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Abstract: Background: Mushroom tyrosinase, a copper containing enzyme, modifies 

growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in 

part due to interference with mitochondrial function. Erythrocytes lack mitochondria but 

are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by 

cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the 

erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of 

cytosolic Ca2+-activity ([Ca2+]i) and activation of sphingomyelinase with subsequent 

formation of ceramide. The present study explored, whether tyrosinase stimulates 

eryptosis. Methods: Cell volume has been estimated from forward scatter, 

phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and 

ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 

24 h exposure to mushroom tyrosinase (7 U/mL) was followed by a significant increase  

of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of  

annexin-V-binding. The annexin-V-binding following tyrosinase treatment was 

significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. 

Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers 

cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ 

and ceramide formation. 
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1. Introduction 

Mushroom tyrosinase has been suggested for the use in malignancy [1]. When applied with 

appropriate substrates, it may generate cytostatic products effective in vivo [2–4]. Tyrosinase may at 

least in part be effective by interference with mitochondrial function [2]. On the other hand, mushroom 

tyrosinase generates products leading to mutagenesis and carcinogenesis [5–10]. As a matter of fact, 

tyrosinase has been shown to trigger the suicidal death of nucleated cells or apoptosis [11]. 

Even though lacking mitochondria and nuclei, erythrocytes are still able to undergo apoptosis-like 

suicidal death or eryptosis [12]. Eryptosis may be elicited by increase of cytosolic Ca2+ concentration 

([Ca2+]i) resulting at least partially from Ca2+ entry through Ca2+-permeable cation channels [12]. An 

increase of [Ca2+]i may shrink erythrocytes due to activation of Ca2+-sensitive K+ channels leading to 

K+ exit, hyperpolarization, Cl- exit and, thus, cellular loss of KCl and osmotically obliged water [13]. 

Increased [Ca2+]i further stimulates cell membrane scrambling with translocation of phosphatidylserine 

to the erythrocyte surface [12]. The Ca2+ sensitivity of cell membrane scrambling is increased by 

ceramide [12]. Signaling of eryptosis further includes caspases [14–18] and several kinases including 

AMP activated kinase AMPK [19], casein kinase 1α [20,21], cGMP-dependent protein kinase [22], 

Janus-activated kinase JAK3 [23], protein kinase C [24], p38 kinase [25], PAK2 kinase [26], as well as 

sorafenib [27] and sunifinib [28] sensitive kinases. 

Eryptosis is stimulated by a wide variety of xenobiotics [12,28–63] and excessive eryptosis is 

observed in several clinical disorders [12], such as diabetes [18,64,65], renal insufficiency [66], 

hemolytic uremic syndrome [67], sepsis [68], malaria [69], sickle cell disease [70], Wilson’s disease [71], 

iron deficiency [72], malignancy [73], phosphate depletion [74], and metabolic syndrome [48]. 

The present study explored, whether tyrosinase influences [Ca2+]i, cell volume and phosphatidylserine 

translocation to the erythrocyte surface. The observations disclose that exposure to tyrosinase 

stimulates erythrocyte cell membrane scrambling, an effect paralleled by and at least in part secondary 

to increase of [Ca2+]i. 

2. Results and Discussion 

The present study addressed the effect of tyrosinase on eryptosis. A hallmark of eryptosis is the 

breakdown of phosphatidylserine asymmetry of the erythrocyte cell membrane, which increases the 

phosphatidylserine abundance at the cell surface. Phosphatidylserine exposing erythrocytes were 

identified by annexin-V-binding in FACS analysis. As illustrated in Figure 1, a 24-h exposure to 

tyrosinase increased the percentage of annexin-V-binding erythrocytes, an effect reaching statistical 

significance at 5 U/mL tyrosinase activity. 

A second hallmark of eryptosis is cell shrinkage. Accordingly, cell volume was estimated utilizing 

forward scatter, which was determined by flow cytometry. As shown in Figure 2, a 24-h exposure to 

tyrosinase tended to increase erythrocyte forward scatter, an effect, however, not reaching statistical 

significance. Further experiments were performed to elucidate whether tyrosinase abrogates the effect 

of the Ca2+ ionophore inomomycin (1 µM) on erythrocytes forward scatter. As a result, a 30-min 

exposure of erythrocytes was followed by a decrease of forward scatter from 518 ± 6 (n = 4) to  
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134 ± 5 (n = 4) in the absence of tyrosinase and from 557 ± 8 (n = 4) to 194 ± 16 (n = 4) in the presence 

of 7 U/mL tyrosinase. Thus, tyrosinase did not abrogate the shrinking effect of excessive Ca2+ entry. 

Figure 1. Effect of tyrosinase on phosphatidylserine exposure. (A,B) Original histogram of 

annexin V binding of erythrocytes following exposure for 24 h to Ringer solution without 

(A) or with (B) 7 U/mL tyrosinase. M1 indicates the gating of annexin V binding cells (C) 

Arithmetic means ± SEM (n = 4) of erythrocyte annexin-V-binding following incubation 

for 24 h to Ringer solution without (white bar) or with (black bars) presence of tyrosinase 

(1–7 U/mL). ** (p < 0.01), *** (p < 0.001) indicate significant differences from the 

absence of tyrosinase (ANOVA). 
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Figure 2. Effect of tyrosinase on erythrocyte forward scatter. (A) Original histogram of 

forward scatter of erythrocytes following exposure for 24 h to Ringer solution without 

(grey shadow) and with (black line) presence of 7 U/mL tyrosinase; (B) arithmetic  

means ± SEM (n = 4) of the normalized erythrocyte forward scatter (FSC) following 

incubation for 24 h to Ringer solution without (white bar) or with (black bars) tyrosinase 

(1–7 U/mL). 
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Cell membrane scrambling is stimulated by increase of cytosolic Ca2+ activity ([Ca2+]i). Thus, 

[Ca2+]i was determined utilizing Fluo3 fluorescence. To this end, erythrocytes were loaded with  

Fluo3-AM and Fluo3 fluorescence determined in FACS analysis following prior incubation in Ringer 

solution without or with tyrosinase. As shown in Figure 3, a 24-h exposure of human erythrocytes to 

tyrosinase was followed by an increase of Fluo3 fluorescence, an effect reaching statistical 

significance at 5 U/mL of tyrosinase concentration. 

Figure 3. Effect of mushroom tyrosinase on erythrocyte cytosolic Ca2+ concentration. (A) 

Original histogram of Fluo3 fluorescence in erythrocytes following exposure for 24 h to 

Ringer solution without (grey shadow) and with (black line) presence of 7 U/mL 

tyrosinase; (B) arithmetic means ± SEM (n = 4) of the Fluo3 fluorescence (arbitrary units) 

in erythrocytes exposed for 24 h to Ringer solution without (white bar) or with (black bars) 

tyrosinase (1–7 U/mL). * (p < 0.05) indicates significant difference from the absence of 

tyrosinase (ANOVA). 
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An additional series of experiments was performed testing whether extracellular Ca2+ entry was 

required for the effect of tyrosinase on cell membrane scrambling. Erythrocytes were exposed to  

7 U/mL tyrosinase for 24 h, either in the presence of 1 mM Ca2+, or in the absence of Ca2+, and the 

presence of Ca2+ chelator EGTA (1 mM). As illustrated in Figure 4, the effect of tyrosinase on 

annexin-V-binding was significantly decreased in the nominal absence of Ca2+. However, even in the 

absence of extracellular Ca2+ tyrosinase still increased the percentage annexin V binding erythrocytes. 

In order to test whether tyrosinase increased the formation of ceramide, which is known to trigger 

eryptosis even without increase of [Ca2+]i, ceramide abundance at the erythrocyte surface was 

determined utilizing an anti-ceramide antibody. As illustrated in Figure 5, exposure of erythrocytes to 

7 U/mL tyrosinase significantly increased the abundance of ceramide at the erythrocyte surface. 

The present study uncovers that tyrosinase stimulates cell membrane scrambling leading to 

phosphatidylserine translocation to the erythrocyte surface. Treatment of human erythrocytes with  

5 U/L tyrosinase is further followed by increase of cytosolic Ca2+ activity ([Ca2+]i) and ceramide formation. 
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Figure 4. Effect of Ca2+ withdrawal on tyrosinase- induced annexin-V-binding.  

(A,B) Original histograms of annexin V binding erythrocytes following exposure for 24 h 

to Ringer solution without (grey shadow) and with (black line) presence 7 U/mL tyrosinase 

in the presence (A) and absence (B) of calcium. M1 indicates the gating of annexin V 

binding cells; (C) arithmetic means ± SEM (n = 4) of the percentage of annexin-V-binding 

erythrocytes after a 24 h treatment with Ringer solution without (white bar) or with (black 

bars) 7 U/mL tyrosinase in the presence (left bars, +Ca) and absence (right bars, −Ca) of 

calcium. *** (p < 0.001) indicates significant difference from the absence of tyrosinase 

(ANOVA) # (p < 0.05) indicates significant difference from the respective values in the 

presence of Ca2+. 
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Despite its effect on [Ca2+]i, tyrosinase did not decrease but tended to increase the erythrocyte 

forward scatter. The increase of [Ca2+]i were expected to activate Ca2+ sensitive K+ channels [12] with 

subsequent K+ exit, cell membrane hyperpolarization, Cl− exit and, thus, cellular loss of KCl with 

osmotically obliged water [13]. Possibly, tyrosinase inhibits the Ca2+ sensitive K+ channels, blocks the 

Cl− channels or stimulates some other mechanism increasing cell volume. Notably, the ionomycin 

induced erythrocyte shrinkage was not abrogated in the presence of tyrosinase. Excessive erythrocyte 

swelling may eventually result in rupture of the cell membrane leading to release of cellular 

hemoglobin, which is filtered in renal glomerula and subsequently occludes renal tubules [75]. 

Eryptosis is followed by removal of the defective erythrocytes, Phosphatidylserine at the surface of 

eryptotic cells binds to the respective receptors of phagocytosing cells leading to subsequent 

engulfment of the affected erythrocytes [12]. Accordingly, eryptotic cells are rapidly cleared from 

circulating blood [12]. If the accelerated loss of erythrocytes during stimulated eryptosis is not 

compensated by enhanced formation of new erythrocytes, the clearance of eryptotic erythrocytes from 

circulating blood results in anemia [12]. 
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Figure 5. Effect of tyrosinase on ceramide formation. (A) Original histogram of ceramide 

surface abundance of erythrocytes following exposure for 24 h to Ringer solution  

without (grey shadow) and with (black line) presence of 7 U/mL tyrosinase; (B) arithmetic 

means ± SEM (n = 4) of ceramide abundance after a 24-h incubation in Ringer solution 

without (white bar) or with 7 U/mL tyrosinase (black bar). * (p < 0.05) indicates significant 

difference from the absence of tyrosinase (t test). 
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Phosphatidylserine exposing erythrocytes may further adhere to the vascular wall by binding of 

phosphatidylserine at the erythrocyte surface to endothelial CXCL16/SR-PSO [76]. The adherence of 

suicidal erythrocytes to the vascular wall is expected to interfere with microcirculation [76–81]. 

Phosphatidylserine exposing erythrocytes have further been shown to trigger blood clotting and, thus, 

foster thrombosis [77,82,83]. 

3. Experimental Section 

3.1. Erythrocytes, Solutions and Chemicals 

Leukocyte-depleted erythrocytes were kindly provided by the blood bank of the University of 

Tübingen. The study is approved by the ethics committee of the University of Tübingen (184/2003V). 

Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 

125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES),  

5 glucose, 1 CaCl2; pH 7.4 at 37 °C for 48 h. Where indicated, erythrocytes were exposed to 

mushroom tyrosinase (Sigma, Aldrich, Germany) at the indicated concentrations. In Ca2+-free Ringer 

solution, 1 mM CaCl2 was substituted by 1 mM glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic 

acid (EGTA). 

3.2. FACS Analysis of Annexin-V-Binding and Forward Scatter 

After incubation under the respective experimental condition, 50 µL cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; 

ImmunoTools, Friesoythe, Germany) in this solution at 37 °C for 20 min under protection from light. 
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In the following, the forward scatter (FSC) of the cells was determined, and annexin-V fluorescence 

intensity was measured with an excitation wavelength of 488 nm and an emission wavelength of  

530 nm on a FACS Calibur (BD, Heidelberg, Germany). Following treatment with Ca2+-free Ringer 

solution, care was taken to measure annexin V binding rapidly enough to avoid triggering of cell 

membrane by the addition of 5 mM Ca2+. 

3.3. Measurement of Intracellular Ca2+ 

After incubation erythrocytes were washed in Ringer solution and then loaded with Fluo-3/AM 

(Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl2 and 5 µM Fluo-3/AM. The cells 

were incubated at 37 °C for 30 min and washed twice in Ringer solution containing 5 mM CaCl2. The 

Fluo-3/AM-loaded erythrocytes were resuspended in 200 µL Ringer. Then, Ca2+-dependent fluorescence 

intensity was measured with an excitation wavelength of 488 nm and an emission wavelength of  

530 nm on a FACS Calibur. 

3.4. Determination of Ceramide Formation 

For the determination of ceramide, a monoclonal antibody-based assay was used. After incubation, 

cells were stained for 1 h at 37 °C with 1 µg/mL anti ceramide antibody (clone MID 15B4, Alexis, 

Grünberg, Germany) in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:5. The 

samples were washed twice with PBS-BSA. Subsequently, the cells were stained for 30 min with 

polyclonal fluorescein isothiocyanate (FITC) conjugated goat anti-mouse IgG and IgM specific 

antibody (Pharmingen, Hamburg, Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody 

was removed by repeated washing with PBS-BSA. The samples were then analyzed by flow 

cytometric analysis with an excitation wavelength of 488 nm and an emission wavelength of 530 nm. 

3.5. Statistics 

Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical 

analysis was made using ANOVA with Tukey’s test as post-test and t-test as appropriate. n denotes the 

number of different erythrocyte specimens studied. As different erythrocyte specimens used in distinct 

experiments are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have 

been used for control and experimental conditions. 

4. Conclusions 

Tyrosinase stimulates Ca2+ entry, which in turn triggers cell membrane scrambling with 

phosphatidylserine translocation to the erythrocyte surface. 
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