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Abstract: A single laboratory validation study of a rapid and sensitive quantitative method 

for the analysis of cereulide toxin produced by Bacillus cereus using ultra high performance 

liquid chromatography-electrospray-tandem mass spectrometry is presented. The analysis of 

this cyclic peptide toxin was validated for pasta and rice samples using a newly presented 

synthetic cereulide peptide standard, together with 13C6-cereulide that previously have not 

been commercially available. The use of cereulide standard was also compared to the most 

frequently used surrogate standard, the antibiotic valinomycin. The performance of the 

method was evaluated by analyzing spiked sample pools from different types of rice and 

pasta, as well as 21 individual rice and pasta samples from differently prepared meals. 

Inoculation of samples with three cereulide toxin-producing strains of Bacillus cereus was 

finally used to mimic naturally contaminated foods. The quantification range of the method 

was 1–500 ng/g (R2 = 0.999) and the limits of detection and quantification were 0.1 and  

1 ng/g, respectively. The precision varied from 3% to 7% relative standard deviation and the 

trueness from −2% to +6% relative bias at different concentration levels in cooked rice and pasta. 
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1. Introduction 

Cereulide toxine produced by Bacillus cereus, a Gram-positive bacteria, is a common cause of food 

poisoning [1,2]. The symptoms are characterized by nausea and vomiting that can be accompanied by 

diarrheal syndrome in approximately a third of the cases [3]. The intoxication may be severe and can 

lead to fatal outcomes [4–6]. Although, the diarrheal part of the illness is caused by enterotoxins 

produced in the small intestine after ingestion of bacterial cells/spores, and not by cereulide, the 

combination of symptoms pronounces the seriousness of the illness [7]. The production of toxins has 

been observed as a bacterial response to the environmental conditions like pH, temperature, oxygen 

tension and high starch content in foods like rice and pasta dishes [2,8]. The cereulide toxin is as a cyclic 

dodecadepsipeptide with a molecular mass of 1.2 kDa and exceptional stability properties which make 

it difficult to inactivate in foods [9–11]. These properties include the resistance to digestion enzymes 

like pepsin and trypsin, extreme pH conditions and even heat at temperatures of up to 150 °C [12].  

The toxin is pre-formed in foods and is able to retain its biological toxic activity throughout the human 

acidic stomach environment and the digestion region. 

The human toxic dose of cereulide has not been determined, but has been estimated from animal 

studies or in vitro experiments to be ~8 μg/kg body weight [9,13–15]. The lowest illness-inducing doses 

of cereulide toxin in foods that have been reported to now are at low nanogram level, ~5–10 ng of 

cereulide/g of foods [16,17]. At lower doses, cereulide might give rise to symptoms of milder nature or 

diffuse enough that might pass unrecorded. 

Several types of detection methods for cereulide have been presented, among which a bioassay based 

on boar spermatozoa motility is reported to be one of the most easily performed [14,18]. Other methods 

include cytotoxicity based assays in cell cultures like rat liver cells [19], HEP-2 cells [20] or CHO 

(Chinese hamster ovary) cells [21]. Along with the difficulties to produce immunoassay based methods 

for cereulide toxin [16], the bioassay based methods are known to suffer from interferences with molecules 

that have similar properties as the analyte of interest causing cross-reactivity and consequently luck of 

specificity for the analysis. Using chemical methods most of such issues can be circumvented. Several 

reports on successful quantitative analysis of cereulide using liquid chromatography coupled to mass or 

tandem mass spectrometry (LC-MS and MS/MS) have been presented [16,22–24]. However, as a 

synthetic cereulide standard has not been commercially available a surrogate standard, like the antibiotic 

valinomycin, had to be used as the best choice in previous studies where the content of cereulide in food 

samples was expressed in valinomycin equivalents. Recently, the synthetic cereulide standard was 

developed that has become commercially available and used in this study [25]. 

In this report, we present a short in-house validation of a method using the novel synthetic cereulide 

standard together with 13C6-labeled cereulide as internal standard for quantitative analysis of cereulide 

toxin in rice and pasta samples with UPLC-ESI-MS/MS. This is, to the best of our knowledge, the first 

report on the quantitative MS analysis of cereulide using original standard. The usage of original standard 

eliminates possible ionization differences, due to matrix effects interferences in the ES-ionization step  
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(like signal enhancement or suppression) [26] that might exist when using surrogate standards. This, in 

combination with the benefits of the fragmentation in tandem mass spectrometry provides maximal 

specificity and increases the robustness and accuracy of the analysis. The presented method is easily 

performed and sensitive which together with its rapidness and specificity makes it be the best choice in 

emergent scenarios when it is important to distinguish the food-born disease caused by low levels of 

cereulide from B. cereus from other food intoxications that give similar symptoms, in order to protect 

human health. 

2. Results and Discussion 

2.1. Validation Design 

To set-up and validate the UPLC-ESI-MS/MS method for quantitative analysis of cereulide toxin 

cooked rice and pasta samples of different types were prepared, pooled and spiked with cereulide toxin 

standard. For the quantitative analysis of cereulide a newly presented commercially available synthetic 

cereulide standard and 13C6-internal standard of cereulide were used [25]. 

2.2. Calibration and Linearity 

Linearity and possible matrix effects during the UPLC-MS/MS analysis were evaluated by comparing 

calibration curves prepared from the analysis of extracts of the pooled samples of each matrix and the 

methanol/water mixtures both spiked with cereulide at 0, 1, 5, 20, 100 and 500 ng/g. The derived 

calibration curves were linear in the tested concentration range (R2 were for solvent/water: 1.000,  

pasta extract: 0.9999 and rice extract: 0.9998) and no evidence of matrix effects could be identified.  

The calibration curve of the cereulide standard was compared to the corresponding calibration curve of 

valinomycin (Figure 1). The diagram visualizes the difference in signal response between these  

two compounds, which, under the analytical conditions applied in the present method, would result in 

an underestimation of the cereulide content by a factor of two. Furthermore, as Figure 2 shows,  

the differences between cereulide and valinomycin are visible also in chromatography where these  

two compounds were compared at the same concentration and for the same product ion (m/z 172.15). 

This confirms the advantages of using the cereulide standard compared to valinomycin. 

2.3. Precision, Trueness and Recovery 

The precision and trueness of the method were studied by quantitative analysis of pooled rice and 

pasta samples spiked at three different concentrations (1, 10 and 100 ng/g). The results were similar for 

both food types, with relative standard deviation (RSD) values ranging from 3% to 7% and bias values 

from −2% to +6% (Table 1). In another experiment, the possible influence on sample matrix variations 

on precision and trueness was investigated by spiking 21 different authentic food samples of rice and 

pasta, respectively. The RSD and bias values were within the ranges obtained for pooled samples, 

indicating that the method is robust towards sample matrix effects. The absolute extraction recovery, 

obtained from comparative analysis of samples spiked before and after extraction, was determined to be 

91%–93%, not differing significantly between pasta and rice. The extraction losses will not influence 

the quantitative results of the method, as estimated by the trueness figures given above, since the internal 
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standard used for quantification is added prior to extraction. The results from the experiments on 

precision, trueness and recovery are summarized in Table 1. 

Figure 1. Comparison of calibration curves for cereulide standard and valinomycin. Area is 

plotted as a function of the concentration for each of the compounds. 

 

Figure 2. MRM spectrum (multiple reaction monitoring-MRM) of the same product ions 

(m/z 172.15) for cereulide standard (B) and valinomycin (A) at a concentration of 100 ng/g. 

The peak annotations show the retention time and area. 
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Table 1. Results from experiments on trueness, precision and extraction recovery. 

Matrix 
Type of  

sample 

Spiking level 

(ng/g) 

Found 

(ng/g) 

Trueness 

(% Bias) 

RSD a 

(%) 

Recovery b 

(%) 

Number of  

samples c 

Pasta pooled 1.0 0.98 −2.4 5.6  18 

 pooled 10 10.6 +6.3 2.9  18 

 pooled 100 103 +3.5 3.5  18 

 individual 5.0 4.92 −1.5 3.3 91 21 

Rice pooled 1.0 0.97 −3.4 6.6  18 

 pooled 10 10.5 +4.7 4.2  18 

 pooled 100 105 +5.2 3.4  18 

  individual 5.0 4.77 −4.5 3.1 93 21 

a Relative standard deviation; b Absolute extraction recovery, obtained by comparing results for samples spiked 

before and after extraction, respectively; c Six or seven replicates on three different days. 

2.4. LOD and LOQ 

The limit of detection (LOD) for the method was experimentally determined by spiking blank rice 

and pasta with cereulide standard at 0.5, 0.1, 0.05 and 0.01 ng/g, and was found to be 0.1 ng/g. At this 

concentration level of cereulide all three confirmation fragments were visible and the fragment ion area 

quotients of the quantification fragments and of the two confirmation fragments were within the interval 

±20% (see Table 2 for details) and with a S/N of ≥20 (calculated from the measurement of the  

peak-to-peak noise around the retention time of the analyte). Although the cereulide was not quantified 

on this level the same criteria for the peak identification was applied in order to retain the specificity of 

the detection. The limit of quantification (LOQ) for the method was set to 1 ng/g, defined as the lowest 

level at which acceptable precision and trueness was experimentally proven. 

Table 2. The summary of the m/z values and parameter settings in the MS and MS/MS 

analysis. The product ions used as quantification fragments are indicated by bold figures. 

Analyte Precursor ion (m/z) Product ion (m/z) Cone (V) Collision (eV) 

Cereulide 1170.7 357.3 64 68 

 1170.7 314.2 64 72 

 1170.7 172.15 64 80 

Cereulide-C13 1176.7 315.2 56 70 

 1176.7 172.15 56 80 

 1176.7 72.1 56 80 

2.5. Specificity 

The specificity of the method was investigated using 21 blank food samples from each type of matrix 

that were analyzed regarding the presence of fragments associated with the cereulide toxin or the internal 

standard. The samples were from authentic cooked pasta or rice meals prepared in individual households 

or restaurants. In most cases they contained smaller amounts of other meal components, e.g., meat and 

tomato sauce. No interferences were found at the concentration levels ≥LOD in any of these samples. 

Based on these results, the method is considered as specific for cereulide toxin. 
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2.6. Incurred Samples 

Finally, the method was tested under conditions similar to real food contamination by analysis of 

cereulide in blank food samples incubated with B. cereus. The food samples had been inoculated with 

cultures of three different strains of B. cereus and incubated for 48 h at 25 °C and 30 °C, where after the 

sample extracts were prepared and analyzed as described in Sample preparation and UPLC-MS/MS. 

Whereas there was no evidence of the cereulide presence in two of the incubated samples (SLV517 and 

SLV516), the third sample (CCUG52702) contained high amount of cereulide (beyond the highest 

validated concentration level of the method). This demonstrates the rapidness of the cereulide production 

process to concentrations far above the illness-inducing doses for humans that easily can be reached in 

very small amounts of foods when stored at ambient temperature. The two of the B. cereus inoculated 

samples in which the cereulide toxin was not found (SLV517 and SLV516) were presumably containing 

non-cereulide producing B. cereus strains that, on the other hand, might possess the ability to produce 

enterotoxins (diarrheal toxins), as these strains were isolated from samples suspected to cause the 

foodborne illness. However, this type of toxins cannot be identified with the present method. 

3. Experimental Section 

3.1. Chemicals and Materials 

The synthetic cereulide peptide standard and the 13C6-labeled internal standard were purchased from 

Chiralix B. V. (Nijmegen, The Netherlands). Valinomycin was purchased from Sigma-Aldrich 

(Stockholm, Sweden). Acetonitrile was of LC-MS grade purchased from Fischer Scientific 

(Loughborough, Leicester, UK), and all other chemicals were of pro-analysis grade and obtained from 

Merck (Darmstadt, Germany). Water was purified with Milli-Q purification system (Millipore, Solna, 

Sweden). Stock solutions were prepared by dissolving cereulide standard in methanol. The solutions 

were stored at −20 °C until analysis when they were further diluted to prepare solutions at a concentration 

range of 0–500 ng/g. 

3.2. Validation Samples 

Pool samples of rice and pasta, respectively, were prepared by cooking raw products purchased at  

a local store according to the instructions on the packages, pooling the three different brands and 

homogenizing each pool in a mixer. 

Individual samples of authentic food were donated from lunch boxes prepared by different persons. 

In total, 21 samples of rice and as many of pasta were collected. The samples contained mainly pasta or 

rice but also smaller amounts of sauce, fat and protein were included which was regarded as a robustness 

challenge for the method. 

Spiked samples were prepared by adding cereulide dissolved in methanol to homogenized food 

samples. After mixing, the spiked sample was left at room temperature for 30 min for equilibration 

before extraction and analysis as described in the next sections. For determination of extraction recovery 

spiking was also done in blank sample extracts. 
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In order to test the usefulness of the method for the analysis of real samples contaminated with 

cereulide toxin producing strains of Bacillus cereus three different B. cereus strains were grown on blood 

agar plates (Oxoid, Basingstoke, UK). Two–three pure colonies of each of the bacteria strains, previously 

stored at −70 °C, were transferred and suspended in 10 mL of saline buffer (0.9% NaCl). From each of 

these suspensions 500 μL were used to contaminate 3 g portions of rice or pasta, respectively, and the 

samples were incubated in 25 °C and 30 °C during 48 h. Thereafter, the internal standard was added and 

the extraction procedure was applied for these samples and positive/negative control samples following 

the analysis and evaluation as described below. 

3.3. Sample Extraction 

Homogenized food samples (3 g) were placed in a sample tube and 13C6-Cereulide internal standard 

solution was added to a concentration of 10 ng/g (50 μL of a 0.6 μg/mL methanol solution). The extraction 

procedure was thereafter started by adding 15 mL of methanol and mixing samples for 30 s using a 

vortex mixer. The samples were then shaken for 15 min and centrifuged at 4000 × g for 15 min. Finally, 

500 μL sample extract was mixed with 500 μL of water before injection in the UPLC-MS/MS system. 

3.4. UPLC-ESI-MS/MS 

Analysis was performed using an Acquity UPLC BEH C8 1.7 μm, 2.1 × 50 mm column and Waters 

UPLC I-Class (Waters, Milford, MA, USA) with Waters Xevo TQ-S mass spectrometer system (Waters) 

operating in ESI+ mode. The ionization parameters were set to: capillary voltage 3 kV, desolvation 

temperature 450 °C, desolvation gas flow rate 800 L/h, source temperature of 150 °C, cone gas flow rate 

150 L/h, collision gas flow rate 0.15 mL/min and the collision gas pressure 3.5 ×10−3 mBar. The column 

temperature was maintained at 40 °C and the injection volume was 10 μL. The analysis was performed in 

multiple-reaction-monitoring mode and argon was used as the collision gas. Mobile phase gradient consisted 

of 1 mM ammonium formate in water containing 0.05% formic acid (A) and 0.05% formic acid in acetonitrile 

(B). The flow rate was set to 0.5 mL/min. The gradient started at 50% B for 1 min, linearly increased to 95% B 

over 3 min and kept at 95% B for 2 min and then reduced to 50% B over 0.1 min, following an equilibration 

period of 1 min. The highest abundant ions in MS1 were the ammonium adducts [M+NH4
+] of the cereulide 

and the 13C6- cereulide internal standard corresponding to m/z 1170.7 and 1176.7 respectively, which were 

consequently selected as precursor ions. For identification and quantification in MS2 the product ions  

m/z 1170.7→172.15 and 1176.7→172.15 were selected. Table 2 summarizes the details of the MS and 

MS/MS analysis. For quantitative analysis Targetlynx v 4.1 software (Waters, 2011) was applied. Solutions 

of cereulide (0, 1, 5, 20, 100 and 500 ng/g) in 50% methanol, all containing 13C6-cereulide at 10 ng/g, 

were injected to obtain calibration curves. These were constructed by plotting peak area ratios of 

cereulide to internal standard against concentration ratios of the analyte to the internal standard using 

linear regression. 

For the confirmation of the analyte findings the quotients of areas of the quantification fragments and 

the two confirmation fragments were used which should not differ more than ±20% of the average for 

the quotients of the other calibration points in the curve. Additionally, the signal-to-noise ratio (S/N) has 

to be ≥20 in the positive control sample for all the fragments. 
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4. Conclusions 

An in-house validation of a fast and straightforward UPLC-ESI-MS/MS method for qualitative and 

quantitative determination of cereulide toxin from Bacillus cereus is presented. The method is validated 

for food matrices based on rice and pasta, which stand for the vast majority of the food poisonings 

involving cereulide in the world. A, nowadays, commercially available synthetic cereulide standard and 
13C6-labeled internal standard have been used being the ideal standards for quantitative MS analysis of 

cereulide toxin. Although, the robustness of the method is not evaluated in this study it is strengthened 

by use of the 13C6-cereulide internal standard, which enables revealing of possible robustness related 

method deviations. This involves the advantages of minimizing the risk of false negative results  

as well as it equalizes the prerequisites for optimal electrospray ionization and MS-detection of cereulide. 

The presented method is time and cost effective and easy to perform which together with its high 

sensitivity, specificity and precision makes it convenient to apply in emergent situations where it is 

important to reveal or reject the presence of the cereulide as the suspected causative agent in food 

poisonings in order to protect human health. 
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