fields in the central and eastern United States. Phytopathology 1990, 80, 343–350. 

34. Dorn, B.; Forrer, H.R.; Schurch, S.; Vogelgsang, S. Fusarium species complex on maize in 

Switzerland: Occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural 

infection. Eur. J. Plant Pathol. 2009, 125, 51–61. 

35. Folcher, L.; Jarry, M.; Weissenberger, A.; Gerault, F.; Eychenne, N.; Delos, M.;  

Regnault-Roger, C. Comparative activity of agrochemical treatments on mycotoxin levels with 

regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot. 2009, 28, 

302–308. 

36. Hooker, D.C.; Schaafsma, A. Agronomic and environmental impacts on concentrations of 

deoxynivalenol and fumonisin B1 in corn across Ontario. Can. J. Plant Pathol. 2005, 27,  

347–356. 

37. Munkvold, G. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. 

Plant Pathol. 2003, 109, 705–713. 

38. Goertz, A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.; Waalwijk, C.; de Vries, I.; Oerke, E. 

Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant 

Pathol. 2010, 128, 101–111. 



Toxins 2015, 7 3285 

 

39. Stumpf, R.; dos Santos, J.; Gomes, L.B.; Silva, C.N.; Tessmann, D.J.; Ferreira, F.D.; Machinski, M.; 

Del Ponte, E.M. Fusarium species and fumonisins associated with maize kernels produced in Rio 

Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Braz. J. Microbiol. 2013, 44, 

89–95. 

40. Fu, M.; Li, R.; Guo, C.; Pang, M.; Liu, Y.; Dong, J. Natural incidence of Fusarium species and 

fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012.  

Food Addit. Contam. Part A 2014, 32, 503–511. 

41. Janse van Rensburg, B.; McLaren, N.W.; Flett, B.C.; Schoeman, A. Fumonisin producing 

Fusarium spp. and fumonisin contamination in commercial South African maize. Eur. J. Plant 

Pathol. 2015, 141, 491–504. 

42. Logrieco, A.; Moretti, A.; Ritieni, A.; Bottalico, A.; Corda, P. Occurrence and toxigenicity of 

Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy.  

Plant Dis. 1995, 79, 727–731. 

43. Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium 

mycotoxin content in isogenic traditional maize and genetically modified maize grown in France 

and Spain. J. Agric. Food Chem. 2002, 50, 728–731. 

44. De Curtis, F.; De Cicco, V.; Haidukowski, M.; Pascale, M.; Somma, S.; Moretti, A. Effects of 

agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of 

maize in southern Italy. Field Crop. Res. 2011, 123, 161–169. 

45. Mohammadi, A.; Shams-Ghahfarokhi, M.; Nazarian-Firouzabadi, F.; Kachuei, R.;  

Gholami-Shabani, M.; Razzaghi-Abyaneh, M. Giberella fujikuroi species complex isolated from 

maize and wheat in Iran: Distribution, molecular identification and fumonisin B1 in vitro 

biosynthesis. J. Sci. Food Agric. 2015, doi:10.1002/jsfa.7227. 

46. Arino, A.; Juan, T.; Estopanan, G.; Gonzalez-Cabo, J.F. Natural occurrence of Fusarium species, 

fumonisin production by toxigenic strains, and concentrations of fumonisins B1 and B2 in 

conventional and organic maize grown in Spain. J. Food Prot. 2007, 70, 151–156. 

47. Herrera, M.; Conchello, P.; Juan, T.; Estopañán, G.; Herrera, A.; Ariño, A. Fumonisins 

concentrations in maize as affected by physico-chemical, environmental and agronomical 

conditions. Maydica 2010, 55, 121–126. 

48. Schjøth, J.E.; Visconti, A.; Sundheim, L. Fumonisins in maize in relation to climate, planting time 

and hybrids in two agroecological zones in Zambia. Mycopathologia 2009, 167, 209–219. 

49. Gamanya, R.; Sibanda, L. Survey of Fusarium moniliforme (F. verticillioides) and production of 

fumonisin B1 in cereal grains and oilseeds in Zimbabwe. Int. J. Food Microbiol. 2001, 71,  

145–149. 

50. Atukwase, A.; Kaaya, A.N.; Muyanja, C. Factors associated with fumonisin contamination of 

maize in Uganda. J. Sci. Food Agric. 2009, 89, 2393–2398. 

51. Miller, J.D. Factors that affect the occurrence of fumonisin. Environ. Health Perspect. 2001,  

109 (Suppl. 2), 321–324. 

52. Bush, B.J.; Carson, M.L.; Cubeta, M.A.; Hagler, W.M.; Payne, G.A. Infection and fumonisin 

production by Fusarium verticillioides in developing maize kernels. Phytopathology 2004, 94,  

88–93. 



Toxins 2015, 7 3286 

 

53. Abbas, H.K.; Shier, W.T.; Cartwright, R.D. Effect of temperature, rainfall and planting date on 

aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. 

Phytoprotection 2007, 88, 41–50. 

54. Pascale, M.; Visconti, A.; Pronczuk, M.; Wisniewska, H.; Chelkowski, J. Accumulation of 

fumonisins in maize hybrids inoculated under field conditions with Fusarium moniliforme sheldon. 

J. Sci. Food Agric. 1997, 74, 1–6. 

55. Blandino, M.; Reyneri, A.; Vanara, F. Effect of sowing time on toxigenic fungal infection and 

mycotoxin contamination of maize kernels. J. Phytopathol. 2009, 157, 7–14. 

56. Blandino, M.; Scarpino, V.; Vanara, F.; Sulyok, M.; Krska, R.; Reyneri, A. Role of the European 

corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins.  

Food Addit. Contam. Part A 2014, 32, 533–543. 

57. Torelli, E.; Firrao, G.; Bianchi, G.; Saccardo, F.; Locci, R. The influence of local factors on the 

prediction of fumonisin contamination in maize. J. Sci. Food Agric. 2012, 92, 1808–1814. 

58. Mazzoni, E.; Scandolara, A.; Giorni, P.; Pietri, A.; Battilani, P. Field control of Fusarium ear rot, 

Ostrinia nubilalis (hübner), and fumonisins in maize kernels. Pest Manag. Sci. 2011, 67,  

458–465. 

59. Maiorano, A.; Reyneri, A.; Magni, A.; Ramponi, C. A decision tool for evaluating the agronomic 

risk of exposure to fumonisins of different maize crop management systems in Italy. Agric. Syst. 

2009, 102, 17–23. 

60. Venturini, G.; Assante, G.; Vercesi, A. Fusarium verticillioides contamination patterns in northern 

Italian maize during the growing season. Phytopathol. Mediterr. 2011, 50, 110–120. 

61. Shelby, R.A.; White, D.G.; Bauske, E.M. Differential fumonisin production in maize hybrids. 

Plant Dis. 1994, 78, 582–584. 

62. De la Campa, R.; Hooker, D.C.; Miller, J.D.; Schaafsma, A.W.; Hammond, B.G. Modeling effects 

of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina 

and the Philippines. Mycopathologia 2005, 159, 539–552. 

63. Cao, A.; Santiago, R.; Ramos, A.J.; Souto, X.C.; Aguin, O.; Ana Malvar, R.; Butron, A. Critical 

environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and 

fumonisin contamination in maize grown in northwestern Spain. Int. J. Food Microbiol. 2014, 177, 

63–71. 

64. Maiorano, A.; Reyneri, A.; Sacco, D.; Magni, A.; Ramponi, C. A dynamic risk assessment model 

(fumagrain) of fumonisin synthesis by Fusarium verticillioides in maize grain in Italy. Crop Prot. 

2009, 28, 243–256. 

65. Rossi, V.; Scandolara, A.; Battilani, P. Effect of environmental conditions on spore production by 

Fusarium verticillioides, the causal agent of maize ear rot. Eur. J. Plant Pathol. 2009, 123,  

159–169. 

66. Ariño, A.; Bullerman, L.B. Fungal colonization of corn grown in Nebraska in relation to year, 

genotype and growing conditions. J. Food Prot. 1994, 57, 1084–1087. 

67. Alma, A.; Lessio, F.; Reyneri, A.; Blandino, M. Relationships between Ostrinia nubilalis 

(lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn 

kernel in northwestern Italy. Int. J. Pest Manag. 2005, 51, 165–173. 



Toxins 2015, 7 3287 

 

68. Abbas, H.K.; Mascagni, H.J., Jr.; Bruns, H.A.; Shier, W.T. Effect of planting density, irrigation 

regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin 

contamination levels. Am. J. Plant Sci. 2012, 3, doi:10.4236/ajps.2012.310162. 

69. Picot, A.; Barreau, C.; Pinson-Gadais, L.; Piraux, F.; Caron, D.; Lannou, C.; Richard-Forget, F. 

The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field 

conditions. Appl. Environ. Microbiol. 2011, 77, 8382–8390. 

70. Miedaner, T.; Bolduan, C.; Melchinger, A.E. Aggressiveness and mycotoxin production of eight 

isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and 

resistant early maize inbred lines. Eur. J. Plant Pathol. 2010, 127, 113–123. 

71. Covarelli, L.; Stifano, S.; Beccari, G.; Raggi, L.; Lattanzio, V.M.T.; Albertini, E. Characterization 

of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, 

pathogenicity and genetic variability. Food Microbiol. 2012, 31, 17–24. 

72. Reid, L.M.; Nicol, R.W.; Ouellet, T.; Savard, M.; Miller, J.D.; Young, J.C.; Stewart, D.W.; 

Schaafsma, A.W. Interaction of Fusarium graminearum and F. moniliforme in maize ears: Disease 

progress, fungal biomass, and mycotoxin accumulation. Phytopathology 1999, 89, 1028–1037. 

73. Zorzete, P.; Castro, R.S.; Pozzi, C.R.; Israel, A.L.M.; Fonseca, H.; Yanaguibashi, G.; Corrêa, B. 

Relative populations and toxin production by Aspergillus flavus and Fusarium verticillioides in 

artificially inoculated corn at various stages of development under field conditions. J. Sci.  

Food Agric. 2008, 88, 48–55. 

74. Zummo, N.; Scott, G.E. Interaction of Fusarium moniliforme and Aspergillus flavus on kernel 

infection and aflatoxin contamination in maize ears. Plant Dis. 1992, 76, 771–773. 

75. Dowd, P.F. Involvement of arthropods in the establishment of mycotoxigenic fungi under field 

conditions. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.;  

Marcel Dekker: New York, NY, USA, 1998; pp. 307–350. 

76. Fandohan, P.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Infection of maize by Fusarium species 

and contamination with fumonisis in Africa. Afr. J. Biotechnol. 2003, 12, 570–579. 

77. Farrar, J.J.; Davis, R.M. Relationships among ear morphology, western flower thrips, and 

Fusarium ear rot of corn. Phytopathology 1991, 81, 661–666. 

78. Munkvold, G.P.; Hellmich, R.L.; Rice, L.G. Comparison of fumonisin concentrations in kernels 

of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999, 83, 130–138. 

79. Blandino, M.; Reyneri, A.; Vanara, F.; Pascale, M.; Haidukowski, M.; Saporiti, M. Effect of 

sowing date and insecticide application against European corn borer (lepidoptera: Crambidae) on 

fumonisin contamination in maize kernels. Crop Prot. 2008, 27, 1432–1436. 

80. Avantaggiato, G.; Quaranta, F.; Desiderio, E.; Visconti, A. Fumonisin contamination of maize 

hybrids visibly damaged by Seesamia. J. Sci. Food Agric. 2003, 83, 13–18. 

81. Clements, M.J.; Campbell, K.W.; Maragos, C.M.; Pilcher, C.; Headrick, J.M.; Pataky, J.K.;  

White, D.G. Influence of cry1ab protein and hybrid genotype on fumonisin contamination and 

Fusarium ear rot of corn. Crop Sci. 2003, 43, 1283–1293. 

82. Parsons, M.W.; Munkvold, G.P. Relationships of immature and adult thrips with silk-cut, Fusarium 

ear rot and fumonisin B1 contamination of maize in California and Hawaii. Plant Pathol. 2010, 

59, 1099–1106. 

http://dx.doi.org/10.4236/ajps.2012.310162


Toxins 2015, 7 3288 

 

83. Dowd, P.F. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin 

levels in commercial fields. J. Econ. Entomol. 2001, 94, 1067–1074. 

84. Santiago, R.; Cao, A.; Malvar, R.A.; Butron, A. Is it possible to control fumonisin contamination 

in maize kernels by using genotypes resistant to the Mediterranean corn borer? J. Econ. Entomol. 

2013, 106, 2241–2246. 

85. Blandino, M.; Reyneri, A.; Colombari, G.; Pietri, A. Comparison of integrated field programmes 

for the reduction of fumonisin contamination in maize kernels. Field Crop. Res. 2009, 111,  

284–289. 

86. Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins 

in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. 

87. Battilani, P.; Pietri, A.; Barbano, C.; Scandolara, A.; Bertuzzi, T.; Marocco, A. Logistic regression 

modeling of cropping systems to predict fumonisin contamination in maize. J. Agric. Food Chem. 

2008, 56, 10433–10438. 

88. Ariño, A.; Herrera, M.; Juan, T.; Estopañan, G.; Carramiñana, J.J.; Rota, C.; Herrera, A. Influence 

of agricultural practices on the contamination of maize by fumonisin mycotoxins. J. Food Prot. 

2009, 72, 898–902. 

89. de Galarreta, J.I.R.; Butrón, A.; Ortiz-Barredo, A.; Malvar, R.A.; Ordás, A.; Landa, A.; Revilla, P. 

Mycotoxins in maize grains grown in organic and conventional agriculture. Food Control 2015, 

52, 98–102. 

90. Martínez, M.; Moschini, R.; Barreto, D.; Bodega, J.; Forjan, H.; Piatti, F.; Presello, D.; Valentinuz, O. 

Factores ambientales que afectan el contenido de fumonisina en granos de maíz. Tropical Plant 

Pathol. 2010, 35, 277–284. 

91. Eller, M.S.; Holland, J.B.; Payne, G.A. Breeding for improved resistance to fumonisin 

contamination in maize. Toxin Rev. 2008, 27, 371–389. 

92. Löffler, M.; Kessel, B.; Ouzunova, M.; Miedaner, T. Covariation between line and testcross 

performance for reduced mycotoxin concentrations in European maize after silk channel 

inoculation of two Fusarium species. Theor. Appl. Genet. 2011, 122, 925–934. 

93. Robertson, L.A.; Kleinschmidt, C.E.; White, D.G.; Payne, G.A.; Maragos, C.M.; Holland, J.B. 

Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination 

resistance in two maize populations. Crop Sci. 2006, 46, 353–361. 

94. Santiago, R.; Cao, A.; Malvar, R.A.; Reid, L.M.; Butron, A. Assessment of corn resistance to 

fumonisin accumulation in a broad collection of inbred lines. Field Crop. Res. 2013, 149,  

193–202. 

95. Bolduan, C.; Miedaner, T.; Schipprack, W.; Dhillon, B.S.; Melchinger, A.E. Genetic variation for 

resistance to ear rots and mycotoxins contamination in early European maize inbred lines.  

Crop Sci. 2009, 49, 2019–2028. 

96. Löffler, M.; Miedaner, T.; Kessel, B.; Ouzunova, M. Mycotoxin accumulation and corresponding 

ear rot rating in three maturity groups of european maize inoculated by two Fusarium species. 

Euphytica 2010, 174, 153–164. 

97. Eller, M.S.; Payne, G.A.; Holland, J.B. Selection for reduced Fusarium ear rot and fumonisin 

content in advanced backcross maize lines and their topcross hybrids. Crop Sci. 2010, 50,  

2249–2260. 



Toxins 2015, 7 3289 

 

98. Presello, D.A.; Pereyra, A.O.; Iglesias, J.; Fauguel, C.M.; Sampietro, D.A.; Eyherabide, G.H. 

Responses to selection of S5 inbreds for broad-based resistance to ear rots and grain mycotoxin 

contamination caused by Fusarium spp. in maize. Euphytica 2011, 178, 23–29. 

99. Mesterhazy, A.; Lemmens, M.; Reid, L.M. Breeding for resistance to ear rots caused by Fusarium 

spp. In maize - a review. Plant Breed. 2012, 131, 1–19. 

100. Clements, M.J.; Kleinschmidt, C.E.; Maragos, C.M.; Pataky, J.K.; White, D.G. Evaluation of 

inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Dis. 2003, 

87, 147–153. 

101. Munkvold, G.P.; McGee, D.C.; Carlton, W.M. Importance of different pathways for maize kernel 

infection by Fusarium moniliforme. Phytopathology 1997, 87, 209–217. 

102. Bush, B.J. Fusarium verticillioides infection, fumonisin contamination and resistance evaluation 

in north Carolina maize. Master’s Thesis. North Carolina State Univ., Raleigh, NC, USA, 2001. 

103. Schaafsma, A.W.; Tamburic-Illincic, L.; Reid, L.M. Fumonisin B1 accumulation and severity of 

Fusarium ear rot and Gibberella ear rot in food-grade corn hybrids in Ontario after inoculation 

according to two methods. Can. J. Plant Pathol. 2006, 28, 548–557. 

104. Pascale, M.; Visconti, A.; Chelkowski, J. Ear rot susceptibility and mycotoxin contamination of 

maize hybrids inoculated with Fusarium species under field conditions. Eur. J. Plant Pathol. 2002, 

108, 645–651. 

105. Kleinschmidt, C.E.; Clements, M.J.; Maragos, C.M.; Pataky, J.K.; White, D.G. Evaluation of  

food-grade dent corn hybrids for severity of Fusarium ear rot and fumonisin accumulation in grain. 

Plant Dis. 2005, 89, 291–297. 

106. Presello, D.A.; Iglesias, J.; Botta, G.; Eyherabide, G.H. Severity of Fusarium ear rot and 

concentration of fumonisin in grain of Argentinian maize hybrids. Crop Prot. 2007, 26, 852–855. 

107. Toldi, E.; Bartok, T.; Varga, M.; Szekeres, A.; Toth, B.; Mesterhazy, A. The role of breeding in 

reducing mycotoxin contamination in maize. Cereal Res. Commun. 2008, 36, 175–177. 

108. Henry, W.B.; Williams, W.P.; Windham, G.L.; Hawkins, L.K. Evaluation of maize inbred lines 

for resistance to Aspergillus and Fusarium ear rot and mycotoxin accumulation. Agron. J. 2009, 

101, 1219–1226. 

109. Balconi, C.; Berardo, N.; Locatelli, S.; Lanzanova, C.; Torri, A.; Redaelli, R. Evaluation of ear rot 

(Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines. 

Phytopathol. Mediterr. 2014, 53, 14–26. 

110. Small, I.M.; Flett, B.C.; Marasas, W.F.O.; McLeod, A.; Stander, M.A.; Viljoen, A. Resistance in 

maize inbred lines to Fusarium verticillioides and fumonisin accumulation in South Africa.  

Plant Dis. 2012, 96, 881–888. 

111. Clements, M.J.; Maragos, C.A.; Pataky, J.K.; White, D.G. Sources of resistance to fumonisin 

accumulation in grain and Fusarium ear and kernel rot of corn. Phytopathology 2004, 94,  

251–260. 

112. Presello, D.A.; Reid, L.M.; Mather, D.E. Resistance of Argentine maize germplasm to Gibberella 

and Fusarium ear rots. Maydica 2004, 49, 73–81. 

113. Xiang, K.; Zhang, Z.M.; Reid, L.M.; Zhu, X.Y.; Yuan, G.S.; Pan, G.T. A meta-analysis of QTL 

associated with ear rot resistance in maize. Maydica 2010, 55, 281–290. 



Toxins 2015, 7 3290 

 

114. Ding, J.-Q.; Wang, X.-M.; Chander, S.; Yan, J.-B.; Li, J.-S. QTL mapping of resistance to 

Fusarium ear rot using a RIL population in maize. Mol. Breed. 2008, 22, 395–403. 

115. Pérez-Brito, D.; Jeffers, D.; González-de-León, D.; Khairallah, M.; Cortés-Cruz, M.;  

Velázquez-Cardelas, G.; Azpíroz-Rivero, S.; Srinivasan, G. QTL mapping of Fusarium moniliforme 

ear rot resistance in highland maize, Mexico. Agrociencia 2001, 35, 181–196. 

116. Robertson-Hoyt, L.A.; Jines, M.P.; Balint-Kurti, P.J.; Kleinschmidt, C.E.; White, D.G.;  

Payne, G.A.; Maragos, C.M.; Molnár, T.L.; Holland, J.B. QTL mapping for Fusarium ear rot and 

fumonisin contamination resistance in two maize populations. Crop Sci. 2006, 46, 1734. 

117. Mideros, S.X.; Warburton, M.L.; Jamann, T.M.; Windham, G.L.; Williams, W.P.; Nelson, R.J. 

Quantitative trait loci influencing mycotoxin contamination of maize: Analysis by linkage mapping, 

characterization of near-isogenic lines, and meta-analysis. Crop Sci. 2014, 54, 127–142. 

118. Warburton, M.L.; Williams, W.P.; Hawkins, L.; Bridges, S.; Gresham, C.; Harper, J.; Ozkan, S.; 

Mylroie, J.E.; Xueyan, S. A public platform for the verification of the phenotypic effect of 

candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize. 

Toxins 2011, 3, 754–765. 

119. Chen, J.F.; Ding, J.Q.; Li, H.M.; Li, Z.M.; Sun, X.D.; Li, J.J.; Wang, R.X.; Dai, X.D.; Dong, H.F.; 

Song, W.B.; et al. Detection and verification of quantitative trait loci for resistance to Fusarium 

ear rot in maize. Mol. Breed. 2012, 30, 1649–1656. 

120. Zila, C.T.; Fernando Samayoa, L.; Santiago, R.; Butron, A.; Holland, J.B. A genome-wide 

association study reveals genes associated with Fusarium ear rot resistance in a maize core 

diversity panel. G3-Genes Genomes Genet. 2013, 3, 2095–2104. 

121. Zila, C.T.; Ogut, F.; Romay, M.C.; Gardner, C.A.; Buckler, E.S.; Holland, J.B. Genome-wide 

association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant 

Biol. 2014, doi:10.1186/s12870-014-0372-6. 

122. Yuan, G.S.; Zhang, Z.M.; Xiang, K.; Shen, Y.O.; Du, J.; Lin, H.J.; Liu, L.; Zhao, M.J.; Pan, G.T. 

Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium 

verticillioides infection. Plant Mol. Biol. Rep. 2013, 31, 925–935. 

123. Campos-Bermudez, V.A.; Fauguel, C.M.; Tronconi, M.A.; Casati, P.; Presello, D.A.; Andreo, C.S. 

Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in 

maize inbreds with contrasting ear rot resistance. PLoS ONE 2013, 8, e61580. 

124. Lanubile, A.; Pasini, L.; Marocco, A. Differential gene expression in kernels and silks of maize 

lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J. Plant 

Physiol. 2010, 167, 1398–1406. 

125. Lanubile, A.; Bernardi, J.; Marocco, A.; Logrieco, A.; Paciolla, C. Differential activation of 

defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium 

verticillioides. Environ. Exp. Bot. 2012, 78, 39–46. 

126. Lanubile, A.; Ferrarini, A.; Maschietto, V.; Delledonne, M.; Marocco, A.; Bellin, D. Functional 

genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides 

infection in maize genotypes with contrasting ear rot resistance. BMC genomics 2014, 15, 710. 

127. Lanubile, A.; Bernardi, J.; Battilani, P.; Logrieco, A.; Marocco, A. Resistant and susceptible maize 

genotypes activate different transcriptional responses against Fusarium verticillioides.  

Physiol. Mol. Plant Pathol. 2012, 77, 52–59. 



Toxins 2015, 7 3291 

 

128. Hefny, M.; Attaa, S.; Bayoumi, T.; Ammar, S.; El-Bramawy, M. Breeding maize for resistance to 

ear rot caused by Fusarium moniliforme. PJBS 2012, 15, 78–84. 

129. Hung, H.-Y.; Holland, J.B. Diallel analysis of resistance to Fusarium ear rot and fumonisin 

contamination in maize. Crop Sci. 2012, 52, 2173–2181. 

130. Reid, L.M.; Zhu, X.; Parker, A.; Yan, W. Increased resistance to Ustilago zeae and Fusarium 

verticilliodes in maize inbred lines bred for Fusarium graminearum resistance. Euphytica 2009, 

165, 567–578. 

131. Williams, W.P.; Windham, G.L. Diallel analysis of fumonisin accumulation in maize. Field Crop. 

Res. 2009, 114, 324–326. 

132. Butron, A.; Reid, L.M.; Santiago, R.; Cao, A.; Malvar, R.A. Inheritance of maize resistance to 

Gibberella and Fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. 

Plant Pathol. 2015, doi:10.1111/ppa.12351 

133. Nankam, C.; Pataky, J.K. Resistance to kernel infection by Fusarium moniliforme in the sweet 

corn inbred IL125b. Plant Dis. 1996, 80, 593–598. 

134. Castanon, G.; Rincon, F.; Latournerie, L. Heterosis and combinatory aptitude in seven maize lines. 

Phyton-Int. J. Exp. Bot. 2002, 29–40. 

135. Löffler, M.; Kessel, B.; Ouzunova, M.; Miedaner, T. Population parameters for resistance to 

Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late 

and late maturing European maize (Zea mays l.) inbred lines. Theor. Appl. Genet. 2010, 120,  

1053–1062. 

136. Presello, D.A.; Iglesias, J.; Botta, G.; Reid, L.M.; Lori, G.A.; Eyherabide, G.H. Stability of maize 

resistance to the ear rots caused by Fusarium graminearum and F. verticillioides in Argentinian 

and Canadian environments. Euphytica 2006, 147, 403–407. 

137. Clements, M.J.; White, D.G. Identifying sources of resistance to aflatoxin and fumonisin 

contamination in corn grain. J. Toxicology-Toxin Rev. 2004, 23, 381–396. 

138. Reid, L.M.; McDiarmid, G.; Parker, A.J.; Woldemariam, T.; Hamilton, R.I. CO388 and CO389 

corn inbred lines. Can. J. Plant Sci. 2001, 81, 457–459. 

139. Lanubile, A.; Pasini, L.; Lo Pinto, M.; Battilani, P.; Prandini, A.; Marocco, A. Evaluation of broad 

spectrum sources of resistance to Fusarium verticillioides and advanced maize breeding lines. 

World Mycotoxin J. 2011, 4, 43–51. 

140. Vasal, S.K.; Srinivasan, G.; Cordova, H.; Pandey, S.; Jeffers, D.; Bergvinson, D.; Beck, D. Inbred 

line evaluation nurseries and their role in maize breeding at CIMMYT. Maydica 1999, 44,  

341–351. 

141. Chapman, M.A. New hybrid maize plant (36k50) is useful in industry and as a food source for 

humans and animals. US5962771-A, 5 October 1999. 

142. Colbert, T.R. New maize hybrid x1128bw and its hybrids, useful as food and industrial raw 

material, with good early growth and short stature. US6359201-B1, 19 March 2002. 

143. Colbert, T.R.; Gorman, D.P. Seed and plants of inbred maize line ph5d6 and its hybrids, useful as 

food and industrial raw material, has e.G. Good resistance to several fungal pathogens. 

US6316704-B1, 13 November 2001. 



Toxins 2015, 7 3292 

 

144. Henke, G.E. Inbred maize line ph2ej, and genetically engineered variants, suitable for cultivation 

in the Central Corn Belt, northeast, southeast, southcentral, southwest and western regions of the 

United States. US6333453-B1, 25 December 2001. 

145. Henke, G.E. New hybrid maize seed, designated 33k81, useful for developing maize plant in maize 

plant breeding program using techniques e.G. Backcrossing and pedigree breeding.  

US6410829-B1, 25 June 2002. 

146. Henke, G.E.; Barker, T.C. Seed of new maize inbred line ph2e4 useful for producing F1 hybrids in 

plant breeding programs and as a source of human food, animal feeds and industrial raw materials. 

US6147284-A, 14 November 2000. 

147. Trimble, M.W. Maize inbred line phkv1 for production of F1 hybrids adapted to all areas of the 

USA and has good resistance to Fusarium ear rot. US5608138-A, 4 March 1997. 

148. Koehler, B. Fungus growth in shelled corn as affected by moisture. J. Agric. Res. 1938, 56,  

291–307. 

149. Headrick, J.M.; Pataky, J.K.; Juvik, J.A. Relationships among carbohydrate content of kernels, 

condition of silks after pollination, and the response of sweet corn inbred lines to infection of 

kernels by Fusarium moniliforme. Phytopathology 1990, 80, 487–494. 

150. Manninger, I. Resistance of maize to ear rot on the basis of natural infection and inoculation.  

In Proceeding of the 10th Meeting of the Maize and Sorghum Section of EUCARPIA, Varna, 

Bulgaria, 17–19 September 1979; pp. 181–184. 

151. Ramirez, M.L.; Pascale, M.; Chulze, S.; Reynoso, M.M.; March, G.; Visconti, A. Natural 

occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn 

hybrids growth in Argentina. Mycopathologia 1996, 135, 29–34. 

152. Camargos, S.M.; Soares, L.M.V.; Sawazaki, E.; Bolonhezi, D.; Castro, J.L.; Bortolleto, N. 

Accumulation of fumonisins B1 and B2 in freshly harvested Brazilian commercial maize at three 

locations during two non consecutive seasons. Mycopathologia 2002, 155, 219–228. 

153. Blandino, M.; Reyneri, A. Effect of maize hybrid maturity and grain hardness on fumonisin and 

zearalenone contamination. Ital. J. Agron. 2008, 2, 107–117. 

154. Battilani, P.; Formenti, S.; Ramponi, C.; Rossi, V. Dynamic of water activity in maize hybrids is 

crucial for fumonisin contamination in kernels. J. Cereal Sci. 2011, 54, 467–472. 

155. Koehler, B. Natural mode of entrance of fungi into corn ears and some symptoms that indicate 

infection. J. Agric. Res. 1942, 64, 421–442. 

156. Hesseltine, C.W.; Bothast, R.J. Mold development in ears of corn from tasseling to harvest. 

Mycologia 1977, 69, 328–340. 

157. Kommedahl, T.; Windels, C.E. Root-, stalk-, and ear-infecting Fusarium species on corn in the 

USA. In Fusarium Diseases, Biology and Taxonomy; Nelson, P.E., Toussoun, T.A., Cook, R.J., 

Eds.; Pennsylvania State University Press: University Park, PA, USA, 1981; pp. 94–103. 

158. Cassini, R. Fusarium diseases of cereals in western Europe. In Fusarium Diseases, Biology and 

Taxonomy; Nelson, P.E., Toussoun, T.A., Cook, R.J., Eds.; Pennsylvania State University Press: 

University Park, PA, USA, 1981, pp. 56–63. 

159. Scott, G.E.; King, S.B. Site of action of factors for resistance to Fusarium moniliforme in maize. 

Plant Dis. 1984, 68, 804–806. 



Toxins 2015, 7 3293 

 

160. Warfield, C.Y.; Davis, R.M. Importance of the husk covering on the susceptibility of corn hybrids 

to Fusarium ear rot. Plant Dis. 1996, 80, 208–210. 

161. Duncan, K.E.; Howard, R.J. Biology of maize kernel infection by Fusarium verticillioides.  

Mol. Plant-Microbe Interact. 2010, 23, 6–16. 

162. Munkvold, G.P.; Hellmich, R.L.; Showers, W.B. Reduced fusarium ear rot and symptomless 

infection in kernels of maize genetically engineered for European corn borer resistance. 

Phytopathology 1997, 87, 1071–1077. 

163. Davis, R.M.; Kegel, F.R.; Sills, W.M.; Farrar, J.J. Fusarium ear rot of corn. Calif. Agric. 1989, 43, 

4–5. 

164. Headrick, J.M.; Pataky, J.K. Maternal influence on the resistance of sweet corn lines to kernel 

infection by Fusarium moniliforme. Phytopathology 1991, 81, 268–274. 

165. Valdivia, E.R.; Cosgrove, D.J.; Stephenson, A.G. Role of accelerated style senescence in pathogen 

defense. Am. J. Bot. 2006, 93, 1725–1729. 

166. Stewart, D.W.; Reid, L.M.; Nicol, R.W.; Schaafsma, A.W. A mathematical simulation of growth 

of Fusarium in maize ears after artificial inoculation. Phytopathology 2002, 92, 534–541. 

167. Reid, L.M.; Woldemariam, T.; Zhu, X.; Stewart, D.W.; Schaafsma, A.W. Effect of inoculation 

time and point of entry on disease severity in Fusarium graminearum, Fusarium verticillioides, or 

Fusarium subglutinans inoculated maize ears. Can. J. Plant Pathol. 2002, 24, 162–167. 

168. Sekhon, R.S.; Kuldau, G.; Mansfield, M.; Chopra, S. Characterization of fusarium-induced 

expression of flavonoids and pr genes in maize. Physiol. Mol. Plant Pathol. 2006, 69, 109–117. 

169. Reid, L.M.; Mather, D.E.; Arnason, J.T.; Hamilton, R.I.; Bolton, A.T. Changes in phenolic 

constituents of maize silk infected with Fusarium graminearum. Can. J. Botany 1992, 70,  

1697–1702. 

170. Grotewold, E.; Drummond, B.J.; Bowen, B.; Peterson, T. The myb-homologous p-gene controls 

phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic 

gene subset. Cell 1994, 76, 543–553. 

171. Pilu, R.; Cassani, E.; Sirizzotti, A.; Petroni, K.; Tonelli, C. Effect of flavonoid pigments on the 

accumulation of fumonisin B1 in the maize kernel. J. Appl. Genet. 2011, 52, 145–152. 

172. Shephard, G.S.; Thiel, P.G.; Stockenstrom, S.; Sydenham, E.W. Worldwide survey of fumonisin 

contamination of corn and corn-based products. J. AOAC Int. 1996, 79, 671–687. 

173. Picot, A.; Atanasova-Penichon, V.; Pons, S.; Marchegay, G.; Barreau, C.; Pinson-Gadais, L.; 

Roucolle, J.; Daveau, F.; Caron, D.; Richard-Forget, F. Maize kernel antioxidants and their 

potential involvement in Fusarium ear rot resistance. J. Agric. Food Chem. 2013, 61, 3389–3395. 

174. Boutigny, A.-L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.-N.; Pinson-Gadais, L.; 

Richard-Forget, F. Ferulic acid, an efficient inhibitor of type b trichothecene biosynthesis and tri 

gene expression in Fusarium liquid cultures. Mycol. Res. 2009, 113, 746–753. 

175. Walley, J.W.; Kliebenstein, D.J.; Bostock, R.M.; Dehesh, K. Fatty acids and early detection of 

pathogens. Curr. Opin. Plant Biol. 2013, 16, 520–526. 

176. Dall'Asta, C.; Falavigna, C.; Galaverna, G.; Battilani, P. Role of maize hybrids and their chemical 

composition in Fusarium infection and fumonisin production. J. Agric. Food Chem. 2012, 60, 

3800–3808. 



Toxins 2015, 7 3294 

 

177. Gao, X.; Brodhagen, M.; Isakeit, T.; Brown, S.H.; Goebel, C.; Betran, J.; Feussner, I.; Keller, N.P.; 

Kolomiets, M.V. Inactivation of the lipoxygenase zmlox3 increases susceptibility of maize to 

Aspergillus spp. Mol. Plant-Microbe Interact. 2009, 22, 222–231. 

178. Gao, X.; Shim, W.-B.; Goebel, C.; Kunze, S.; Feussner, I.; Meeley, R.; Balint-Kurti, P.; Kolomiets, M. 

Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and 

reduced levels of contamination with mycotoxin fumonisin. Mol. Plant-Microbe Interact. 2007, 

20, 922–933. 

179. Dall'Asta, C.; Giorni, P.; Cirlini, M.; Reverberi, M.; Gregori, R.; Ludovici, M.; Camera, E.;  

Fanelli, C.; Battilani, P.; Scala, V. Maize lipids play a pivotal role in the fumonisin accumulation.  

World Mycotoxin J. 2015, 8, 87–97. 

180. Murillo, I.; Jaeck, E.; Cordero, M.J.; Segundo, B.S. Transcriptional activation of a maize  

calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. 

Biol. 2001, 45, 145–158. 

181. Campo, S.; Carrascal, M.; Coca, M.; Abian, J.; San Segundo, B. The defense response of 

germinating maize embryos against fungal infection: A proteomics approach. Proteomics 2004, 4, 

383–396. 

182. Bravo, J.M.; Campo, S.; Murillo, I.; Coca, M.; Segundo, B.S. Fungus- and wound-induced 

accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4  

(PR-4) family of maize. Plant Mol. Biol. 2003, 52, 745–759. 

183. Chen, Z.Y.; Brown, R.L.; Damann, K.E.; Cleveland, T.E. Identification of maize kernel endosperm 

proteins associated with resistance to aflatoxin contamination by Aspergillus flavus. 

Phytopathology 2007, 97, 1094–1103. 

184. Wolf, M.J.; Buzan, C.L.; Macmasters, M.M.; Rist, C.E. Structure of the mature corn kernel .2. 

Microscopic structure of pericarp, seed coat, and hilar layer of dent corn. Cereal Chem. 1952, 29, 

334–348. 

185. Hoenisch, R.W.; Davis, R.M. Relationship between kernel pericarp thickness and susceptibility to 

fusarium ear rot in-field corn. Plant Dis. 1994, 78, 517–519. 

186. Ivic, D.; Cabric, M.; Palaversic, B.; Cvjetkovic, B. No correlation between pericarp thickness and 

Fusarium ear rot (Fusarium verticillioides) in Croatian maize hybrids and lines. Maydica 2008, 53, 

297–301. 

187. Russin, J.S.; Guo, B.Z.; Tubajika, K.M.; Brown, R.L.; Cleveland, T.E.; Widstrom, N.W. 

Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. 

Phytopathology 1997, 87, 529–533. 

188. Sampietro, D.A.; Vattuone, M.A.; Presello, D.A.; Fauguel, C.M.; Catalán, C.A.N. The pericarp 

and its surface wax layer in maize kernels as resistance factors to fumonisin accumulation by 

Fusarium verticillioides. Crop Prot. 2009, 28, 196–200. 

189. Dixon, R.A.; Steele, C.L. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. 

Trends Plant Sci. 1999, 4, 394–400. 

190. Burr, S.J.; Fry, S.C. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl 

esters to form oligoferuloyl esters and ether-like bonds. Plant J. 2009, 58, 554–567. 



Toxins 2015, 7 3295 

 

191. Sampietro, D.A.; Fauguel, C.M.; Vattuone, M.A.; Presello, D.A.; Catalán, C.A.N. 

Phenylpropanoids from maize pericarp: Resistance factors to kernel infection and fumonisin 

accumulation by Fusarium verticillioides. Eur. J. Plant Pathol. 2012, 135, 105–113. 

192. Costa, R.S.; Moro, F.V.; Moro, J.R.; da Silva, H.P.; Panizzi, R.D. Relationship between caryopsis 

morphological characteristics and Fusarium ear rot in corn. Pesqui. Agropecu. Bras. 2003, 38,  

27–33. 

193. Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Germplasm. In Quantitative Genetics in Maize 

Breeding; Springer: New York, NY, USA, 2010; Volume 6. 

194. Dickerson, G.W. Specialty Corns; Cooperative Extension Service, College of Agriculture and 

Home Economics, New Mexico State University: Las Cruces, NM, USA, 2003. 

195. Doko, M.B.; Canet, C.; Brown, N.; Sydenham, E.W.; Mpuchane, S.; Siame, B.A. Natural  

co-occurrence of fumonisins and zearalenone in cereals and cereal-based foods from eastern and 

southern Africa. J. Agric. Food Chem. 1996, 44, 3240–3243. 

196. Czembor, E.; Ochodzki, P. Resistance of flint and dent maize forms for colonization by Fusarium 

spp. and mycotoxins contamination. Maydica 2009, 54, 263–267. 

197. Wit, M.; Warzecha, R.; Mirzwa-Mroz, E.; Jabłońska, E.; Ochodzki, P.; Waśkiewicz, A.; 

Wakuliński, W. Susceptibility of flint and dent maize ears to Fusarium species. Phytopathologia 

2011, 60, 35–45. 

198. Hennigen, M.R.; Valente Soares, L.M.; Sanchez, S.; Di Benedetto, N.M.; Longhi, A.;  

Eyhérabide, G.; Torroba, J.; Zanelli, M. Fumonisin in Corn Hybrids Grown in Argentina for Two 

Consecutive Seasons; IUPAC: Guaruja, Brazil, 2000. 

199. Shim, W.B.; Flaherty, J.E.; Woloshuk, C.P. Comparison of fumonisin B1 biosynthesis in maize 

germ and degermed kernels by Fusarium verticillioides. J. Food Prot. 2003, 66, 2116–2122. 

200. Ball, S.G.; van de Wal, M.; Visser, R.G.F. Progress in understanding the biosynthesis of amylose. 

Trends Plant Sci. 1998, 3, 462–467. 

201. Myers, A.M.; Morell, M.K.; James, M.G.; Ball, S.G. Recent progress toward understanding 

biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122, 989–997. 

202. Coe, E.H.; Neuffer, M.G.; Hoisington, D.A. The Genetics of Corn; American Society Agronomy: 

Madison, WI, USA, 1988. 

203. Neuffer, M.G.; Coe, E.H.; Wessler, S.R. Mutants of Maize; Cold Spring Harbor Press:  

Cold Spring Harbor, NY, USA, 1997. 

204. James, M.G.; Denyer, K.; Myers, A.M. Starch synthesis in the cereal endosperm. Curr. Opin. Plant 

Biol. 2003, 6, 215–222. 

205. Blandino, M.; Reyneri, A. Comparison between normal and waxy maize hybrids for  

Fusarium-toxin contamination in nw Italy. Maydica 2007, 52, 127–134. 

206. Wang, Y.J.; White, P.; Pollak, L.; Jane, J. Characterization of starch structures of 17 maize 

endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 1993, 70,  

171–179. 

207. Tsai, C.Y. Genetics of Storage Protein in Maize; AVI Publishing: Westport, CT, USA, 1982. 

208. Lee, L.; Tsai, C.Y. Effect of sucrose accumulation on zein synthesis in maize starch-deficient 

mutants. Phytochemistry 1985, 24, 225–229. 



Toxins 2015, 7 3296 

 

209. Fergason, V. High amylose and waxy corns. In Specialty Corns, 2nd ed.; Hallauer, A.R., Ed.;  

CRC Press: Boca Raton, FL, USA, 2001; pp. 63–84. 

210. Bluhm, B.H.; Woloshuk, C.P. Amylopectin induces fumonisin B1 production by Fusarium 

verticillioides during colonization of maize kernels. Mol. Plant-Microbe Interact. 2005, 18,  

1333–1339. 

211. Warren, H.L. Comparision of normal and high-lisine maize hybrids for resistance to kernel rot 

caused by Fusarium moniliforme. Phytopathology 1978, 68, 1331–1335. 

212. Loesch, J.R.; Foley, P.J.; Cox, D.F. Comparative resistance of o2 and normal inbred lines of maize 

to ear rotting pathogens. Crop Sci. 1976, 16, 841–842. 

213. Schultz, J.A.; Juvik, J.A. Current models for starch synthesis and the sugary enhancer 1 (se1) 

mutation in Zea mays L. Plant Physiol. Biochem. 2004, 42, 457–464. 

214. Bhave, M.R.; Lawrence, S.; Barton, C.; Hannah, L.C. Identification and molecular characterization 

of shrunken-2 cDNA clones of maize. Plant Cell 1990, 2, 581–588. 

215. Berger, R.D.; Wolf, E.A. Control of seedborne and soilborne mycoses of florida sweet corn by 

seed treatment. Plant Dis. Reporter 1974, 58, 922–923. 

216. Styer, R.C.; Cantliffe, D.J. Infection of 2 endosperm mutants of sweet corn by Fusarium 

moniliforme and its effect on seedling vigor. Phytopathology 1984, 74, 189–194. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


