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Abstract: Ricin is a potent cytotoxin easily purified in large quantities. It presents a 
significant public health concern due to its potential use as a bioterrorism agent. For this 
reason, extensive efforts have been underway to develop antidotes against this deadly 
poison. The catalytic A subunit of the heterodimeric toxin has been biochemically and 
structurally well characterized, and is an attractive target for structure-based drug design. 
Aided by computer docking simulations, several ricin toxin A chain (RTA) inhibitors have 
been identified; the most promising leads belonging to the pterin family. Development of 
these lead compounds into potent drug candidates is a challenging prospect for numerous 
reasons, including poor solubility of pterins, the large and highly polar secondary binding 
pocket of RTA, as well as the enzyme’s near perfect catalytic efficiency and tight binding 
affinity for its natural substrate, the eukaryotic ribosome. To date, the most potent RTA 
inhibitors developed using this approach are only modest inhibitors with apparent  
IC50 values in the 10−4 M range, leaving significant room for improvement. This review 
highlights the variety of techniques routinely employed in structure-based drug design 
projects, as well as the challenges faced in the design of RTA inhibitors.  
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1. Introduction 

Ricin, from the castor plant Ricinus communis, is a type II holotoxin belonging to the Ribosome 
Inactivating Protein (RIP) superfamily [1,2]. Type II RIPs are comprised of a catalytic A subunit, and a 
lectin B subunit which mediates cellular uptake. For ricin, these chains are referred to as ricin toxin A 
chain (RTA) and ricin toxin B chain (RTB), respectively. Type I RIPs consist of only the catalytic 
subunit. Type I RIPs appear to play a role in plant antiviral defenses; they are not cytotoxic unless they 
can be delivered to the cytoplasm, for example by breaching the cell [3]. 

Ricin has received significant attention since the infamous umbrella tip assassination of Georgi 
Markov publically demonstrated the extreme lethality of the toxin [4,5]. Due to its ease of extraction in 
large quantities from castor beans, which are processed worldwide on an industrial scale, there is a real 
threat of ricin being used as a biological warfare agent. It is therefore important to develop an antidote 
for the deadly toxin as a defense against such an attack. 

The use of structure-based drug design is an attractive approach for the development of small 
molecule inhibitors for the treatment of ricin intoxication. The use of X-ray crystallography and/or 
NMR spectroscopy to obtain structural information detailing the interaction between an inhibitor and 
its target macromolecule is the cornerstone of structure-based drug design. The X-ray structure of ricin 
is known [6–8], and complexes with substrate analogs have revealed key features of the RTA active 
site [9,10]. When the macromolecular target structure is known, medicinal chemists can rationally 
develop synthetic derivatives of an existing inhibitor to improve potency by creating more favorable 
binding interactions with the target. This review focuses on the use of this approach in the 
development of inhibitors targeting the catalytic A subunit of ricin, highlighting progress made in this 
endeavor as well as obstacles that remain to be overcome. 

2. Ricin Structure and Action: Implications for Inhibitor Design 

2.1. X-Ray Structure of Ricin 

The X-ray structure of the ricin holotoxin was initially solved to 2.8 Å resolution [7] and later 
refined at 2.5 Å [8], allowing the molecular description of the individual protein chains [8,11]. The 
cloned A chain was later crystallized and solved in two different space groups at 2.1 Å resolution [12] 
and 1.8 Å respectively [13]. The X-ray structures allow an analysis of the suitability of each chain as a 
drug design target. 

2.2. RTB Is Not a Good Prospect for Structure-Based Inhibitor Design 

RTB might seem like the logical target for inhibitor design. If small molecules could be made that 
would bind tightly to it and preclude cell uptake, that would be ideal. The analysis of the X-ray 
structure showed that the B chain of ricin is composed of two related domains, which are each 
composed of three related subdomains. Only one subdomain of each domain binds galactosides, and 
these two binding sites are over 50 Å apart, on opposite ends of the protein [14–16]. The binding sites 
individually exhibit only weak binding to galactosides [17] with Kd values in the millimolar range. 
This weak binding at each site is biologically tolerable because the two widely separated sites 
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contribute independently to the free energy of binding, and because the target cell surface is literally 
covered with galactosides [18]. This is not useful for inhibitor design, however. The RTB galactose 
binding pockets are small (120–150 A3 as calculated by Q-Sitefinder [19]), and make only weak 
interactions with galactose [20,21]. Designing effective ligands to the shallow, polar galactose sites is 
difficult, and the two sites are also too far apart for a small molecule to bind both sites simultaneously. 
In contrast, RTA has two larger pockets that are within close proximity to each other, making it 
possible for a molecule with two fragments connected by a linker to be designed to fit both pockets at 
once. This makes RTA the more attractive target for structure-based drug design and justifies our focus 
on it for this review. 

2.3. RTA Is a Plausible, but Challenging Inhibitor Design Target 

Ricin Toxin A chain chemically inactivates the eukaryotic ribosome by hydrolysis of a single 
adenine base (A4324) on the sarcin-ricin loop (SRL) of the 28S rRNA of the large subunit [20,21]. Ricin 
shows a Km for ribosomes around 1 μM, and a kcat of around 1500 min−1, depending on the ribosome 
species [12,21,22]. The catalytic efficiency of this hydrolysis reaction, kcat/Km, is near the diffusion 
limit. This means that ricin has evolved to enzymatic perfection for this specific ribosome inhibiting 
reaction. In contrast, ricin attacks naked RNA at a rate about 104–105 times more slowly [21], and only 
at nonphysiological pH [23], suggesting this activity is essentially a nonspecific side reaction of its 
biological function [14]. 

The micromolar Km for ribosomes is indicative of the tight binding affinity that RTA has for its 
natural substrate. It is useful in structure-based inhibitor design to understand the chemical nature of 
that binding. The heart of substrate binding is the accommodation of the target adenine base in a 
“specificity” pocket in the RTA active site. The nature of this interaction was observed in a complex 
with formycin monophosphate (FMP), a non hydrolyzable analog of AMP [9]. Crystallographic 
studies of RTA showed that in the absence of substrate, the RTA specificity pocket was “closed”; that 
is, the side chain of Tyr 80 rotated to block its entrance [15]. However, in the presence of a substrate 
analog, RTA adopts an “open” conformation in which Tyrosine 80 moves to accommodate the 
substrate, forming a π-stacking network with the adenine base and Tyrosine 123 (Figure 1). In addition 
to the π-stacking interactions, the substrate forms six hydrogen bonds with the binding pocket, 
conferring specificity for the adenine base. Successful design of potent inhibitors of RTA is expected 
to require that both the π stacking and hydrogen bonding interactions be retained. 
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Figure 1. Structure of RTA complexed with substrate analog, formycin 5'-monophosphate 
(PDB ID: 1FMP): The binding of the AMP analog formycin 5'-monophosphate to the 
active site of RTA is shown below. The aromatic ring analogous to the adenine base of the 
natural substrate is sandwiched between Tyrosine 80 and 123 (left), and makes six 
hydrogen bonds, shown as solid green lines (right), within the active site. 

 

The active site of RTA can be described as having two binding pockets when it is in the open 
conformation: the primary adenine specificity pocket and a slightly larger secondary pocket. These  
two pockets are separated by the side chain of Tyrosine 80. The second pocket was proposed, based  
on model building, to accommodate a guanine base from the invariant GAGA ribosomal target  
sequence [9]; this has been confirmed by the X-ray structure of an RTA complex with a locked cyclic 
nucleotide [10]. The guanine base forms an aromatic stack with Tyrosine 80, and thereby forms an 
extended stack of Tyr 123, the adenine in the specificity pocket, Tyr 80 and the guanine base. 
However, the binding of guanine appears to be weak as we have been unable to soak the free base, 
nucleoside or nucleotide into that site. Its observed binding in the cyclic tetranucleotide is speculated 
to be driven by the conformational rigidity of that ligand which reduces configurational entropy of 
binding. Our efforts to construct small dinucleotide substrate analogs that bind to both pockets have 
been unsuccessful, illustrating the importance of conformational rigidity required for occupation of the 
second pocket. 

Despite the aromatic stacking interactions described above, the two RTA pockets and the 
surrounding surfaces are largely polar, as shown in Figure 2. This is not surprising given that the 
natural substrate is the ribosome. However, it makes it necessary for inhibitor platforms to conform to 
stringent polarity restraints in order to precisely complement the binding site and optimize binding 
interactions. Such complementary compounds would have polar surface areas which generally incur a 
high penalty in desolvation energy upon binding. This issue has historically caused difficulty in 
implementing structure-based drug design for targets with large polar binding sites [16,24]. In RTA, 
the area between the two pockets contains several positively charged arginine residues that 
accommodate the phosphate backbone of the natural substrate RNA. This must also be taken into 
consideration when synthetically optimizing inhibitors. 
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Figure 2. Electrostatic potential surface map of RTA: RTA is shown in the open 
conformation, with the adenine specificity pocket labeled (A) and the secondary binding 
pocket labeled (B) Surfaces with positive electrostatic potential are shaded blue while those 
with negative potential are shaded red. 

 

3. Ricin Inhibitors 

Recently, ricin inhibitors have been identified through classical high throughput screening strategies 
using large libraries of compounds to protect cultured cells from intoxication [25]. However, ricin 
intoxication is a complex process involving cell uptake, trafficking to the ER, release to the cytoplasm 
and ribosome inactivation. The cell based assay does not identify which process or protein [26] an  
anti-ricin compound is acting on. Another cell-based screen identified an anti-ricin compound that acts, 
not by inhibiting RTA action, but by disrupting cell trafficking [27]. Without a clear understanding of 
the macromolecular target being inhibited, it is difficult to rationally improve upon the initial high 
throughput hits. Of those inhibitors identified in the cell-based assay, only a small percentage showed 
anti-RTA activity in cell-free systems. For now, we will focus on those inhibitors known to act on RTA. 

To date, compounds that inhibit RTA action have been mainly discovered by virtual screening and 
structure-based design [28–32]. Assaying potential inhibitor compounds for anti-RTA activity has 
proven to be a difficult task. Our current assay uses a cell-free translation system to produce firefly 
luciferase, with luminescence as the reporter for measuring the decrease in translation activity due to 
RTA and rescue of translation caused by RTA inhibitors. An example of a dose response curve is 
shown in Figure 3a. 

Differential scanning fluorimetry (DSF) is utilized as a complementary technique to our cell free 
translation assay to provide further evidence of compounds binding to RTA. The technique relies on a 
fluorescent dye which becomes active upon binding to the hydrophobic surface patches of RTA that 
are exposed as the protein denatures under a controlled temperature gradient. This allows for the 
melting temperature of RTA to be accurately measured in the absence and presence of potential 
ligands using a real-time PCR instrument. The observation of an increase in melting temperature 
induced by the ligand indicates tight binding to the protein and stabilization of the folded  
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form [33,34]. Figure 3b shows an example set of melting curves in which a significant thermal shift 
was observed. Only compounds identified by virtual screening have shown positive results in DSF, 
which is consistent with what we have observed with the translation assay. 

Figure 3. RTA dose response and melting curves: (A) The dose response for  
N-(2-(phenylamino)ethyl)-7-carbamoyl pterin (compound 12) is shown, as measured in the 
cell-free translation assay. Individual data points, shown as dots were fit via least squares 
regression to a hyperbolic decay function; (B) The melting curve for compound 12 is 
shown as measured by DSF. The melting curve for RTA alone is represented by a solid line, 
and the curve for RTA in the presence of compound 12 is represented by a dashed line. 

 

Since RTA interacts with rRNA, it might seem that RNA based inhibitors could be useful anti-ricin 
agents. Indeed, Schramm and his coworkers have created a number of tightly binding RNA analogs to 
RTA [35]. However, RNA based inhibitors, although mechanistically interesting, are not expected to 
be useful drugs since they are biochemically labile and have difficulties crossing cell membranes. 

Other small molecule inhibitors of RTA have been identified using computer simulated docking of 
large virtual compound libraries to the open form of RTA and confirming their anti-RTA activity using 
cell-free translation assays [29–31]. Many of these were successfully soaked or co-crystallized with 
RTA, and their X-ray structures revealed binding to the adenine specificity pocket. The inhibitors that 
yielded complex structures had numerous structural similarities, the most important of which being an 
exocyclic amine that donates two hydrogen bonds to the backbone carbonyls of Valine 81 and  
Glycine 121. Another important characteristic is aromaticity, which is necessary for the stacking 
interaction with the two tyrosine side chains.  

The first RTA inhibitor identified from virtual screening was pteroic acid, PTA, which had an 
apparent IC50 of 600 μM [31]. The crystal structure of the RTA-pteroic acid complex, shown in  
Figure 4, reveals that the pterin group binds in the adenine specificity pocket, making six hydrogen 
bonds, and that the benzoic acid moiety is in close proximity to the secondary pocket. Unfortunately, 
efforts to improve the inhibitory activity of pteroic acid by attaching pendants at the benzoic acid 
group were unsuccessful due to synthetic restrictions. 
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Figure 4. Pteroic Acid in complex with RTA: The crystal structure of the complex of  
RTA with pteroic acid is shown (PDB ID: 1BR6). Hydrogen bonds are depicted as solid 
green lines. 

 

The clearest way to improve inhibition of RTA is to design a compound that occupies both active 
site binding pockets: the specificity pocket that holds the substrate adenine and the second pocket. The 
second pocket, being larger, more open, and more polar than the primary pocket, presents exceptional 
difficulties in identifying or designing compounds with specific affinity for this site. For this reason, a 
fragment-based approach would be impractical. Our approach is to use the scaffolds known to bind the 
specificity pocket with high affinity and synthesize extensions, which possess both rigidity and 
complementarity to the region between the two binding pockets. Rigidity means that the linker should 
have a minimum of entropically unfavorable rotatable bonds that greatly impede ligand binding [32]. 
These extensions will be developed into linkers to which aromatic groups can be attached. The 
position and conformational rigidity of the linker will have to be a strong enough driving force for the 
attached aromatic pendant to be forced into the second pocket, where it could make stacking 
interactions with Tyrosine 80. 

Scaffolds that have been shown to bind with reasonable affinity to the specificity pocket include 
adenine, guanine, pterin, and dihydroxyamino-pyrimidine [29–31]. We have explored synthetic 
derivatization of each of these platforms. Each has its own synthetic difficulties that need to be 
overcome to generate novel inhibitors. Once novel compounds are made, each must be evaluated as an 
RTA inhibitor. Currently, the most promising platform is the pterin series. Despite solubility issues 
both in synthesis and in application, the pterin-based inhibitors show the most reproducibility in both 
the luciferase kinetic assay and X-ray crystallographic studies. The other scaffolds have been less 
successful and have therefore been abandoned. In this report we will focus on novel synthesis of 
pterin-based RTA inhibitors. 
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4. Novel Compound Synthesis 

Based on the structural data for pterin binding in the specificity pocket, it is apparent that synthetic 
extensions can be made from pterin at positions 6 and 7, which could, in principle, reach toward the 
second pocket on the enzyme surface; most naturally occurring pterins such as pteroic acid, neopterin, 
and folate are substituted at the 6 position [36–39]. As part of our program we needed to explore 
derivatization at both positions. 

A serious drawback of pterin chemistry comes from their notorious insolubility; the complementary 
hydrogen bond donors and acceptors within pterin result in solute-solute interactions too strong  
for most solvents to overcome. There are two main methods by which pterin rings are constructed:  
Isay condensation and the Taylor method, illustrated in Scheme 1. Isay condensation, the more 
straightforward method, involves condensation of a dicarbonyl compound with 6-hydroxy-2,4,5-
triaminopyrimidine to provide the pterin product Scheme 1a [40]. With symmetric dicarbonyl 
compounds, only one product is formed; but unsymmetrical dicarbonyls result in two regioisomers,  
6 and 7 [36]. For this reason, Taylor and coworkers developed an alternative, step-wise construction of 
the pterin core Scheme 1b [38,41]. 

Scheme 1. Pterin synthesis by Isay and Taylor methods. 

 

Regardless of the method used in the construction of the pterin, solubility problems must be 
addressed. One of the most common methods of improving pterin solubility is through protection of 
the N2-exocylic amine as an amide (Figure 5); we have used pivalic-protected pterins to greatly 
improve solubility in such common organic solvents as ethanol, ethyl acetate and dichloromethane [42]. 
Unfortunately, we have often observed this pivalic group to be too labile for many of the reactions we 
desire to make, with the deprotected pterin precipitating out of solution prior to product formation. 

Figure 5. Protected pterins for improved solubility. 
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Once we identified a useful N2 blocking group, we began a program to derivatize pterin at both the 
6 and 7 positions. We created a 6-methyl pterin that could be oxidized to generate 6-carboxy pterin, 
6CP, as shown in Scheme 2 [43]. 

Scheme 2. Derivitizing 6-methyl pterin. 

 

The Minisci group has developed radical-species methods that allow insertion into heterocyclic 
rings, which we explored for pterin [44–46]. Previous studies suggested this reaction would be 
regiospecific in pterins and would provide the 7-isomer, rather than the more common 6-substituted 
pterin [47]. The synthesis of 7-carboxy pterin, 7CP, is shown in Scheme 3. 

Scheme 3. Synthesis of various 7-substituted pterins. 

 

We purified and tested both 6CP and 7CP as RTA inhibitors. 6CP showed little, if any, measureable 
inhibitory activity, and soaking experiments showed it did not bind to RTA crystals. In contrast, 7CP 
was a relatively potent inhibitor, with an IC50 of 240 μM, and showed strong binding to the crystals [48]. It 
is possible that other, uncharged modifications at the 6-position could produce useful inhibitors; but 
with limited synthetic resources, we decided to pursue pterin compounds modified at the 7-position. 

One of our first efforts focused on creating amide derivatives of 7CP. Due to solubility restrictions, 
we opted for a route illustrated in Scheme 4, suspending the methyl ester of 7CP in methanol with a 
large excess of the amine and heating in a sealed tube overnight. This method was successful in 
providing us with the amides, in yields ranging from 59–92% [48]. A variety of pendants have been 
attached in this fashion. These have been tested for RTA inhibition and binding examined by X-ray 
diffraction. A highlight of the pterin results are summarized in Table 1. Many of the compounds are 
less soluble than the charged 7CP, and many have a lower affinity. This indicates the pendants are not 
making specific interaction with RTA, which is confirmed by X-ray crystallography. In many cases the 
pterin ring is firmly bound in the specificity site, but the pendant tail appears disordered.  
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Scheme 4. Synthesis of amide derivatives. 

 

Table 1. Summary of pterin-based inhibitors. 

Entry Structure Name IC50 * Resolution 
PTA 

NH

N N

N

NH2

O

N
H

OH

O Pteroic acid 600 μM 2.30 Å 

1 

 

6-methyl pterin No Inhibition NA 

2 

 

6-carboxy pterin No Inhibition NA 

7 

 

7-carboxy pterin 
(7CP) 

240 μM 1.29 Å 

5 

 

7-carbamoyl pterin No Inhibition 1.75 Å 

8 

 

N-methyl-7-
carbamoyl pterin 

1.6 mM 1.26 Å 

9 

 

7-hydrazide pterin 500 μM 
(35%) 

1.97 Å 

4 

 

7-propionyl pterin 750 μM 1.35 Å 

10 N-(furanylmethyl)-
7-carbamoyl pterin 

380 μM 1.89 Å 
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Table 1. Cont. 

Entry Structure Name IC50 * Resolution
11 N-(4-fluorobenzyl)-

7-carbamoyl pterin 
570 μM NA 

12 N-(2-(phenylamino) 
ethyl)-7-carbamoyl 

pterin 

200 μM 1.75 Å 

* When 50% inhibition was not reached; % inhibition is given in parenthesis at maximum 
concentration. 

5. Plans for Inhibitor Optimization 

Future work with the pterins will be aimed at extending the 7CP linkers with chemical groups that 
can bind into the second pocket. These pendant groups should ideally be able to make specific polar 
contacts with protein residues. Efforts will initially be focused on derivatizing primary amines as 
linkers. Two linkers of particular interest are the aminomethyl furan from compound 10 and the 
ethylene diamine from compound 12. Based on the crystal structure of compound 10, the furan group, 
although not close enough to TYR 80 to form a hydrogen bond, is oriented in a favorable position such 
that derivatization of the 5 position would allow the attachment of pendants extending into the 
secondary pocket (Figure 6). The ethylene diamine linker can be reacted with a variety of activated 
acids, esters, nitriles, and isocyanates to yield amide, guanidinium, and urea linkages. The high 
hydrogen bonding capacity of these groups should allow the linker to make favorable contacts with the 
highly polar surface between the two binding pockets, promoting conformational stability. 

Figure 6. Complex of RTA and Compound 10: The crystal structure of N-(furanylmethyl)-
7-carbamoyl pterin in complex with RTA reveals that the furanylmethyl moiety is oriented 
favorably for further development as a linker extending into the second pocket beyond 
TYR 80. The distance between the furan and the hydroxyl group of TYR 80 is measured at 
4.2 Å, which is too long for a hydrogen bond. 
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A number of docking programs are available that can predict the interactions of small molecules 
with protein surfaces [49–51]. These can be useful, not only for virtual screening of large  
libraries [52,53], but also in designing derivatives of known inhibitors. Programs of this type explore 
many conformations of the ligand within the binding cavity, and compute the energies of interaction 
for each test conformation. Our experience in a limited number of cases suggests that these programs 
predict ligand binding conformation with reasonable accuracy [32,34]. 

Through the use of the virtual docking program ICM [54], the binding of theoretical compounds 
can be predicted prior to them being synthesized. By docking potential pterin derivatives, synthetic 
efforts can be focused on those compounds that showed the most promising results, avoiding those 
who performed poorly. Synthesis of new pterin derivatives bearing the furan and ethylene diamine 
linkers will be guided in such a way. The predicted binding of two theoretical pterin derivatives are 
shown in Figure 7. Both designed molecules are predicted to bind with higher affinities than are their 
parent compounds, which are known inhibitors (Table 1). 

Figure 7. Docking results from ICM simulation: Predicted binding poses of pterin 
derivatives bearing furan (left), and ethylene diamine (right) linkers are shown. Hydrogen 
bonds (not shown) are predicted to form between TYR 80 and the ether group in the 
compound on the left, and between TYR 80 and the pyridine group in the compound on  
the right. 

 

In addition to conformational rigidity, specific interactions between the linker and the protein are 
crucial for the compound to make an energetically unfavorable 180° degree turn to reach the secondary 
pocket. The prediction of binding orientation via virtual docking is helpful in identifying linkers 
capable of making such interactions. However the validity of these predictions has yet to be 
demonstrated. While a compound may be capable of binding to RTA in such a way that the linker 
makes specific interactions with RTA, the energy of those interactions must be significant enough to 
force the molecule into a conformation necessary to make them. Once a linker is confirmed via X-ray 
crystallography to fulfill these requirements, virtual docking can then be used to identify pendants that 
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would make optimal interactions with the second pocket. By achieving occupancy of the second 
pocket, the anti-ricin activity of these compounds is expected to improve dramatically. Therefore, the 
immediate obstacle that remains to be overcome in the design of potential ricin antidotes is the 
synthesis of a linker that possesses both rigidity and specificity for RTA.  
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