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Abstract: PA1b (Pea Albumin 1, subunit b) is a peptide extract from pea seeds showing 

significant insecticidal activity against certain insects, such as cereal weevils (genus 

Sitophilus), the mosquitoes Culex pipiens and Aedes aegyptii, and certain species of aphids. 

PA1b has great potential for use on an industrial scale and for use in organic farming: it is 

extracted from a common plant; it is a peptide (and therefore suitable for transgenic 

applications); it can withstand many steps of extraction and purification without losing its 

activity; and it is present in a seed regularly consumed by humans and mammals without 

any known toxicity or allergenicity. The potential of this peptide to limit pest damage has 

stimulated research concerning its host range, its mechanism of action, its three-dimensional 

structure, the natural diversity of PA1b and its structure–function relationships. 
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1. Introduction 

Chemical pesticides in general, and insecticides in particular, are increasingly used around the 

world, but they are also increasingly stigmatized because of their persistence and their toxicity to  

non-target organisms (impacting amphibians, aquatic wildlife, beneficial insects such as bees and 

ladybugs, and even causing mortality among farmers, particularly in developing countries). Crop 
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protection against two very important pests, namely cereal weevils and aphids, is currently carried out 

almost exclusively by chemical treatments. A few alternative methods do exist to combat these insects, 

but they are either much less effective or prohibitively expensive, compared with chemical control.  

Chemical treatments used to protect stored products are the source of the majority of chemical 

residues in cereals which are subsequently found in processed products. These residues can be dangerous 

for consumers if present in high doses. However, the presence of insects or mites is the most common 

cause of refusal of grain deliveries to the food industry due to non-compliance with health regulations.  

Hence, it is imperative to find new molecules with less impact on the environment. One of the most 

promising sources for such compounds is probably plants, which have developed many ways to fight 

against insects (as well as against fungal and bacterial attacks) and one of these is the use of chemicals. 

Insecticidal molecules are found in other organisms, such as spiders or scorpion venom, but then they 

are generally toxic for mammals as well. The search for entomotoxic components in plants, and 

specifically in plants that are consumed by mammals, could be a valuable approach in order to develop 

biopesticides for sustainable and healthy agriculture. 

Numerous molecules have yet to be identified in plants as regards their ability to counter insect, 

fungal or bacterial attacks. These molecules could be of a proteinaceous nature, including thionins, 

defensins, lipid transfer protein, snakins or protease inhibitors. They may also result from the 

secondary metabolism of plants, and many defense molecules are of an alkaloid, saponin or flavonoid 

nature (for review see [1]).  

Amongst these, one of the most promising molecules is the PA1b (Pea Albumin 1, subunit b) 

peptide, extracted from Legume seeds. The presence of a toxic compound in peas was first suspected 

by Delobel et al. [2]. Purification of the lethal molecule led to the identification of a peptide [3] whose 

primary structure and gene structure was elucidated, in 1986, by Higgins et al. [4], though without any 

demonstration of its toxic effects. PA1b is one of the few orally active entomotoxin peptides currently 

known. It displays outstanding insecticidal activity against certain insects, such as grain weevils (genus 

Sitophilus) and some species of aphids, and this insecticidal activity has been patented [3]. PA1b is a 

peptide that has many attributes for use on an industrial scale: it is extracted from a commonly grown 

plant; it is a peptide (suitable for use in transgenic plants); and it can withstand many stages of 

extraction and purification without losing its activity. PA1b also has many advantages in terms of 

agricultural use. It is a peptide purified from a plant (Pisum sativum) and, moreover, a plant regularly 

consumed by humans and other mammals without any sign of toxicity or allergenicity.  

2. PA1b Sequence and Properties 

PA1b is a peptide consisting of 37 amino acids, including six cysteines involved in three 

intramolecular disulfide bridges (Figure 1). The three-dimensional structure of the peptide has revealed 

that it belongs to the cystine knot inhibitor (ICK) family ([5], see Section 6). This folding confers a 

very high level of resistance: the PA1b peptide maintains its biological activity after boiling [3], 

following extraction by different solvents or solutions (methanol, pentane, ether acetate, acetone, 15% 

TCA in water or 5% NH3 in water, after digestion by proteases (including trypsin, papain and 

proteinase K, with the exception of pronase E) or digestion by the gut extract of insect or rumen 
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degradation [6–8]. These characteristics also permit a simple purification process of the PA1b peptide, 

from pea flour, by solvent extraction and classical reverse-phase HPLC [3].  

Figure 1. PA1b primary structure. The cysteine residue pairing is shown below [3]. 

 

These features, together with the potential of this peptide to limit pest damage, has generated 

considerable research into its host range, its mechanism of action, its three-dimensional structure, the 

natural diversity of PA1b and its structure–function relationship.  

3. Toxicity Host Range of PA1b 

3.1. Biological Activity on Insects 

PA1b was first identified by its ability to kill cereal weevils (Sitophilus oryzae, S. zeamais and  

S. granarius). Several other insect species were tested for their susceptibility to the toxic peptide and it 

appears that not all insects are susceptible, unrelated to the taxonomy of the species tested. For 

example, out of three species of aphids, Acyrthosiphon pisum is sensitive, Myzus persicae is not 

sensitive and Aphis gossypii is only sensitive at high doses). The mosquitoes Culex pipiens [6] and  

Aedes aegyptii [9] are both highly sensitive which is, of course, of great interest for the potential use of 

PA1b (on an industrial scale) to control these human and mammalian disease vectors. Some beneficial 

insects, such as the bee (Apis mellifera) and trichogramma (Trichogramma pretiosum), are insensitive, 

but both the development and the survival of the lady beetle (Harmonia axyridis) are strongly affected 

by the toxin [6]. It seems that Coleoptera are generally sensitive (with the exception of Tribolium 

castaneum) whereas the Lepidoptera are mainly insensitive, with the exception of  

Ephestia khuniella [3]. Several agronomically important caterpillars (Mamestra brassicae) [6], 

Spodotera littoralis and Ostrinia nubilalis [10] are not affected by PA1b. However, the cultured cells 

Sf9, originating from S. frugiperda, displayed high sensitivity to PA1b at low doses [11], indicating 

that S. frugiperda has all the molecular equipment to trigger the PA1b signal, but that certain insects 

are able to curtail the toxic effects.  

A binding site for PA1b has been found in the weevil gut membranes [12] (see Section 4.1). This 

receptor is present in all insects, suggesting the existence of a mechanism of insensitivity independent 

of the receptor. This mechanism of resistance is still unclear, but it is not due to a differential 

degradation in the insect gut. Indeed, gut extract from the insensitive insect M. brassicae was unable to 

degrade PA1b [6], as was gut extract from the sensitive weevil [3]. However, Bruchus pisorum (the 

pea weevil) is a notable exception this being the only insect, among those tested, to feed on legume 

seeds and also the only one in which the receptor is undetectable in the gut extract. This data suggests 

that PA1b is the source of insect resistance in Legume seeds and, therefore, adaptation to feeding on 

Legume seeds necessitates a loss of binding capacity of the toxin [6]. 
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3.2. Biological Activity on Other Living Organisms 

Biological tests performed on mammalian cells [11], bacteria, fungi [6], yeast [13] and  

nematodes [14] have all shown that PA1b has no effect on these cells or organisms.  

However, two biological effects of PA1b have been described outside of the insect world. In plants 

(specifically a carrot cell culture), it has been found that cell proliferation is enhanced by addition of 

the soybean homolog of PA1b, leading the authors to suggest that PA1b could act as a new peptidic 

plant hormone [15] (see Section 4.2 for more details). In mammals, injections of PA1b in mice were 

found to have a strong hyperglycemic effect, suggesting that PA1b could interfere with glucose 

metabolism and, in particular, with insulin perception in mammals [16] (see Section 4.3 for  

more details).  

4. The Molecular Mechanism of PA1b Action 

As detailed below, PA1b has physiological effects on insects, plants and mammals. Moreover, the 

state of research indicates that the peptide probably acts in all organisms via an interaction with a 

receptor, but the receptor is probably different in insects, in plants and in mammals. Thus, PA1b could 

present the possibility of three modes of action by way of three interacting proteins. The recent concept 

of peptide promiscuity, describing how a unique peptide structure may be associated with multiple 

functions, has also been developed to explain plant peptide defense [17]. In particular, molecules, such 

as defensins [18] and cyclotides [19], with structural motifs also found in PA1b (small peptide,  

3–4 disulfide bridges, and even the knotted fold for cyclotides) are able to have multiple functions with 

reduced modifications in the primary structure and conservation of the tertiary structure. PA1b could 

be an example of this diversity of functions for a single structural motif, a property now demonstrated 

for other members of the cystine-knot peptide family [20].  

4.1. PA1b Mechanism of Action in Insects 

Because of the interesting biological characteristics of PA1b, the molecular mechanism of action 

and the potential mechanism of resistance existing in insects were amongst the first questions to be 

addressed. A screening of 90 strains of weevils, belonging to all three species, was used to select four 

strains, all belonging to the species S. oryzae and fully resistant to the purified toxin, showing that 

resistance could occur naturally in the absence of selection pressure. Genetic studies have shown that 

resistance was monogenic and recessive [21], suggesting that the toxicity of PA1b is manifested via a 

receptor within the insect. With the help of a toxin labeled with iodine 125 (125I-PA1b), a saturable, 

reversible and high affinity (affinity in the nanomolar range) proteinaceous binding site has been 

characterized in membrane extracts of a susceptible strain of S. oryzae. A similar binding capacity was 

found in all the sensitive Sitophilus strains, but no specific binding was detectable in the four resistant 

strains of S. oryzae. This specificity strongly suggests that the characterised binding site is the molecular 

target of PA1b, and that resistance in S. oryzae implies an absence or modification of this target [12]. 

PA1b belongs to the knottin family which contains peptides with various biological targets, 

including enzymes and ionic channels [22]. Moreover, the structural analyses have also revealed 

similarities between PA1b and the ICK atracotoxin ACTX-Hi:OB4219, isolated from the insectivorous 
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Australian funnel-web spider Hadronyche infensa, which targets an unknown channel [5]. On this 

basis, electrophysiological studies have been performed using PA1b on Sf9 insect cultured cells.  

The electrophysiological results clearly show that the toxin depolarizes the membrane of Sf9 cells and 

a pharmacological study demonstrated that PA1b was able to reproduce the bafilomycin effect, 

bafilomycin being a fungal inhibitor of V-ATPase [23]. 

V-ATPase is a proton pump using ATP, first characterized in the vacuolar membranes, but we now 

know that there are also plasmalemmic forms. V-ATPase is a multimeric protein complex, highly 

conserved among living species from bacteria to humans. In insects, the protein from Manduca sexta 

(Lepidoptera) has been closely studied as regards its structure, function and regulation [24,25]. This is 

an essential protein for insects, especially in the gut, since its action provides the energy required for 

the absorption of nutrients [25,26]. The insect V-ATPase is composed of 14 subunits organized into 

two complexes. The membrane complex V0 has four subunits, including the subunits c and a which 

form the proton channel, and the V1 complex is cytosolic and bears the ATPase function [27]. 

Biochemical tests performed on purified V-ATPase from M. sexta have shown that PA1b inhibits the 

V0V1 enzyme but not the V1 complex alone; the authors concluded that PA1b acts by binding and 

inhibiting the V0 complex of V-ATPase in insects [23]. 

4.2. PA1b Activity and Mechanism of Action in Plants 

In soybeans, a 43-kDa protein exists which was found to bind insulin and insulin-like growth factor. 

It was shown that a 4-kDa peptide extract from soybean binds this protein and could compete with 

insulin for binding. Moreover, the 4-kDa peptide is able to stimulate the phosphorylation activity of the 

43-kDa protein. For these reasons, the peptide was named leginsulin and was found to be the soybean 

isoform of the pea peptide PA1b [28,29]. The expression of leginsulin in cultured carrot cells leads to 

an enhanced cell proliferation [15]. A glycoprotein homolog to the 43-kDa protein from soybean exists 

in carrots and binds both insulin and leginsulin [30,31]. Authors then suggested that leginsulin (and, by 

extension, PA1b) could behave in plants as a hormone-like peptide [15] and that it acts by interacting 

with the 43-kDa protein, thus generating a cell signal transduction via the phosphorylation activity of 

the 43-kDa protein. So, a receptor seems to exist in plants (and not only in Legumes, although PA1b 

has, to date, only been found in Legumes) but it appears to be different from the one present in insects. 

In fact, the amino acid residues involved in binding were not the same for the interaction with the plant 

receptor [32] and with the insect receptor [33] (see Section 6). 

4.3. PA1b Activity and Mechanism of Action in Mammals 

Recent data from the literature show that subcutaneous injections of aglycin in mice (10 µg/g body 

weight) causes a transient, but highly significant, increase in blood glucose (+100% in 60 min).  

In fact, PA1b, aglycin and leginsulin are homologs, and all isoforms of the pea peptide have the same 

effect on mice. Using surface plasmon resonance biosensor technology, a single aglycin binding 

protein with an apparent molecular mass of 34-kDa was detected in membrane protein extracts from 

porcine and mice pancreas. Using affinity chromatography, the protein has been purified and identified, 

by mass fingerprinting, as a voltage dependant anion-selective channel (VDAC-1), a chloride channel 

first found in mitochondrial membranes but now known to be present in plasma membranes [16,34]. 
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Thus, the plant peptide could interact with the physiology of mammalian cells (but by injection, not by 

ingestion as in insects), and particularly with the metabolism of glucose. This effect may be mediated 

by a receptor different from those found in plants or insects, but a receptor which is, as in insects, an 

ionic target, the VDAC-1. Linked to the glucose metabolism, electrophysiological studies have been 

performed on pancreatic β-cells of rat. PA1b may increase the intracellular level of calcium, as does 

insulin, but using a different mechanism. PA1b seems to act via Ca2+ influx through L-type Ca2+ 

channels. As PA1b (leginsulin) could compete with insulin in the plant system, the authors evoke the 

possibility that PA1b binds to the mammalian insulin receptor [35]. In mammals, the action of PA1b 

on metabolism seems to be well demonstrated, but the mechanism involved still remains unclear. 

Whether PA1b acts through the interaction with VDAC-1, with the L-type Ca2+ channels or with the 

insulin receptor is still under investigation. However, in insects, insulin does not compete with PA1b 

for the receptor, indicating that the receptor in insects (V-ATPase) is different from the one  

in mammals. 

5. PA1b Biodiversity 

5.1. The Structure and Regulation of the PA1 Gene 

The structure of the pea albumin 1 reference gene (PA1 gene) is depicted in Figure 2. It was first 

described, in 1986, by Higgins et al. [4]. Two exons, separated by a short intron located inside the 

coding leader sequence, are present in the gene. The PA1 gene is transcribed as a single mRNA encoding 

the preproprotein PA1 [molecular weight 13.9 kDa; 130 amino-acids (aa)] which is co-translationally 

targeted to the endoplasmic reticulum (ER) by cleavage of its signal peptide (2.7 kDa, 26 aa).  

The proprotein precursor (11.2 kDa, 104 aa) is directed to the vacuole-like, seed-protein storage  

bodies where it is endoproteolytically cleaved to yield two peptides which, after removal of some 

carboxyl-terminal amino-acids (propeptides), represent the mature forms of PA1a (6 kDa, 53 aa)  

(C-terminal fragment) and PA1b (3.8 kDa, 37 aa) (N-terminal fragment) [4].  

Although the PA1 gene has been used extensively in genetic engineering, paradoxically little is 

known about its regulation and, more specifically, upstream cis regulatory elements that could positively 

or negatively affect the rate of transcription have not yet been identified. However, computational 

analysis based on the increasing use of growing genomic resources (genome sequencing, EST  

databases etc.) should soon provide new data on the distribution and tissue-specific expression of PA1 

homologous genes, as is already the case for the identification of novel genes including those encoding  

cysteine-rich peptides [36,37]. 

Some studies have provided evidence that the PA1 gene is regulated both spatially and temporally. 

In the pea, regulation of PA1 gene expression during the development of normal, non-deficient seeds 

appears to be under direct transcriptional control. There is little, or no, transcription of these genes in 

early development but then transcription progressively increases to reach its highest level midway 

through development (20 to 22 days after flowering), followed by a sharp decline [4,38]. In the genome 

of another legume, the narrow-leafed lupin (Lupinus angustifolius), a PA1b-like gene was detected that 

showed, within the same region, 96% sequence identity with the leginsulin gene from soybeans [39]. 

The gene was functional at the transcriptional level since the corresponding mRNAs were detected but 
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they were in very low quantities and, almost exclusively, in developing seeds (mainly in cotyledons  

40 days after anthesis) [39]. However, unlike in soybeans [29], no evidence was found for the expression 

of the leginsulin-like gene in the radicle of lupins (two days after germination), suggesting a tight 

temporal regulation of the gene in developing and germinating seeds [39]. 

Figure 2. The gene and amino acid sequences of pea albumin 1 (PA1). 

 
The gene comprises two exons (E1 and E2: red color) and one intron (I1: dark blue color). The start 
codon is boxed and highlighted in grey. The * indicates the position of the stop codon. A putative 
TATA box (in the 5' region of the gene) and polyadenylation signals (in the 3' region of the gene) 
are underlined. The coding sequence encodes the PA1 preproprotein, including the peptide signal 
(highlighted in green), the mature PA1b peptide (highlighted in yellow) and the mature PA1a 
peptide (highlighted in blue) whilst the propeptides are highlighted in violet. Gene accession 
number (Genbank, GI: 169024; EMBL: M13709); Protein accession number (Genbank,  
GI: 169025; EMBL: AAA33638.1; UniProtKB: P62926) [4]. 

An environmental regulation linked to the plant nutritional status has also been highlighted for PA1 

genes. Under conditions of sulfur-deficiency, the levels of the PA1 mRNAs in developing pea seeds 

were reduced, without major changes in the transcription rates of the corresponding genes [4,38]. Thus, 

a post-transcriptional mechanism is responsible for these variations. Indeed, it was later confirmed  
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that the PA1 mRNA level was effectively lowered in the leaves of transgenic tobacco grown under 

sulfur-deficient conditions [40]. To establish which regions of the gene were involved in the process of 

sulfur sensitivity, the expression level of a reporter gene supplemented with different sets of PA1 gene 

sequences (e.g., intron) was measured in transgenic tobacco under different conditions of sulfur 

supply. These experiments have shown that the intron processing was not the post-translational event 

affected by sulfur nutritional status but instead it was two elements that determined the sulfur 

responsiveness of the PA1 gene: one was located in the 3’ region between 189 and 323 bp downstream 

of the PA1 stop codon while the second one, not clearly identified, was within the coding sequence. 

The mechanism involved in the degradation of the PA1 mRNA during sulfur deficiency has not yet 

been identified and several models (e.g., mRNA stability) have been proposed [40].  

5.2. The Diversity of the PA1b Peptides 

The diversity of PA1b peptides within the same species was initially suggested by the work of 

Higgins et al. [4] which pinpointed four functional genes that were present in the pea genome and 

expressed in pea cotyledons. To date, nine peptidic isoforms of PA1b have been isolated and 

biochemically characterized in the garden pea [3,4,29,41–43], indicating that these peptides belong to a 

multigenic family whose members have diverged slightly (Figure 3). Almost all the forms should have 

retained their insecticidal properties [42] since amino-acid variations are not located inside key 

positions for the maintenance of toxic activity (see Section 6). 

Figure 3. Alignment of PA1b amino-sequences from different Fabaceae. 

 
The yellow star indicates the sequence tag composed of 3 identifiers: the plant species (Psa: Pisum 
sativum, Vhi: Vicia hirsuta, Mtr: Medicago truncatula, Gma: Glycine max, Pvu: Phaesolus 
vulgaris, Tfo: Trigonella foenum-graecum), the reference peptide (A1b: albumin 1 subunit b), and 
the genBank or EMBL accession number. The blue bars highlight the cysteines while the green 
ones highlight the key residues in the toxic activity. The conserved and hydrophobic loops are 
underlined [41,44]. 
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Research and identification of PA1b homologs in Fabaceae seeds were carried out by developing an 

approach combining three complementary methods: (1) the molecular one consisted of cloning PA1 

homologous genomic sequences; (2) the biological method used a PA1b-specific bioassay, defined by 

a differential toxicity between a susceptible or a resistant strain of the rice weevil, S. oryzae (see 

Section 3.1), the test being first performed on whole seeds, for a preliminary screening, and then on 

seeds extracted with different solvants; (3) the biochemical one included the capacity of the extract to 

compete as a ligand with radiolabeled pea PA1b in its binding to susceptible insect gut membranes, 

and extracts were also analyzed by HPLC and mass-spectrometry. In this way, new albumin 1 genes, 

and their associated products, were characterized in the soybean Glycin max and in the bean Phaseolus 

vulgaris whereas in alfalfa Medicago truncatula no peptide was biochemically detected, despite the 

presence of high insecticidal activity and of homologous genes [41].  

The relevance of the approach described above led to a broader study on 88 additional species 

scattered amongst the three subfamilies (Caesalpinioideae, Mimosoideae and Papilionoideae) of the 

Fabaceae [44]. 19 PA1 like genes were characterized from numerous Papilionoideae, but not from 

Caesalpinioideae or Mimosoideae. The alignment of deduced peptide sequences showed that some 

amino-acids were particularly well conserved at the structural level; cysteine (6), prolines (5) and some 

glycines (5), as well as the charged arginine in position 21 (as numbered from the PA1b sequence) 

([44]; Figure 3; see also Section 5 in this review). The sequences of these homologues also revealed a 

two loop peptide sequence highly conserved among Legumes (loop L1, residues 7–15 CSPFE)  

and a less conserved loop (loop L2, residues 23–31) where the hydrophobic property is conserved 

(Figure 3) [41,44]. These results indicate the importance of these conserved portions (loops L1 and L2) 

for toxicity. 

Thus, to date, in plants the PA1b homologous peptides seem to be strictly legume specific, strongly 

suggesting that this peptide family is an important line of seed defense against insects from the 

Fabaceae family.  

6. The PA1b Structure/Function Relationship 

The three-dimensional structure of PA1b and the pairing of the disulfide bonds have been established 

by NMR and molecular modeling [5]. The structure of PA1b displays all the characteristics of the 

inhibitor cystine-knot (ICK) fold (knottin family), including a triple-stranded antiparallel β-sheet and 

the cystine-knot motif of disulfide bridges (Figure 4). This structural motif, initially reported for 

trypsin inhibitors from cucurbits [45,46], is also found in a variety of proteins from plants, fungi, crabs, 

cone snails and spiders, exhibiting various biological activities [47,48] including ion channel 

inhibitors, protease inhibitors, antimicrobial peptides and peptides with sweet-taste suppressing effects. 

In addition, a series of macrocyclic peptides (called cyclotides) from plants, with many biological 

activities including insecticidal, antimicrobial, hemolytic and cytotoxic activities [49] (such as kalata 

B1 [50], the first cyclotide discovered), also display a knottin fold. This compact and well-organized 

scaffold, although not related to a common biological activity, confers to all these molecules a 

remarkable stability and a high resistance to protease. The specificity of activity presumably results 

from the type of residues and from their arrangement on the scaffold formed by the ICK motif.  
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Figure 4. Ribbon representation of PA1b 3-D structure. 

 
The cystine-knot motif is characterized by three disulfide bonds, shown as yellow sticks, and by the 
triple stranded antiparallel β-sheet (cyan arrows). The helix turn is indicated by the red arrow. The 
numbers of the cysteine residues and the two loops, L1 and L2, are also indicated [5]. 

A recent chemical mutagenesis study provides insights into the molecular requirements for the 

insecticidal activity of PA1b [33]. In this work, the influence of individual residues on the structure 

and bioactivity of PA1b was investigated. A group of 13 mutants was selected from previous 

bioinformatic [44] and structural [5] studies which had revealed the importance of residues, located in 

or around loops L1 and L2, in terms of sequence conservation and/or definition (Figure 4). The 

thirteen PA1b mutants were chemically synthesized [51] such that the residues involved in the 

definition of PA1b amphiphilic and electrostatic characteristics were individually replaced with an 

alanine. The three-dimensional structure of PA1b was outstandingly tolerant of any modifications. 

Remarkably, receptor binding and insecticidal activities were both dependent on common well-defined 

clusters of residues located on one single face of the toxin, with Phe-10, Arg-21, Ile-23, and Leu-27 

being key residues of the binding interaction (Figure 5).  

Leginsulin (a soybean PA1b isoform) has been shown to be a ligand for the 43-kDa protein in 

Legumes that control cell proliferation and differentiation [32]. PA1b shares almost 60 percent of 

sequence identity and slightly more than 80 percent of similarity with Leginsulin [33]. In terms of  

3D-structure, the RMS (root mean square) deviation between the backbone heavy atom coordinates of 

PA1b and leginsulin is very low: 1.5 Å [33]. However, despite these sequence and structure similarities, 

the residues involved in the binding of PA1b and of leginsulin [32] to their respective membrane 

targets are different and do not align. Their only common feature is hydrophobicity, except for R21 in 

the case of PA1b. Finally, the topological arrangement of each set of critical residues, located on 

opposite faces of the molecules, suggests a different receptor binding mode [33]. 

As far as we know, only a few cystine-knot proteins have insecticidal activity. They include 

insecticidal plant cyclotides [52–54] and a knottin, Amaranthus α-amylase inhibitor (AAI), found in 

the seeds of A. hypocondriacus [55]. The insecticidal activity of AAI relies on a specific inhibition of 
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the α-amylase of insect larvae, such as Tribolium castaneum. Concerning cyclotides, it has been 

postulated that their bioactivities appear to be associated with membrane binding [20]. Until now, 

PA1b is the only insecticidal knottin acting via a membrane protein-based receptor. 

Figure 5. The three-dimensional structure of PA1b and its molecular surface (in cyan) 

showing the residues (in red) that are essential for receptor binding and insecticidal activity 

of PA1b [33]. 

 

7. The Expression of PA1 in a Heterologous System 

Due to the potential of the PA1b peptide for pest control in sustainable agriculture, the production 

of the toxin in a heterologous system is interesting both for production on an industrial scale and also 

for the study and analysis of the peptide at the research level. Indeed, numerous isoforms of PA1b 

exist, even in one plant (for example, at least nine isoforms are present in the pea), but with sequences 

so similar that they are very difficult, even impossible, to separate by biochemical methods. Hence, to 

explore the function of one specific sequence, production in a heterologous system is required.  

Initial attempts at PA1 proprotein production in a heterologous system were performed by  

Ealing et al. in 1994 [56], in plants of agronomic interest, with the aim of improving the quality of 

pasture protein for ruminant animal nutrition. Then, transgenic tobacco (Nicotiana tabacum) and white 

clover (Trifolium repens L.) plants expressing the native pea albumin 1 gene encoding rumen protected 

peptides (PA1a and PA1b), rich in sulfur amino-acids, were generated by Agrobacterium-mediated 

technology. The PA1 gene was under the control of the ubiquitous 35S CaMV promoter. These assays 

were not really conclusive since, despite the production of high levels of PA1 mRNA, the corresponding 

proprotein was barely detectable. Nevertheless it was apparently processed correctly in its two  
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by-products (PA1b subunit: 4 kDa and PA1a subunit: 6 kDa) which were detected in minute amounts, 

or not at all, as a function of the target tissue (leaf, root, petiole etc.) [56]. 

More recently, in order to protect stored cereals against pests, rice was transformed either with the 

PA1 genomic sequence or with the full length or partial cDNA under the control of the constitutive 

maize ubiquitin promoter. Transformed lines were obtained, and it was shown that the seeds of rice 

plants contain a native PA1b (from analysis by mass spectrometry, by measuring the affinity binding 

site and by immuno-localization). Transformation with the cDNA corresponding only to the PA1b 

sequence leads to transgenic lines in which the peptide is not detectable, although PA1b mRNA was 

expressed. Rice is the first heterologous expression system suitable both for production and for correct 

folding of the peptide [57]. 

In addition to the creation of genetically modified plants, the need for a secreted and easy to purify 

recombinant peptide has led to the development of assays in the bacterial host E. coli (a specific 

mutant strain able to form disulfide bridges) and in the yeast P. pastoris. In both cases, organisms were 

initially transformed with the cDNA restricted to the PA1b part. Despite the presence of the three 

intramolecular disulfide bonds, the PA1b recombinant peptide was detected in very low quantities and 

in a non-folded and biologically inactive form [58,59]. However, transformation with the complete 

PA1 cDNA has not been performed. Recently it has been hypothesized that PA1a plays a role in the 

acquisition of the PA1b conformation. As a chaperonin protein it could help in the transport and 

correct folding of PA1b, thus ensuring the biological activity of the toxin. This hypothesis is supported 

by the fact that in E. coli, and from the entire PA1 cDNA, the production of leginsulin (the soybean 

PA1b homolog) in its active form has been successfully achieved and it has retained its ability to bind 

with its plant receptor [32]. 

8. Conclusion and Perspectives 

Among the insects potentially controllable by the application of PA1b, some have a very important 

economic or health impact. To cite just two particularly striking examples, grain weevils, which are 

responsible for losses approaching 25% worldwide (and up to 40% in tropical countries), and the 

mosquito, for which population control leads to the usual problems associated with chemical pesticides. 

On a smaller scale, many other applications are possible for specific problems: the development of 

poison baits (cockroaches, ants); the development of biological insecticides for private gardens; and 

the protection of wheat flour, as PA1b could be used in organic farming.  

However, the most promising application of PA1b is in the development of transgenic plants 

(cereals, or others). It is already established that the transformation and production of native PA1b is 

feasible in rice. However, the quantity of toxin produced may be a problem, and PA1b is acting at 

relatively high concentration. One way to overcome this difficulty is to enhance the toxicity of the 

peptide. Using current knowledge of the structure/function relationship, and given the biodiversity of 

PA1bs amongst Legumes, it would be of great interest to develop the best PA1b sequence possible in 

order to increase its potentiality. 
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