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Abstract: Among the great number of addictive modules which have been discovered, 

only a few have been characterized. However, research concerning the adoption of  

toxins from these systems shows their great potential as a tool for molecular biology  

and medicine. In our study, we tested two different toxins derived from class II  

addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 

2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of 

human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB 

and vapC genes into the cells was conducted with the use of two different expression 

systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were 

tested by applying flow cytometry with immunofluorescence staining. Our findings 

demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human 

cancer cells, regardless of the expression system used. As for the toxin PasB, observed 

changes were more subtle than for the VapC. The level of expression for both the genes 

was monitored by QPCR and did not reveal statistically significant differences within the 

same cell line. 
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1. Introduction 

Toxin-antitoxin systems are widely distributed among prokaryotes. They are often present even in 

multiple copies in the bacterial chromosome [1]. Toxin-antitoxin systems can be divided into five 

classes. The first one includes systems that are composed of protein toxin and complementary to the 

toxin’s mRNA non-coding RNA, which constitutes antitoxin. The translation of toxin mRNA is 

inhibited by duplex formation. The majority of TA belongs to the second class, which is formed by 

systems composed of toxins and antitoxins that are small proteins (90–130 amino acids)-the toxin is 

stable whereas the antitoxin is labile. The antitoxin has a strong affinity to the toxin and, in connection 

with it, causes the complete loss of toxin activity [2]. The third class includes systems in which the 

toxic protein is directly bound and inactivated by non-coding RNA antitoxin [3]. New classes IV and 

V contain so far only one representative. YeeU-CbtA is the only system in which antitoxin (YeeU) 

does not interact directly with the toxin (CbtA), but stabilizes the toxin target protein and prevents 

binding of CbtA to MreB and FtsZ proteins, which are enrolled in maintaining cellular shape and cell 

division [4,5]. In addition, distinct properties of GhoT-GhoS system determined constitution of new 

fifth class. In this case, stable antitoxin GhoS has endoribonucleatic activity and specifically cleaves 

mRNA of the Toxin GhoT, preventing its translation [6]. Toxin–antitoxin systems can be found in 

plasmids, where they act as the plasmid maintaining system, or in genomic DNA, where they are 

involved in the prevention of genome-wide scale deletions [7], response to stressful conditions, biofilm 

formation, or as discussed recently, programmed cell death [8,9]. The majority of toxins act as specific 

RNAs; however, there are also systems in which toxin interferes with DNA replication, peptidoglycan 

synthesis, cell division or disrupts inner membrane [7,8]. It should be mentioned that mechanism of 

action of many systems predicted by bioinformaticians still remains unknown [1,9,10]. 

There are only a few studies that report activity preservation of toxins derived from TA modules in 

mammalian cells. Audoly et al. [11], demonstrated that toxin VapC originated from Rickettsia felis is 

active in L929 murine cells and proved its role in rickettsial infection. It is believed that multiple loci 

of vapBC in the rickettsial genome are responsible for host cell apoptosis [11]. A similar finding, 

stating that the presence of the vapBC system increases virulence, seems to be true for Haemophilus 

influenza as well [12]. Results published by Yamamoto et al. [13], showed that the overexpression of 

RelE toxin from the other well described system, RelBE from the chromosome of E. coli K12 in A-549 

lung cancer and TREx-U2OS osteosarcoma cells, can lead to death through the apoptosis pathway.  

In addition, de la Cueva-Mendez and colleagues demonstrated that toxin Kid from parD system 

originated from plasmid R1 when injected into HeLa and SW480 cells dramatically decrease their 

survival [14]. One of the most studied and promising system has been mazEF derived from E. coli 

chromosomal DNA [15–19]. Current research on mazEF has found its great potential in developing 

new strategies for antiviral therapies [20]. The MazF toxin was used to construct a recombinant drug 

against HCV. The MazF toxin was fused to inhibitor, which could be degraded in contact with the  

NS3 protease encoded by the HCV RNA. As a result of the activated toxin action, infected cells  

died preventing the spread of the virus [21]. Work is also underway on therapy against HIV.  

Okamoto et al., managed to significantly reduce the level of viral transcripts without damaging T 

lymphocytes [22]. The above cases suggest that toxins derived from toxin-antitoxin modules can be of 

great importance to medicine and medical science. Thus, it is important to learn more about their 
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functions, possible interactions and implementations. In our study, we focused on two toxins which 

belongs to the II class of TA: VapC 2829 derived from the chromosome of Mycobacterium tuberculosis 

H37Rv and PasB originated from plasmid pTF-FC2 from Thiobacillus ferroxidans, and their 

proapoptotic activity in diverse human cancer cell lines. 

2. Results and Discussion 

2.1. Properties of Addictive Modules Chosen for Study: PasAB and VapBC 

Toxin-antitoxin system PasAB located on plasmid pTF-FC2, originated from  

Thiobacillus ferroxidans [23]. It belongs to the type II TA systems, in which both partners, toxin and 

neutralizing antitoxin, are proteins [1]. The system is said to belong to the RelBE family [24]. 

However, the psi-blast analysis shows that the sequence similarity of PasAB to other RelBE family 

shows significant changes within active site (Figure 1). Nonetheless, it remains fully functional when 

transformed to E. coli [25]. Toxin-antitoxin vapBC systems belong to type II TA and are among the 

most abundant systems which encode the PIN domain (PilT N-terminus domain), associated with the  

nuclease activity [25]. Mycobacterium tuberculosis, among many others types of TA modules, 

contains over 45 vapBC loci [26]. It was shown for vapBC systems derived from Shigella flexneri 

virulence plasmid pMYSH6000 and Salmonella enterica serovar Typhimurium LT2 that they act as  

specific tRNAses [27]. Like other type II TAs, antitoxin VapB inhibits cognate toxin by direct  

protein-protein interaction. For our research, we chose the vapBC 2829Rv-2830Rv system derived 

from Mycobacterium tuberculosis H37Rv, which was previously tested to be one of the most potent 

growth inhibitors when expressed in Mycobacterium smegmatis [2]. The psi-blast analysis showed that 

genes with complete sequence identity are widely distributed among Mycobacterium tuberculosis, 

Mycobacterium bovis and Mycobacterium africanus strains (Figure 1). 

2.2. Effect of Induced Toxin Expression in Human Cancer Cell Lines 

In our research, we checked the influence of the endogenous expression of toxins PasB and VapC 

on apoptosis and necrosis induction in various cell lines: MCF-7 human breast cancer, KYSE30 human 

squamous cell carcinoma and HCT-116 human colon cancer. For induced expression, the GeneSwitch 

system (Invitrogen, Carlsbad, CA, USA) was selected (see Experimental Section). Clones positively 

expressing regulatory protein GAL4-DBD/hPR-LBD/p65-AD were transfected with plasmid pGene, 

pGene-PasB and pGene-VapC. After transfection, the expression of inserted genes was induced by 

adding mifepristone. Cell conditions were tested with flow cytometry (see Section 3.7) 72 h after induction 

(Figure 2). Due to clear and repeatable differences observed between the numbers of apoptotic, necrotic 

and live cells transfected with the control vector between different cell lines, acquired data had to be 

analyzed separately. As for an increase in the number of apoptotic cells compared to the control vector in 

the KYSE30 line, we noticed a statistically significant change for cells transfected with the vapC toxin 

gene. The difference was detectable even without protein induction (p < 0.0001), but correlated more 

accurately after induction. Comparison between populations of late and early apoptotic cells revealed 

significantly higher numbers in the early apoptotic population. Nevertheless, the overall proportional 

change was higher for cells being in the late apoptosis phase. That observation was applicable to both 
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genes. When comparing controls of HCT-116 to KYSE30 cells, we could observe a higher number of early 

apoptotic cells. That fact can be explained by higher sensitivity to the transfection agent. As for the 

comparison between the numbers of apoptotic, necrotic and viable cells for the HCT-116 line, there was a 

statistically significant difference between cells transfected with pGene-VapC and controls (p < 0.009). 

That change occurred mostly for the late apoptotic population. For cells transfected with pGene-PasB, we 

could also observe a statistically significant change in the number of late apoptotic cells; the dependence, 

however, was much weaker (p < 0.022). That effect was not remarkably increased by induction. MCF-7 

cells responded in a similar way to the HCT-116 line. Only cells transfected with pGene-VapC 

exhibited a statistically significant increase in the number of late apoptotic cells and drop for the viable 

population (p < 0.003 and p < 0.017 respectively). In MCF-7 cells, induction with mifepristone caused 

most remarkable differences comparing to control. It is known that MCF-7 cells express receptors for 

glucocorticoids, which can interfere with mifepristone [28]. In our stable transfected cells expressing 

regulatory protein for mifepristone regulation, however, we could still distinguish between induced 

cells transfected with the control vector and the vector with the cloned vapC gene. 

Figure 1. (A) Multiple sequence alignment of VapC and PasB with most similar 

homologues and described family members. PasB (upper MSA) shows standard homology 

within RelE family (46% identity to the well-studied toxin from Escherichia coli). 

However, there are visible regions within active site that are unique and conserved among 

PasB like sequences. Strong homology can be observed for other non-related families, 

suggesting horizontal gene transfer. Color gradient corresponds to different amino  

acid hydrophobicity; (B) Conservation pattern calculated for protein families (for over  

300 representatives).  
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Figure 1. Cont. 

 

To test the hypothesis that observed effects are not disrupted by different level of protein 

expression, we measured the mRNA level for each cloned pasB and vapC gene for induced and not 

induced cells. We were able to detect mRNA in both cases. There was, however, an over 10-fold 

change in expression after mifepristone induction (mean ΔCt 4.17 ± 1.12). Additionally, we performed 

qualitatively western-blot analysis (Figure 2). In each case, we could detect band representing expressed  

fusion protein. 

Figure 2. (A) Cytometry analysis of transfected cells. Visible differences in population 

Q1–Q4, depending on the construct used for transfection (pGene -control, pGene-PasB, 

pGene-VapC) and addition of mifepristone (I+). Q1—necrotic cells, Q2—late-apoptotic 

cells, Q3—cells alive, Q4—early apoptotic cells. Average of two experiments performed in 

triplicate; Quantitative data is presented on the histogram in section (B); Histogram (C) shows 

differences in the level of mRNA for toxins VapC and PasB with (I+) and without (I−) 

mifepristone; Bottom: western blot showing bands of expressed toxins (after induction) in all 

tested cell lines. 
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Figure 2. Cont. 

 

2.3. Toxin Expression with the EGFP Tracking System 

For brief confirmation, we tried to reproduce similar effects using a different expression system. 

The vector pBudCE4.1 which contains the human cytomegalovirus (CMV) immediate-early promoter 

and the human elongation factor 1α-subunit (EF-1α) promoter for the independent expression of two 

recombinant proteins was selected. Constructs containing simultaneously one of the tested toxin genes 

(pasB, vapC, cloned under EF-1α promoter) and the gene of Enhanced Green Fluorescent Protein 

(EGFP) were constructed, which enabled us to measure transfection rate more accurately. KYSE 30 

and MCF-7 cells stained with Annexin-V-Pacific blue and PI were tested with flow cytometry 48 h and 

72 h after transfection. During data analysis, we grouped cells into 9 clusters according to the level of 

EGFP signal (measuring signal strength in the FITC-A channel) Apoptotic, necrotic and viable cell 

populations were calculated separately for each cluster (Figure 3). Figure 4 present results for clusters 

P4 and P5 in which changes in population ratios were the most remarkable. For cells transfected with 

pEGFP-VapC 48 h after transfection, there was a clearly visible drop in the number of viable cells 

compared to control (p < 0.005) and simultaneous increase in the late apoptotic cell population. This 

propensity was also visible 72 h after transfection with an additional increase in the necrotic population 

(p < 0.005). There was no visible difference between control and cells transfected with pEGFP-PasB. 

A similar observation was made for the MCF-7 cell line (data not shown), but with lower statistical 

significance (p < 0.04). 
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Figure 3. Procedure for the flow cytometry analysis with EGFP marker gene. The top two 

graphs show division into compartments depending on signal strength for the channel  

FITC-A (signal from EGFP). The apparent difference between the cells transfected with 

the vector containing the EGFP protein (upper) from the control vector (the middle 

graph). Compartments from P2 to P8 are of equal width. P1 and P2 are located on the 

borders, their width was dependent on the maximum (minimum) capacities event 

registration by the instrument. Lower chart shows the quantitative difference between the 

number of cells in particular the FITC channel of transfected to untransfected cells.  
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Figure 4. Distribution of cells transfected with constructs pEGFP (control), pEGFP-vapB 

and pEGFP-VapC among populations Q1–Q4 (after 48 h and 72 h since transfection).  

Results shown for compartments P4 and P5, where changes were most significant. 

  

2.4. Cell Cycle Analysis 

Due to the fact that both PasB and VapC act as specific RNAses, their expression should not have 

affect the cell cycle. In addition, the sub-G1 population responsible for apoptotic cells was expected to 

be expanded. To confirm that hypothesis, we analyzed the cell cycle of KYSE 30 and MCF-7 cell lines  

72 h after transfection with pEGFP-PasB, pEGFP-VapC and pEGFP as the control vector (Figure 5). 

After transfection with pEGFP-VapC, the sub G1 population increased remarkably for KYSE 30 and 

MCF-7 cells (p < 0.002 and p < 0.0001 respectively). There was also a statistically significant increase 

in the sub-G1 population for MCF-7 cells transfected with pEGFP-PasB (p < 0.02). That effect, 

however, was approximately two times weaker compared to pEGFP-VapC and not detectable in the KYSE 

30 cell line. Among the tested lines, KYSE 30 appeared to be the most susceptible to VapC expression. 

That line behaved most stably and the reproducible results were easier to obtain. In similarly designed 

research, susceptibility variations among cell lines were also observed [28]. As for the apoptosis 

induction potency of the PasB from plasmid pTF-FC2, according to our results, two out of three 

experiments performed produced a statistically significant drop in viable cells and apoptosis induction, 

but induced changes were more subtle than those observed for VapC. Importantly, changes in the 

potency were not caused by the different levels of expression which were monitored with the QPCR 

method and did not reveal significant disparity. The RelE toxin cleaves ribosomal A-site of the mRNA 

in prokaryotes and eukaryotes and the mRNA cleavage pattern is conserved within family; however, 

the sequence alignment with PasB shows major changes within the active site of the toxin; thus, more 

research into PasB biology is needed. It is worth noticing that a toxin whose activity depends on the 

interaction not only with the mRNA but also with the ribosome, remains active in eukaryotic cells. 

This effect was also observed for the RelE toxin from Escherichia coli and it was demonstrated that it 

occurs by the identical mechanism of action [29]. Authors claim that this observation supports the 

view that the structural organization of the A site of the small ribosomal subunit is very similar in 

bacteria and mammals [29]. 

The use of the GeneSwitch system (Invitrogen, Carlsbad, CA, USA) allowed us to trigger the 

expression of transfected genes. Mifepristone induction, however, did not appear to be neutral to the 

cell viability, As viability also varied between particular clones stably expressing GAL4-DBD/ 

hPR-LBD/p65-AD, it was thus difficult to establish comparison between straight lines. In addition, 
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even when the mifepristone was absent, every clone tested exhibited a clearly detectable level of basal 

expression. The use of the pBudCE.4.1 system (Invitrogen, Carlsbad, CA, USA) enabled us to confirm 

our previous observations. Dividing cell populations by EGFP signal strength greatly improved the 

sensitivity of cytometric assay, but changes were visible even when calculated collectively. It could 

appear that the population which exhibited the highest signal of EGFP should be most affected by the 

simultaneous toxin expression. An explanation for that phenomenon might be the fact that cells 

affected by toxic RNAses diminish the level of total expression. 

Figure 5. Cell cycle analysis of cells transfected with constructs: pEGFP-PasB,  

pEGFP-VapC and control pEGFP. Histograms show propidium iodide signal strength (A) 

and population range (B) taken into analysis. Visible increase of Sub-G1 population, 

mostly for cells transfected with pEGFP-VapC. (C) histograms showing number (%) of 

cells in Sub-G1 phase (visible as light green on plots in section (C)).  
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3. Experimental Section  

3.1. Gene and Cell Line Sources 

Plasmid pTF-FC2, kindly provided by D.E. Rawlings, was the source of the pasAB system,  

while genomic DNA of Mycobacterium tuberculosis H37Rv, kindly provided by J. Dziadek, was the 

source of the vapBC 2829-2830 system. The gene of EGFP was amplified from plasmid  

pEGFP-n1 from the local vector library. The HCT-116 line expressing regulatory protein  

GAL4-DBD/hPR-LBD/p65-AD was kindly provided by Fu-Ming Tsai [30]. MCF-7 and KYSE 30 

lines were previously purchased from ATCC (ATCC, Manassas, VA, USA). 

3.2. Construct Preparation 

In this study, two different eukaryotic expression vectors were used: pBudCE4.1 (Invitrogen, 

Carlsbad, CA, USA) allowing for the simultaneous expression of two different genes and the 

GeneSwitch System (Invitrogen, Carlsbad, CA, USA) enabling induced expression in mammalian 

cells. For each gene in each system, two or, when needed, three different constructs were prepared:  

(I) native kozak sequence + gene + stop codon; (II) native kozak sequence + gene + myc/V5 epitope; 

(III) enhanced kozak sequence + gene + stop codon. All genes were amplified from templates with 

HiFi high fidelity polymerase (Kappa Biosystems, Wilmington, MA, USA) and cloned into Multi 

Cloning Site (MCS) of chosen vectors with the use of FastDigest restriction enzymes (Thermo 

Scientific, Vilnius, Lithuania). Ligation reactions were performed with the Rapid Ligation and Dephos 

system (Roche, Mannheim, Germany). All clones were prepared in XL10 E. coli chemically competent 

cells using the standard protocol [31]. All media plates were supplemented with proper antibiotics 

(zeocin at 50 mg/mL, ampicillin 100 mg/mL). 

3.3. Cell Cultures 

HCT-116 (human colon cancer) was maintained in McCoy’s 5A (Sigma-Aldrich, St. Louis,  

MO, USA) supplemented with 10% fetal bovine serum (FBS). MCF-7 (human breast cancer) was 

maintained in Eagle’s Minimum Essential Medium (EMEM) (Sigma-Aldrich, St. Louis, MO, USA) 

supplemented with 20% FBS, 1% non-essential amino acids and 200 mM L-Glutamine. KYSE30 

(human squamous cell carcinoma) was cultured in RPMI 1640, HAM’s F12 (1:1) mediums  

(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 2% FBS and 2 mM L-Glutamine.  

Cell cultures were maintained at 37 °C under 5% CO2 in an incubator. 

3.4. Stable Transfection with Regulatory Vector pSwitch 

Ninety percent confluent cells cultured in a 25 cm2 flask were transfected with 10 μg of linearized 

vector pSwitch (Bst1107 I restriction endonuclease) using 25 μL of lipofectamine 2000 (Invitrogen, 

Carlsbad, CA, USA). After 24 h cells were trypsinized (Sigma-Aldrich, St. Louis, MO, USA), 

harvested by centrifugation (2000 rpm, 4 min) and plated at 5 × 105/well on a 6 well plate. Cells were 

allowed to adhere overnight and a fresh medium supplemented with appropriate concentration of 

hygromycin was applied. The optimal concentration of hygromycin was determined according to the 



Toxins 2014, 6 2958 

 

 

manufacturer’s protocol. The medium was replaced every 3 days. After three to four weeks, separate 

colonies could be visible. Cells from different colonies were moved to new 96 well plates and tested 

by transfection with specially constructed vector pGene-EGFP and mifepristone induction. Clones that 

showed the same morphology as the parent strain, minimal production of EGFP without induction and 

high EGFP level after induction with mifepristone were assigned for further investigation. 

3.5. Transfection with the pGene Vector and Induction 

Cells were plated on 24 well plates (50,000 cells/well) and left overnight to adhere. Next day the 

medium was replaced and plasmid DNA/lipofectamine complexes were added to each well (0.5 μg of 

plasmid DNA, 2 μL of lipofectamine 2000/well). After 24 h the medium was replaced and 

mifepristone was added to the final concentration of 10 nM. Flow cytometry analyses were performed 

48 h and 72 h after induction. 

3.6. Transfection with the pBud4.1CE System 

Cells were plated on 24 well plates (50,000 cells/well) and left overnight to adhere. Next day the 

medium was replaced and plasmid DNA/lipofectamine complexes were added to each well (0.5 μg of 

plasmid DNA, 2 μL of lipofectamine 2000/well). After 24 h the medium was replaced. Flow cytometry 

analyses were performed 48 h and 72 h after induction. During the transfection procedure no 

antibiotics were used. All experiments were done in triplicates and two repeats. 

3.7. Apoptosis, Necrosis and Viable Cell Assay 

Cells after transfection (72 h and 96 h) were trypsinized, harvested, washed twice with PBS and 

resuspended in binding buffer at the concentration of 106 cells/mL. 100 μL were transferred to a new 

tube and 5 μL of Annexin-V FITC (for the GeneSwitch system) or Annexin-V Pacific blue  

(for pBuD4.1CE with EGFP marker protein) with 5 μL of propidium iodide were added. After 

incubation in the dark for 15 min, the cells were subjected to flow cytometry analysis with Canto II  

(BD Bioscience, San Diego, CA, USA). All necessary controls were also included (untransfected cells, 

cells stained only with PI or Annexin-V). Unstained cells were consider as viable. Cells stained only 

with propidium iodide were considered to be necrotic. Cells stained only with Annexin-V FITC or  

Annexin-V Pacific blue were considered as early apoptotic. Cell stained both with propidium iodide 

and Annexin-V FITC or Pacific blue were considered as late apoptotic. 

3.8. Cell Cycle Assay 

Cells after transfection (48 h, 72 h and 96 h) were trypsinized, harvested, washed twice with PBS, 

resuspended in ice cold 70% ethanol at the concentration of 106 cells/mL and stored in −20 °C for at 

least 24 h. On the day of analysis, cells were washed twice with PBS and resuspended in PBS 

supplemented with 0.5 mg/mL RNAse and 50 μg/mL propidium iodide. After 2 h of incubation the 

cells were analyzed with flow cytometry at a low flow. 
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3.9. Gene Expression Assays 

Cells were cultured in 25 cm2 at 1,000,000/flask. When the confluence reached 90%, the cells were 

transfected with proper constructs in pGene or pBud4.1CE systems according to the standard protocol 

(10 μg plasmid DNA, 25 μL of lipofectamine 2000). After 72 h the cells were harvested and total RNA 

was isolated according to the standard TRI reagent protocol with an additional DNAse digestion step. 

cDNA synthesis was performed using the SuperScript® III First-Strand Synthesis System (Invitrogen, 

Carlsbad, CA, USA) and QPCR was performed with specially designed primers. As a reference,  

we used 66 nucleotide sequence from GAPDH gene amplified with following primers: Forward 

5'AGCCACATCGCTCAGACA3'; reversed: 5'GCCCAATACGACCAAATCC3'. For western blotting, 

cells were cultured and transfected as described above. After 72 h the cells were harvested and 

resuspended on ice in lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton) 

supplemented with the Protease Inhibitor Cocktail (Promega, Madison, WI, USA). Cells were frozen 

and thawed repeatedly three times and centrifuged for 30 min at 15,000 rpm at 4 °C. Supernatant was 

collected and 12.5% SDS-PAGE gel was run. Membrane transfer and monoclonal antibody binding to 

His and V5 tag (Serotec, Kidlington, UK) procedures were done according to the standard protocol [30]. 

The blots were developed with Immun-Star HRP Chemiluminescent Kit (Bio-Rad, Hercules, CA, USA) 

and registered on KODAK BioMax MS film (Kodak, Rochester, NY, USA). 

4. Conclusions 

Recent work on vapBC, mazEF, relBE and other toxin-antitoxin systems has provided more 

information about their mechanisms of action and possible application in eukaryotic machinery [14,16,21]. 

Moreover, the usage of the toxin from TA in gene therapy seems to be very promising. More research 

in this field is, however, still required. In our study, we were able to prove for the first time that the 

VapC toxin derived from the chromosome of Mycobacterium tuberculosis preserves its activity in 

human cancer cell lines KYSE 30 (oesophagus cancer), HCT-116 (colon cancer) and MCF-7  

(non-invasive breast cancer), causing statistically significant apoptosis induction. 
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