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Abstract: Staphylococcus aureus produces a wide variety of toxins including 
staphylococcal enterotoxins (SEs; SEA to SEE, SEG to SEI, SER to SET) with 
demonstrated emetic activity, and staphylococcal-like (SEl) proteins, which are not emetic 
in a primate model (SElL and SElQ) or have yet to be tested (SElJ, SElK, SElM to SElP, 
SElU, SElU2 and SElV). SEs and SEls have been traditionally subdivided into classical 
(SEA to SEE) and new (SEG to SElU2) types. All possess superantigenic activity and are 
encoded by accessory genetic elements, including plasmids, prophages, pathogenicity 
islands, vSa genomic islands, or by genes located next to the staphylococcal cassette 
chromosome (SCC) implicated in methicillin resistance. SEs are a major cause of food 
poisoning, which typically occurs after ingestion of different foods, particularly processed 
meat and dairy products, contaminated with S. aureus by improper handling and 
subsequent storage at elevated temperatures. Symptoms are of rapid onset and include 
nausea and violent vomiting, with or without diarrhea. The illness is usually self-limiting 
and only occasionally it is severe enough to warrant hospitalization. SEA is the most 
common cause of staphylococcal food poisoning worldwide, but the involvement of other 
classical SEs has been also demonstrated. Of the new SE/SEls, only SEH have clearly been 
associated with food poisoning. However, genes encoding novel SEs as well as SEls with 
untested emetic activity are widely represented in S. aureus, and their role in pathogenesis 
may be underestimated. 

OPEN ACCESS 



Toxins 2010, 2   
 

1752 

Keywords: Staphylococcus aureus; food poisoning; staphylococcal enterotoxins; emetic 
activity; superantigens; gene location 

 

1. Staphylococcal Food Poisoning 

Staphylococcal food poisoning (SFP) is an intoxication that results from the consumption of foods 
containing sufficient amounts of one (or more) preformed enterotoxin [1,2]. Symptoms of SFP have a 
rapid onset (2–8 h), and include nausea, violent vomiting, abdominal cramping, with or without 
diarrhea [3–5]. The disease is usually self-limiting and typically resolves within 24–48 h after onset. 
Occasionally it can be severe enough to warrant hospitalization, particularly when infants, elderly or 
debilitated people are concerned [4]. 

Food handlers carrying enterotoxin-producing S. aureus in their noses or on their hands are regarded as 
the main source of food contamination, via manual contact or through respiratory secretions. In fact,  
S. aureus is a common commensal of the skin and mucosal membranes of humans, with estimates of  
20–30% for persistent and 60% for intermittent colonization [6]. Because S. aureus does not compete 
well with indigenous microbiota in raw foods, contamination is mainly associated with improper handling 
of cooked or processed foods, followed by storage under conditions which allow growth of S. aureus and 
production of the enterotoxin(s). However, S. aureus is also present in food animals, and dairy cattle, 
sheep and goats, particularly if affected by subclinical mastitis, are likely contaminants of milk [7]. Air, 
dust, and food contact surfaces can also serve as vehicles in the transfer of S. aureus  
to foods. 

Foods that have been frequently incriminated in staphylococcal intoxication include meat and meat 
products, poultry and egg products, milk and dairy products, salads, bakery products, particularly 
cream-filled pastries and cakes, and sandwich fillings [8,9]. Salted food products, such as ham, have 
also been implicated [10], according to the capacity of S. aureus to grow at relatively low water activity 
(aw = 0.86; [11]). 

SFP is a common disease whose real incidence is probably underestimated for a number of reasons, 
which include misdiagnosis, unreported minor outbreaks, improper sample collection and improper 
laboratory examination. The control of this disease is of social and economic importance. In fact, it 
represents a considerable burden in terms of loss of working days and productivity, hospital expenses, 
and economical losses in food industries, catering companies and restaurants [2,3,12–15]. 

2. Staphylococcus aureus Enterotoxins 

The S. aureus enterotoxins (SEs) are potent gastrointestinal exotoxins synthesized by S. aureus 
throughout the logarithmic phase of growth or during the transition from the exponential to the 
stationary phase [16–20]. They are active in high nanogram to low microgram quantities [21], and are 
resistant to conditions (heat treatment, low pH) that easily destroy the bacteria that produce them, and 
to proteolytic enzymes, hence retaining their activity in the digestive tract after ingestion [22–24]. 
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Table 1. General properties of SEs and SEls and genomic location of the encoding genes. 
See text for references. nd, not determined; a Emetic activity demonstrated in rabbits  
(SElL; [43]) or in the small insectivore Suncus murinus (SElP; [39]) but not in a primate 
model; b Hypothetical location in a prophage [48]. 

Toxin 
Molecular 

Mass (kDa) 
Emetic 
Activity 

Crystal 
Structure Solved 

Gene Accessory genetic element 

SEA 27.1 yes yes sea ΦSa3ms, ΦSa3mw, Φ252B, ΦNM3, ΦMu50a 
SEB 28.4 yes yes seb pZA10, SaPI3 
SEC 27.5–27.6 yes yes sec SaPIn1, SaPIm1, SaPImw2, SaPIbov1 
SED 26.9 yes yes sed pIB485-like 
SEE 26.4 yes no see ΦSa b 
SEG 27.0 yes yes seg egc1 (vSaβ I); egc2 (vSaβ III); egc3; egc4 
SEH 25.1 yes yes seh MGEmw2/mssa476 seh/∆seo 
SEI 24.9 weak yes sei egc1 (vSaβ I); egc2 (vSaβ III) ); egc3 
SElJ 28.5 nd no selj pIB485-like; pF5 
SElK 26.0 nd yes selk ΦSa3ms, ΦSa3mw, SaPI1, SaPI3, SaPIbov1, SaPI5 
SElL 26.0 no a no sell SaPIn1, SaPIm1, SaPImw2, SaPIbov1 
SElM 24.8 nd no selm egc1 (vSaβ I); egc2 (vSaβ III) 
SElN 26.1 nd no seln egc1 (vSaβ I); egc2 (vSaβ III); egc3; egc4 

SElO 26.7 nd no selo 
egc1 (vSaβ I); egc2 (vSaβ III); egc3; egc4; 
MGEmw2/mssa476 seh/∆seo 

SElP 27.0 nd a no selp ΦN315, ΦMu3A 
SElQ 25.0 no no selq ΦSa3ms, ΦSa3mw, SaPI1, SaPI3, SaPI5 
SER 27.0 yes no ser pIB485-like; pF5 
SES 26.2 yes no ses pF5 
SET 22.6 weak no set pF5 
SElU 27.1 nd no selu egc2 (vSaβ III); egc3 

SElU2 
(SEW) 

nd nd no selu2 egc4 

SElV nd nd no selv egc4 

2.1. Nomenclature 

SEs belong to the broad family of pyrogenic toxin superantigens (SAgs; [3]). SAgs bypass 
conventional antigen recognition by interaction with major histocompatibility complex (MHC) class II 
molecules on the surface of antigen presenting cells, and with T-cell receptors (TCR) on specific  
T-cell subsets. Interaction typically occurs to the variable region of the TCR β chain (Vβ) but binding 
to the TCR Vα domain has been reported [21,25,29]. This leads to activation of a large number of  
T-cells followed by proliferation and massive release of chemokines and proinflammatory cytokines 
that may led to potentially lethal toxic shock syndrome [3]. However, staphylococcal enterotoxins have 
been proposed to be named according to their emetic activities [30]. Only SAgs that induce vomiting 
after oral administration in a primate model will be designated as SEs. Related toxins that lack emetic 
activity or have not been tested for it should be designated as staphylococcal enterotoxin-like (SEls) 
SAgs. Also, newly discovered toxins with more than 90% amino acid sequence identity with existing 
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SEs or SEls should be designated as a numbered subtype. However, despite this consensus 
nomenclature some subtypes are still just called variants. 

At the time of this review, the repertoire of S. aureus SEs/SEls comprised 22 members, excluding 
molecular variants: (i) the classical SEA, SEB, SEC (with the SEC1, SEC2 and SEC3, SEC ovine and 
SEC bovine variants), SED and SEE, which were discovered in studies of S. aureus strains involved in 
SFP outbreaks, and classified in distinct serological types [31–35]; and (ii) the new types of SEs (SEG, 
SEH, SEI, SER, SES, SET) and SEls (SElJ, SElK, SElL, SElM, SElN, SElO, SElP, SElQ, SElU, 
SElU2, and SElV) [28,36–45]. TSST-1, the toxic shock staphylococcal toxin, initially designated as 
SEF, lacks emetic activity [46,47]. 

2.2. Structure 

SEs and SEls constitute a family of structurally related exoproteins that range in size from ~22 to  
28 kDa (Table 1). Based on amino acid sequence comparisons, they have been distributed into four or 
five groups (Table 2), depending on the inclusion or not of SEH within group 1 [21,29,40,49]. The 
recently described SET is most related to a putative exotoxin from an S. aureus isolate involved in 
bovine mastitis, and to streptococcal pyrogenic toxin type K (SpeK) [40]. TSST-1, which is 
functionally a superantigen with no emetic activity, is more distant to SEs and SEls than to SSLs 
(staphylococcal superantigen-like proteins) [50]. The SSLs, first identified by screening staphylococcal 
genomes using two conserved amino acid motifs placed in the N-terminal and  
C-terminal domains of SAgs, are not mitogenic to T cells and do not bind MHC class II, although they 
display a wide array of activities targeting key elements of the innate and specific immunity, such as 
neutrophils, complement factor C5, and IgA [51–56]. 

Table 2. Grouping of SEs and SEls based on amino acid sequence comparisons. Modified 
from Larkin et al. [21]. Enterotoxins encoded by the egc cluster are shown in bold. SEH (in 
parenthesis) has been placed within Group 1 or Group 5, depending on the author [29,49]. 

Group SEs and SEls 
Group 1 SEA, SED, SEE, (SEH), SElJ, SElN, SElO, SElP, SES  
Group 2 SEB, SEC, SEG, SER, SElU, SElU2 
Group 3 SEI, SElK, SElL, SElM, SElQ, SElV  
Group 4 SET 

(Group 5) (SEH) 

The three-dimensional structures of TSST-1 [57,58] and several SEs and SEls [59–69] have been 
solved by crystallography (Table 1). The structures are remarkably conserved, although they interact 
differently with MHC class II molecules, and show different TCR specificity [70]. They are compact 
ellipsoidal proteins with two unequal domains separated by a shallow grove. The larger C-terminal 
domain is a β-grasp fold consisting of four- to five-strand β-sheet that packs against a highly conserved 
α-helix [71]. The smaller N-terminal domain consists of a mixed β-barrel with Greek-key topology, 
similar to the OB (oligosaccharide/oligonucleotide binding)-fold [72] also found in many other 
bacterial toxins (SSLs, streptococcal superantigens, nucleases and toxins of the AB5 family, including 
cholera and pertussis toxins, and verotoxin) [29,50]. The two domains are stabilized by close packing 
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and by a section of the N-terminus that extends over the top of the C-terminal domain. The N-terminal 
extension contributes substantially to the TCR-binding site, located in the cleft between the two protein 
domains, while the MHC class II binding site is in the OB-fold [29,50]. The top of the  
N-terminal domain usually contains a highly flexible disulfide loop, which has been implicated with 
emetic activity (see below). 

2.3. Mode of Action 

Important efforts have been made to identify specific amino acids and domains within SEs which 
may be important for emesis, but results are still limited and controversial. Like TSST-1, SElL, and 
SElQ are nonemetic, while SEI displays weak emetic activity [38,41,42]. These toxins lack the 
disulfide loop characteristically found at the top of the N-terminal domain of other SEs. Nonetheless, 
the loop itself does not appear to be an absolute requirement for emesis, although it may stabilize a 
crucial conformation important for this activity [73]. Carboxymethylation of histidines on SEA or SEB 
generates proteins devoid of enterotoxicity, which still retain superantigenicity [75,76]. Analysis of the 
effects of carboxymethylation of each of the SEA histidines revealed that His61 is important for 
emesis, but not for T-cell proliferation [77]. Conversely, Leu48Gly and Phe44Ser mutant forms of SEA 
and SEB, respectively, do not bind MHC class II molecules or cause T-cell activation, but still provoke 
vomiting [78], hence separating emesis and superantigenicity as different functions of the proteins. 
Despite this, a high correlation exists between the two activities since, in most cases, genetic mutations 
resulting in a loss of superantigen activity also results in loss of emetic activity [78]. 

In contrast to the case of many other bacterial enterotoxins, specific cells and receptors in the 
digestive system have not been unequivocally linked to oral intoxication by a SE. It has been suggested 
that SEs stimulate the vagus nerve in the abdominal viscera, which transmits the signal to the vomiting 
center in the brain [79]. Supporting this idea, receptors on vagal afferent neurons are essential for SEA-
triggered emesis [80], and capsaicin, a small molecular weight compound from chilli peppers that 
depletes peptidergic sensory nerve fibers, also diminishes SE effects in mammals [21]. In addition, SEs 
are able to penetrate the gut lining and activate local and systemic immune responses [81]. Release of 
inflammatory mediators (including histamine, leukotrienes, and neuroenteric peptide substance P) 
causes vomiting [82–85] and the emetic response can be eliminated by H2- and calcium  
channel-blockers, which also block the release of histamine [86]. Local immune system activation 
could also be responsible for the gastrointestinal damage associated with SE ingestion [87,88]. 
Inflammatory changes are observed in several regions of the gastrointestinal tract, but the most severe 
lesions appear in the stomach and the upper part of the small intestine [89]. The diarrhea sometimes 
associated with SEs intoxication may be due to the inhibition of water and electrolyte reabsorption in 
the small intestine [90,91]. In an attempt to link the two distinct activities of SEs, i.e., superantigenicity 
and enterotoxicity, it has been postulated that enterotoxin activity could facilitate transcitosis, enabling 
the toxin to enter the bloodstream and circulate through the body, thus allowing the interaction with 
antigen presenting- and T-cells that leads to superantigen activity [3,92]. In this way, circulation of SEs 
following ingestion of SEs as well as their spread from a S. aureus infection site, could have more 
profound effects upon the host versus if the toxin remains localized [21]. 
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2.4. Enterotoxin Gene Location 

All se and sel genes are located on accessory genetic elements, including plasmids, prophages,  
S. aureus pathogenicity islands (SaPIs), genomic island vSa, or next to the staphylococcal cassette 
chromosome (SCC) elements (Table 1). Most of these are mobile genetic elements, and their spread 
among S. aureus isolates can modify their ability to cause disease and contribute to the evolution of 
this important pathogen. 

2.4.1. Plasmids 

Plasmids have been long recognized as efficient vehicles for the spread of resistance and virulence 
determinants through horizontal gene transfer. In S. aureus, two kinds of plasmids carrying se/sel genes 
have been characterized (Table 1; Figure 1). Both contain sej and ser associated with either sed 
(pIB485-like) or with ses and set (pF5) [40,45,93]. 

Figure 1. Enterotoxin and enterotoxin-like genes in plasmids pIB485 and pF5 based on 
sequencing data deposited under the accession numbers indicated to the right of the figure.  
Note that pIB485 also contains blaZ and cad resistance genes [94] and probably  
ser [40,95]. 

other

transcriptional regulator, MarR family

lantibiotic biosynthesis genes

ABC transporter

alcohol dehydrogenase gene

enterotoxin genes

pIB485

pF5 

≈600-800 nt

KSI1410 M94872.1, AF053140.1  

Strain            Accession numberPlasmid

Fukuoka 5            AB330135.1

 

The first plasmid described to carry an enterotoxin gene was pIB485, a 27.6 kilobase (kb) plasmid, 
in which first sed and latter selj were identified [45,94]. Enterotoxin SER was discovered by [93] in  
S. aureus strains associated with a food poisoning outbreak that occurred in Fukuoka City, Japan, in 
1997, and the ser gene was shown to be located on a family of closely related plasmids, termed pF5 
and pF5-like. These plasmids have similar restriction profiles and carry selj along with ser. More 
recently, two novel SE genes (ses and set) have also been detected on the Fukuoka plasmids [40,93]. 
Interestingly, the ser gene, together with sed and selj, has also been found in pIB485-like plasmids 
from laboratory strains, food poisoning outbreak isolates and healthy human isolates in Japan [93] and 
pIB485-like plasmids, varying in size and/or restriction profile were present in S. aureus isolates 
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recovered in Spain from human nasal carriers and manually handled foods [95]. Two of them, named 
pUO-Sa-SED1 (~33 kb) and pUO-Sa-SED2 (~36 kb), carried sed, selj and ser, and have restriction 
patterns identical or similar to that of pIB485, while pUO-Sa-SED3 (53.5 kb; containing sed, selj and 
ser-like) has a different profile. A BLAST search (http://www.ncbi.nlm.nih.gov) of the sed, selj, ser, 
ses and set genes revealed additional pIB485-like and pF5-like plasmids obtained from human clinical 
isolates, whose sequences have been deposited in databases. At present, the evolutionary relationship 
between the two types of plasmids is unknown. 

2.4.2. Prophages 

Like most published S. aureus phages, those carrying se genes (sea, selk, selp and selq) belong to 
the Siphoviridae family. The temperate, tailed bacteriophages within this family have been classified 
according to three features [96]: (i) the lysogeny module, particularly the integrase that dictates the 
insertion site of the phage in the bacterial chromosome; (ii) the serogroup, based on differences in 
capsid, tail, and tail appendix proteins; and (iii) the holin gene of the lysis module. The Siphoviridae 
prophages carrying se genes belong to integrase group Sa3, serogroups Fa and Fb, and holin groups 
255a and 255b. Three se/sel genes (sea, selk and selq) are present together in ФSa3ms and ФSa3mw, 
while a single se/sel gene (sea or selp) is carried by other prophages (Table 1; Figure 2).  

Apart from enterotoxins, virulence factors involved in evasion of the innate immunity are also 
encoded on these phages. These include the chemotaxis inhibitory protein (CHIP, product of the chp 
gene) that binds to host chemokine receptors, particularly the C5a receptor and the formylated peptide 
receptor, preventing neutrophil chemotaxis and activation [97]; the staphylococcal complement 
inhibitor (SCIN, encoded by the scn gene) that interferes with all pathways of complement activation 
by blocking C3 convertases [98]; the staphylokinase (product of the sak gene) that leads to degradation 
of two major opsonins (IgG and C3b) through activation of surface-bound plasminogen into plasmin, 
and also inhibits the bactericidal effect of α-defensins [99,100]. The region encoding these virulence 
factors is known as the "innate inmune evasion cluster" [101] and is located at one or both ends of the 
phages. Integration of these phages into the S. aureus chromosome occurs by a site-specific 
recombination event between the attP site in the phage genome and the attB site located within the  
β-hemolysin gene in the bacterial chromosome [102]. While integration negatively converts  
β-hemolysin expression, it supplies other virulence genes. 

2.4.3. Staphylococcus aureus Pathogenicity Islands 

The SaPIs are mobile pathogenicity islands, which are widely distributed in S. aureus and have also 
been found in other species of Staphylococcus. SaPIs have a highly conserved overall organization, 
parallel to that of typical temperate bateriophages. Each one occupies a specific chromosomal site 
(attS), and always appears in the same orientation. From its integration site, the island can be induced to 
excise and replicate by one or more specific staphylococcal helper phages [103,104]. Following 
replication the SaPI DNA is efficiently encapsidated into infectious small-headed phage-like particles 
resulting in extremely high transfer frequencies. 
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Figure 2. Enterotoxin genes carried by prophages based on sequencing data deposited 
under the accession numbers indicated to the right of the figure. 

phage  genesenterotoxin genes

integrase genes

other virulence genes

phage attachment site

ФSa252B 

≈600-800 nt
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ФMu50A
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sea prophages

selp prophages

sea, selk, selq prophages

ФSaTW20

Ф04-02981 

MW2                    NC_003923.1

MSSA476            NC_002953.3

MRSA 252          NC_002952.2

Newman              NC_009641.1

Mu50                   NC_002758.2

N315                    NC_002745.2

Mu3                     NC_009782.1

Strain            Accession number

TW20                  FN433596.1

04-02981             CP001844

 

Figure 3. Staphylococcus aureus pathogenicity islands (SaPIs) carrying enterotoxin or 
enterotoxin-like genes. Modified from Novick and Subedi [105] and based on the accession 
numbers indicated to the right of the figure. 
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SaPIs are very common in S. aureus (Table 1). They range in size from 15–17 kb, with the 
exceptions of SaPIbov2 (27 kb) and a highly degenerated SaPI (3.14 kb) present in some sequenced 
genomes. The complete nucleotide sequence is known for 20 SaPIs, and some of them carry genes 
encoding TSST-1 and/or one or more SEs (Figure 3). For instance, tst is found together with selk and 
selq in SaPI1, with sec3 and sell in SaPIm1 and SaPIn1, and with sell and sec in SaPIbov1; seb, selq 
and selk have been reported in SaPI3; selk and selq in SaPI5; and sec4 and sell2 in SaPImw2 [105]. 
Induction of a SaPI is likely to originate an increase in the copy number of the toxin genes, and 
therefore to an increase in toxin production, as described for lysogenic phages [106]. 

2.4.4. vSa Genomic Islands 

The term vSa refers to non-phage and non-SCC genomic islands that are exclusively present in  
S. aureus, often (but not always) encode virulence determinants, are inserted at specific loci in the 
chromosome and are associated with either intact or remnant DNA recombinases [107,108]. Two 
major vSa genomic islands, namely vSaα and vSaβ, each of about 20–30 kb, are present in all S. aureus 
genomes sequenced so far, but absent in other Staphylococcus species, including S. epidermidis. 
Though vSaα and vSaβ could have been acquired by horizontal gene transfer, actually there is not 
evidence that they can move. Each of these islands carries two copies of the genes encoding the 
recognition (hsdS) and methylation (hsdM) subunits of the Sau1 type I restriction-modification system. 
A single copy of the gene for the restriction subunit is located elsewhere in the S. aureus chromosome 
[109]. The hsdS genes of the Sau1 system diverge significantly between members of different lineages 
and this determines variations in the sequences that will be specifically recognized as targets for 
modification through methylation. Since only modified sequences will be protected against restriction, 
exchange of DNA between members of same lineage will be allowed, while DNA transferred between 
isolates of different lineages will be digested. Because of this, the Sau1 system has been considered as 
a key factor in the control of lineage evolution. 

Figure 4. Structure of two types of the vSaβ genomic island containing the enterotoxin 
gene cluster. Adapted from Baba et al. [108] and based on accession numbers indicated to 
the right of the figure. 
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othergenes encoding a type I restriction-modification systemlantibiotic biosynthesis genes
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N315                    NC_002745.2
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TW20                  FN433596.1
JH1                      CP000736.1
JH9                      NC_009487.1
04-029021           CP001844

MRSA252           NC_002952.2
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Both vSaα and vSaβ contain clusters of genes encoding known or putative virulence factors. vSaα 
carries a cluster of lipoprotein-encoding genes (lpl cluster), and the set (staphylococcal exotoxin-like) 
cluster [55,110], later re-named as the ssl (staphylococcal superantigen-like) cluster [30]. The ssl 
cluster consists of a series of related genes (between 7 and 11) coding for proteins that share a common 
architecture with SAgs but do not function as such [50]. However, they have alternative effects on the 
host immune system, acting on IgA, complement factor C5 (as demonstrated for SSL7; [53]), or 
neutrophils (SSL5 [111] and SSL11 [52]). vSaβ carries a serine protease gene (spl) cluster, genes for 
the components of the LukED leukocidin (lukD and lukE), genes for lantibiotic biosynthesis (bsa) 
and/or the enterotoxin gene cluster (egc), which includes a variable number of se/sel genes forming an 
operon [36]. Two representative types of vSaβ, the genomic island carrying se genes, are showed in 
Figure 4. 

It has been suggested that the egc cluster arose from an ancestral se gene, through tandem 
duplication and further variation, while gene recombination has created variant toxins with different 
biological activities [28,36,112]. The dynamic evolution of this cluster that has been considered as a 
nursery of se/sel genes [36] is reflected in the number of variants already known (Figure 5). 

Figure 5. Structure of egc clusters. Modified from Thomas et al [28] and Collery et al. 
[114], and based on the accession numbers indicated to the right of the figure. 
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The first egc (egc1) was discovered in 2001 and consists of two SE genes (seg and sei), three SEl 
genes (selm, seln and selo), and two pseudogenes (φent1 and φent2) [36,113]. Afterward, a second egc 
variant (egc2) containing an additional SEl gene (selu) was described [37]. The latter gene has been 
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generated by fusion of the two egc1 pseudogenes, due to a 15 nucleotide insertion in φent1 and a single 
adenine deletion that abolishes a stop codon within the same gene. In addition, allelic variants of each 
of the egc2 genes compose the egc3 cluster [37,114,115], and a new selu variant (selu2) and a novel sel 
gene (selv) are present in egc4 [28]. A recombination event between selm and sei produced selv, while 
deletion of one adenine between the overlapping 5’ and 3’ ends of the φent2 and φent1 pseudogenes 
generated selu2 (which was proposed to be renamed as selw) [116]. Incomplete egc clusters, lacking 
one or more genes of the classical egc1, as well as variants carrying insertion sequences within seln, 
seg or sei, have also been described [28,117]. These structures have been considered as evolutionary 
intermediates of the egc cluster [28]. Moreover, the fact that each of the three major homology groups 
of SEs/SEs (Table 2) contains enterotoxins encoded by genes of the egc operon led to the proposal that 
all se/sels originated from the egc cluster [29]. 

2.4.5. Enterotoxin Genes in the Proximity of the Staphylococcal Cassette Chromosome 

The seh gene, flanked by a truncated selo gene and a putative transposase gene, have been found in 
close proximity of the non-mecA containing SCC element harbored by MSSA (methicillin susceptible 
S. aureus) strain 476; the SCCmec type IV of S. aureus MW2; and the SCCmec type IV of a collection 
of highly related community-associated S. aureus ([118]; Figure 6). In the latter strains, acquisition of 
the seh element could have stabilized the integration of SCCmec type IV, which is unable to excise [118]. 

Figure 6. Comparison of two allelic forms of SCC elements associated with seh. Modified 
from Noto and Archer [118] and based on the accession numbers indicated to the right of  
the figure. 
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2.5. Staphylococcal Enterotoxins and Food Poisoning Outbreaks 

Independently of their origin, enterotoxigenic S. aureus often differ in the number of mobile genetic 
elements and se/sel genes therein, as well as in the enterotoxins they produce. SEA, either alone or 
together with other SEs/SEls, is the enterotoxin most commonly reported in foods, and is also 
considered as the main cause of SFP, probably due to its extraordinarily high resistance to proteolytic 
enzymes [3,119,120]. The predominance of SEA is well documented in different countries. As relevant 
examples: (i) a comprehensive study of 359 outbreaks that occurred in the United Kingdom (UK) 
between 1969 and 1990 revealed that 79% of the S. aureus strains produced SEA [121]. Meat, poultry 
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and their products, particularly ham and chicken, were the vehicle in 75% of the incidents. SEA was 
detected alone in 56.9% of the outbreaks and, in conjunction with SED, SEB, SEC or SEB and SED in 
a lower number of outbreaks (15.4, 3.4, 2.5 or 1.1%, respectively); (ii) SEA was also the enterotoxin 
most frequently found among 31 SFP outbreaks in France (69.7%), which were associated with a great 
variety of foods including milk products, different types of meat, and salads, between 1981 and 2002 
[122]. In agreement with this, sea was the most common gene in the isolates tested, followed by sed, 
seg, sei and she; (iii) In Austria, an SFP outbreak that affected 40 children in 2007 was attributed to  
S. aureus isolates producing SEA and SED. Bovine milk products were identified as the source of the 
outbreak, and the cows, not the dairy owner, were the more likely reservoir of the SEs-producing  
S. aureus [123]; (iv) SEA was also the most common enterotoxin recovered from food poisoning 
outbreaks in USA (77.8% of all outbreaks) followed by SED and SEB [124]; (v) A study of S. aureus 
obtained from dairy products, responsible for 16 outbreaks in Brazil revealed that the most frequently 
encountered enterotoxin gene was sea followed by seb [125]. Finally, (vi) several studies have 
investigated the distribution of SEs and se/sel genes in S. aureus from foods and SFP outbreaks in 
Asian countries. Among strains recovered from patients associated with SFP outbreaks during  
2001-2003 in Taiwan, sea was the most common gene, followed by seb and sec [13]. In Korea, about 
90% of food poisoning isolates were reported to contain the sea gene [126]. SEA also was the most 
common SE associated to SFP in Japan [127]. In this country, an extensive outbreak that occurred in 
2000 was attributed to low-fat milk containing SEA [128], while a recent outbreak (2009) was due to 
crepes containing SEA and SEC [129]. 

SEB, SEC or SED alone have been also implicated in SFP outbreaks through the world 
[121,122,125]. Interestingly, an outbreak, which affected three members of the same family in USA, 
was caused by coleslaw-containing SEC produced by a community-acquired methicillin resistant  
S. aureus from an asymptomatic food handler [130]. The fifth classical enterotoxin, SEE, has been 
infrequently reported in foods and food-producing animals, and its involvement in SFP outbreaks has 
only been demonstrated in rare occasions. However, six SFP outbreaks, which occurred in France at 
the end of 2009, were caused by SEE present in soft cheese made from unpasteurized milk. This 
enterotoxin has also been associated with outbreaks in USA and UK [33,121,131–133]. 

In contrast to classical SEs, the relationship between the novel SEs/SEls and SFP is not fully 
understood. Among them, SEG, SEH and SEI, SER, SES, and SET have shown to be emetic after oral 
administration in a primate model, while the emetic activity of SElL and SElP has only been 
demonstrated in rabbits and the small insectivore Suncus murinus, respectively [39,43]. The remaining 
SEls either lack emetic properties (SElQ), or have not been tested (SElJ, SElK, SElM, SElN, SElO, 
SElU, SElU2 and SElV). Moreover, commercial kits are not available for immunological detection of 
these SEs and SEls, although ELISA (enzyme-linked immunosorbent assay) has been described for 
SEH [134] and for SEG and SEI [135]. Of the new enterotoxins, only SEH-producing strains have 
clearly been involved in SFP outbreaks [134,136–138], but results from different researchers have 
shown the high incidence of genes encoding new SEs and SEls among food-borne S. aureus  
[131,139–141]. Mc Lauchlin et al. [131] revealed that 23 staphylococcal strains implicated in SFP 
outbreaks in UK, in which classical se genes were not detected, harbored one or more of the new se/sel 
genes, i.e., seg, seh, sei or selj. It is possible that the corresponding SEs might have been the cause of 
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these outbreaks. The presence of egc genes was also shown in food-associated S. aureus from other 
countries [131,140–144], and newly described SE or SEl genes, particularly those belonging to the egc 
cluster, were more frequently detected in S. aureus strains isolated from raw pork and chicken meat in 
Korea than genes encoding classical SEs [145]. Despite this, egc-encoded SEs or SEls have not yet 
been directly implied in typical cases of SFP, although SEG and SEI have been reported as the cause of 
chronic diarrhea associated with severe but reversible enteropathy in two malnourished  
neonates [146]. 

3. Conclusions 

SEs and SEls produced by S. aureus belong to the fascinating family of superantigens, which 
sabotage the immune system of the host by targeting the innate and adaptive responses. Members of 
the family are well characterized with regard to superantigenic activity. However, the bases for the 
enterotoxigenic activity associated with a number of S. aureus superantigens remain elusive. Likewise, 
a direct relationship of S. aureus SEs (with demonstrated emetic activity) and SEls (which lack emetic 
activity or have yet to be tested) with pathogenicity has not always been established, and the reasons 
for the redundancy of se/sel genes within the same bacterium deserve further attention. Of particular 
interest is the egc cluster, regarded as a nursery of se/sel genes in continuing evolution. The cluster and 
its multiple variants, located on the νSaβ genomic island, are widely distributed in S. aureus of any 
origin, and results from our group indicate that they are the most common superantigenes in S. aureus 
recovered from clinical samples, healthy carriers, cows with subclinical mastitis and  
foods [143,147–149]. However, a direct involvement of egc-encoded SEs in food poisoning has not 
been demonstrated, and attempts to elucidate their pathogenic role are still scarce [146,150–152]. In 
summary, although a wealth of information on SEs and SEls is already available, they still represent an 
active field of research, which will certainly provide new exciting findings in forthcoming years. 

Acknowledgements 

Experience in the subject derives from research supported by projects FISS PI052489 and FISS 
PI080656 from the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III). M. A. 
Argudín was supported by grant FPU AP-2004-3641 from the Ministry of Science and Innovation, 
Spain, co-funded by the European Social Fund. 

References 

1. Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. 
Microbiol. Rev. 2000, 13, 16–34. 

2. Le Loir, Y.; Baron, F.; Gautier, M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 
2003, 2, 63–76. 

3. Balaban, N.; Rasooly, A. Staphylococcal enterotoxins. Int. J. Food Microbiol. 2000, 61, 1–10. 
4. Murray, R.J. Recognition and management of Staphylococcus aureus toxin-mediated disease. 

Intern. Med. J. 2005, 2, S106–S119. 
5. Tranter, H.S. Foodborne staphylococcal illness. Lancet 1990, 336, 1044–1046. 



Toxins 2010, 2   
 

1764 

6. Kluytmans, J.A.J.W.; Wertheim, H.F.L. Nasal carriage of Staphylococcus aureus and prevention 
of nosocomial infections. Infection 2005, 33, 3–8. 

7. Stewart, G.C. Staphylococcus aureus. In Foodborne pathogens: Microbiology and Molecular 
Biology; Fratamico, P.M., Bhunia, A.K., Smith, J.L., Eds.; Caister Academic Press: Norfolk, UK, 
2005; pp. 273–284. 

8. Tamarapu, S.; McKillip, J.L.; Drake, M. Development of a multiplex polymerase chain reaction 
assay for detection and differentiation of Staphylococcus aureus in dairy products. J. Food Prot. 
2001, 64, 664–668. 

9. Wieneke, A.A.; Roberts, D.; Gilbert, R.J. Staphylococcal food poisoning in the United Kingdom, 
1969–1990. Epidemiol. Infect. 1993, 110, 519–531. 

10. Qi, Y.; Miller, K.J. Effect of low water activity on staphylococcal enterotoxin A and B 
biosynthesis. J. Food Prot. 2000, 63, 473–478. 

11. Scott, W.J. Water relations of Staphylococcus aureus at 30 degrees C. Aust. J. Biol. Sci. 1953, 6, 
549–564. 

12. Anonymous. The community summary report on trends and sources of zoonoses, zoonotic 
agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA J. 
2007, 130, 1–310. 

13. Chiang, Y.C.; Liao, W.W.; Fan, C.M.; Pai, W.Y.; Chiou, C.S.; Tsen, H.Y. PCR detection of 
staphylococcal enterotoxins (SEs) N, O, P, Q, R, U, and survey of SE types in Staphylococcus 
aureus isolates from food-poisoning cases in Taiwan. Int. J. Food Microbiol. 2008, 121, 66–73. 

14. Delmas, G.; Le Querrec, F.; Weill, F.-X.; Gallay, A.; Espié, E.; Haeghebaert, S.; Vaillant, V. Les 
toxi-infections alimentaires. In Surveillance nationale des maladies infectieuses 2001–2003, 
Institut de Veille Sanitaire: Saint-Maurice, France, 2005; pp. 1–10. 

15. Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, 
R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. 

16. Betley, M.J.; Borst, D.W.; Regassa, L.B. Staphylococcal enterotoxins, toxic shock syndrome 
toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. 
Chem. Immunol. 1992, 55, 1–35.  

17. Bergdoll, M.S. Staphylococcal intoxications. In Foodborne Infections and Intoxications; 
Reimann, H., Bryan, F.L., Eds.; Academic Press Inc: New York, NY, USA, 1979; pp. 443–494. 

18. Czop, J.K.; Bergdoll, M.S. Staphylococcal enterotoxin synthesis during the exponential, 
transitional, and stationary growth phases. Infect. Inmun. 1974, 9, 229–235. 

19. Derzelle, S.; Dilasser, F.; Duquenne, M.; Deperrois, V. Differential temporal expression of the 
staphylococcal enterotoxins genes during cell growth. Food Microbiol. 2009, 26, 896–904. 

20. Otero, A.; García, M.L.; García, M.C.; Moreno, B.; Bergdoll, M.S. Production of staphylococcal 
enterotoxins C1 and C2 and thermonuclease throughout the growth cycle. Appl. Environ. 
Microbiol. 1990, 56, 555–559. 

21. Larkin, E.A.; Carman, R.J.; Krakauer, T.; Stiles, B.G. Staphylococcus aureus: the toxic presence 
of a pathogen extraordinaire. Curr. Med. Chem. 2009, 16, 4003–4019. 

22. Bergdoll, M.S. Enterotoxins. In Staphylococci and Staphylococcal Infections; Easman, C.S.F., 
Adlam, C., Eds.; Academic Press Inc: London, UK, 1983; Volume 2, pp. 559–598. 



Toxins 2010, 2   
 

1765 

23. Evenson, M.L.; Hinds, M.W.; Bernstein, R.S.; Bergdoll, M.S. Estimation of human dose of 
staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving 
chocolate milk. Int. J. Food. Microbiol. 1988, 7, 311–316. 

24. Schantz, E.J.; Roessler, W.G.; Wagman, J.; Spero, L.; Dunnery, D.A.; Bergdoll, M.S. 
Purification of staphylococcal enterotoxin B. Biochemistry 1965, 4, 1011–1016. 

25. Fleischer, B.; Mittrücker, H.W.; Metzroth, B.; Braun, M.; Hartwig, U. Mitogenic toxins as MHC 
class II-dependent probes for T cell antigen receptors. Behring Inst. Mitt. 1991, 88, 170–176. 

26. Marrack, P.; Kappler, J. The staphylococcal enterotoxins and their relatives. Science 1990,  
248, 1066–1068. 

27. Petersson, K.; Pettersson, H.; Skartved, N.J.; Walse, B.; Forsberg, G. Staphylococcal enterotoxin 
H induces V alpha-specific expansion of T cells. J. Immunol. 2003, 170, 4148–4154. 

28. Thomas, D.Y.; Jarraud, S.; Lemercier, B.; Cozon, G.; Echasserieau, K.; Etienne, J.; Gougeon, 
M.L.; Lina, G.; Vandenesch, F. Staphylocccal enterotoxin-like toxins U2 and V, two new 
staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. 
Infect. Immun. 2006, 74, 4724–4734. 

29. Thomas, D.; Chou, S.; Dauwalder, O.; Lina, G. Diversity in Staphylococcus aureus enterotoxins. 
Chem. Immunol. Allergy 2007, 93, 24–41. 

30. Lina, G.; Bohach, G.A.; Nair, S.P.; Hiramatsu, K.; Jouvin-Marche, E.; Mariuzza, R. Standard 
nomenclature for the superantigens expressed by Staphylococcus. J. Infect. Dis. 2004, 189,  
2334–2336. 

31. Bergdoll, M.S.; Surgalla, M.J.; Dack, G.M. Staphylococcal enterotoxin: Identification of a 
specific precipitating antibody with enterotoxin neutralizing property. J. Immunol. 1959, 83,  
334–338. 

32. Bergdoll, M.S.; Borja, C.R.; Avena, R.M. Identification of a new enterotoxin as enterotoxin C.  
J. Bacteriol. 1965, 90, 1481–1485. 

33. Bergdoll, M.S.; Borja, C.R.; Robbins, R.N.; Weiss, K.F. Identification of enterotoxin E. Infect. 
Immun. 1971, 4, 593–595. 

34. Casman, E.P. Further serological studies of staphylococcal enterotoxin. J. Bacteriol. 1960, 79, 
849–856. 

35. Casman, E.P.; Bennett, R.W.; Dorsey, A.E.; Issa, J.A. Identification of a fourth staphylococcal 
enterotoxin, enterotoxin D. J. Bacteriol. 1967, 94, 1875–1882. 

36. Jarraud, S.; Peyrat, M.A.; Lim, A.; Tristan, A.; Bes, M.; Mougel, C.; Etienne, J.; Vandenesch, F.; 
Bonneville, M.; Lina, G. egc, a highly prevalent operon of enterotoxin gene, forms a putative 
nursery of superantigens in Staphylococcus aureus. J. Immunol. 2001, 166, 669–677. 

37. Letertre C.; Perelle, S.; Dilasser, F.; Fach, P. Identification of a new putative enterotoxin SEU 
encoded by the egc cluster of Staphylococcus aureus. J. Appl. Microbiol. 2003, 95, 38–43. 

38. Munson, S.H.; Tremaine, M.T.; Betley, M.J.; Welch, R.A. Identification and characterization of 
staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun. 1998, 66, 
3337–3348. 



Toxins 2010, 2   
 

1766 

39. Omoe, K.; Imanishi, K.; Hu, D.L.; Kato, H.; Fugane, Y.; Abe, Y.; Hamaoka, S.; Watanabe, Y.; 
Nakane, A.; Uchiyama, T.; Shinagawa, K. Characterization of novel staphylococcal  
enterotoxin-like toxin type P. Infect. Immun. 2005, 73, 5540–5546. 

40. Ono, H.K.; Omoe, K.; Imanishi, K.; Iwakabe, Y.; Hu, D.L.; Kato, H.; Saito, N.; Nakane, A.; 
Uchiyama, T.; Shinagawa, K. Identification and characterization of two novel staphylococcal 
enterotoxins, types S and T. Infect. Immun. 2008, 76, 4999–5005. 

41. Orwin, P.M.; Leung, D.Y.; Donahue, H.L.; Novick, R.P.; Schlievert, P.M. Biochemical and 
biological properties of staphylococcal enterotoxin K. Infect. Immun. 2001, 69, 360–366. 

42. Orwin, P.M.; Leung, D.Y.; Tripp, T.J.; Bohach, G.A.; Earhart, C.A.; Ohlendorf, D.H.; Schlievert, 
P.M. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the 
group V subfamily of pyrogenic toxins. Biochemistry 2002, 41, 14033–14040. 

43. Orwin, P.M.; Fitzgerald, J.R.; Leung, D.Y.; Gutierrez, J.A.; Bohach, G.A.; Schlievert, P.M. 
Characterization of Staphylococcus aureus enterotoxin L. Infect. Immun. 2003, 71, 2916–2919. 

44. Su, Y.C.; Wong, A.C. Identification and purification of a new staphylococcal enterotoxin, H. 
Appl. Environ. Microbiol. 1995, 61, 1438–1443. 

45. Zhang, S.; Iandolo, J.J.; Stewart, G.C. The enterotoxin D plasmid of Staphylococcus aureus 
encodes a second enterotoxin determinant (sej). FEMS Microbiol. Lett. 1998, 168, 227–233. 

46. Bergdoll, M.S.; Crass, B.A.; Reiser, R.F.; Robbins, R.N.; Davis, J.P. A new staphylococcal 
enterotoxin, enterotoxin F, associated with toxic-shock-syndrome Staphylococcus aureus 
isolates. Lancet 1981, 5, 1017–1021. 

47. Reiser, R.F.; Robbins, R.N.; Khoe, G.P.; Bergdoll, M.S. Purification and some physicochemical 
properties of toxic-shock toxin. Biochemistry 1983, 22, 3907–3912. 

48. Couch, J.L.; Soltis, M.T.; Betley, M.J. Cloning and nucleotide sequence of the type E 
staphylococcal enterotoxin gene. J. Bacteriol. 1988, 170, 2954–2960. 

49. Uchiyama, T.; Imanishi, K.; Miyoshi-Akiyama, T.; Kato, H. Staphylococcal superantigens and 
the diseases they cause. In The Comprehensive Sourcebook of Bacterial Protein Toxins, 3rd ed.;  
Alouf, J.E., Popoff, M.R., Eds.; Academic Press: Burlington, VT, USA, 2006; pp. 830–843. 

50. Fraser, J.D.; Proft, T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 
2008, 225, 226–243. 

51. Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N. Crystal 
structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved 
binding site that shares common features with viral and bacterial sialic acid binding proteins.  
J. Mol. Biol. 2007, 374, 1298–1308. 

52. Chung, M.C.; Wines, B.D.; Baker, H.; Langley, R.J.; Baker, E.N.; Fraser, J.D. The crystal 
structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals 
the mechanism for cell binding and immune inhibition. Mol. Microbiol. 2007, 66, 1342–1355. 

53. Langley, R.; Wines, B.; Willoughby, N.; Basu, I.; Proft, T.; Fraser, J.D. The staphylococcal 
superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding 
and serum killing of bacteria. J. Immunol. 2005, 174, 2926–2933. 



Toxins 2010, 2   
 

1767 

54. Ramsland, P.A.; Willoughby, N.; Trist, H.M.; Farrugia, W.; Hogarth, P.M.; Fraser, J.D.; Wines, 
B.D. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the 
complex of SSL7 with Fc of human IgA1. Proc. Natl. Acad. Sci. USA 2007, 104, 15051–15056. 

55. Williams, R.J.; Ward, J.M.; Henderson, B.; Poole, S.; O'Hara, B.P.; Wilson, M.; Nair, S.P. 
Identification of a novel gene cluster encoding staphylococcal exotoxin-like proteins: 
Characterization of the prototypic gene and its protein product, SET1. Infect. Immun. 2000, 68, 
4407–4415. 

56. Wines, B.D.; Willoughby, N.; Fraser, J.D.; Hogarth, P.M. A competitive mechanism for 
staphylococcal toxin SSL7 inhibiting the leukocyte IgA receptor, Fc alphaRI, is revealed by SSL7 
binding at the C alpha2/C alpha3 interface of IgA. J. Biol. Chem. 2006, 281, 1389–1393. 

57. Acharya, K.R.; Passalacquam, E.F.; Jones, E.Y.; Harlos, K.; Stuart, D.I.; Brehm, R.D.; Tranter, 
H.S. Structural basis of superantigen action inferred from crystal structure of toxic-shock 
syndrome toxin-1. Nature 1994, 367, 94–97. 

58. Prasad, G.S.; Earhart, C.A.; Murray, D.L.; Novick, R.P.; Schlievert, P.M.; Ohlendorf, D.H. 
Structure of toxic shock syndrome toxin 1. Biochemistry 1993, 32, 13761–13766. 

59. Fernández, M.M.; Bhattacharya, S.; De Marzi, M.C.; Brown, P.H.; Kerzic, M.; Schuck, P.; 
Mariuzza, R.A.; Malchiodi, E.L. Superantigen natural affinity maturation revealed by the crystal 
structure of staphylococcal enterotoxin G and its binding to T-cell receptor Vbeta8.2. Proteins 
2007, 68, 389–402. 

60. Günther, S.; Varma, A.K.; Moza, B.; Kasper, K.J.; Wyatt, A.W.; Zhu, P.; Rahman, A.K.; Li, Y.; 
Mariuzza, R.A.; McCormick, J.K.; Sundberg, E.J. A novel loop domain in superantigens extends 
their T cell receptor recognition site. J. Mol. Biol. 2007, 371, 210–221. 

61. Håkansson, M.; Petersson, K.; Nilsson, H.; Forsberg, G.; Björk, P.; Antonsson, P.; Svensson, 
L.A. The crystal structure of staphylococcal enterotoxin H: implication for binding properties to 
MHC class II and TcR molecules. J. Mol. Biol. 2000, 302, 527–537. 

62. Papageorgiou, A.C.; Acharya, K.R.; Shapiro, R.; Passalacqua, E.F.; Brehm, R.D.; Tranter H.S. 
Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a  
zinc-binding site. Structure 1995, 3, 769–779. 

63. Papageorgiou, A.C.; Tranter, H.S.; Acharya, K.R. Crystal structure of microbial superantigen 
staphylococcal enterotoxin B at 1.5 A resolution: Implications for superantigen recognition by 
MHC class II molecules and T-cell receptors. J. Mol. Biol. 1998, 277, 61–79. 

64. Schad, E.M.; Zaitseva, I.; Zaitsev, V.N.; Dohlsten, M.; Kalland, T.; Schlievert, P.M.; Ohlendorf, 
D.H.; Svensson, L.A. Crystal structure of the superantigen staphylococcal enterotoxin type A. 
EMBO J. 1995, 14, 3292–3301. 

65. Singh, B.R.; Fu, F.N.; Ledoux, D.N. Crystal and solution structures of superantigenic 
staphylococcal enterotoxins compared. Nat. Struct. Biol. 1994, 1, 358–360. 

66. Sundström, M.; Hallén, D.; Svensson, A.; Schad, E.; Dohlsten, M.; Abrahmsén, L. The Co-
crystal structure of staphylococcal enterotoxin type A with Zn2+ at 2.7 A resolution. Implications 
for major histocompatibility complex class II binding. J. Biol. Chem. 1996, 271, 32212–32216. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schad%20EM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zaitseva%20I%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zaitsev%20VN%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dohlsten%20M%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kalland%20T%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schlievert%20PM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ohlendorf%20DH%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ohlendorf%20DH%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Svensson%20LA%22%5BAuthor%5D�
javascript:AL_get(this,%20'jour',%20'EMBO%20J.');�
http://www.ncbi.nlm.nih.gov/pubmed/7664046�
http://www.ncbi.nlm.nih.gov/pubmed/7664046�


Toxins 2010, 2   
 

1768 

67. Sundström, M.; Abrahmsén, L.; Antonsson, P.; Mehindate, K.; Mourad, W.; Dohlsten, M. The 
crystal structure of staphylococcal enterotoxin D type D reveals Zn2+ mediated 
homodimersation. EMBO J. 1996, 15, 6832–6840. 

68. Swaminathan, S.; Furey, W.; Pletcher, J.; Sax, M. Crystal structure of staphylococcal enterotoxin 
B, a superantigen. Nature 1992, 359, 801–806. 

69. Swaminathan, S.; Furey, W.; Pletcher, J.; Sax, M. Residues defining V beta specificity in 
staphylococcal enterotoxins. Nat. Struct. Biol. 1995, 8, 680–686.  

70. McCormick, J.K.; Yarwood, J.M.; Schlievert, P.M. Toxic shock syndrome and bacterial 
superantigens: An update. Annu. Rev. Microbiol. 2001, 55, 77–104. 

71. Mitchell, D.T.; Levitt, D.G.; Schlievert, P.M.; Ohlendorf, D.H. Structural evidence for the 
evolution of pyrogenic toxin superantigens. J. Mol. Evol. 2000, 51, 520–531. 

72. Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold: Common structural and 
functional solution for non-homologous sequences. EMBO J. 1993, 12, 861–867. 

73. Hovde, C.J.; Marr, J.C.; Hoffmann, M.L.; Hackett, S.P.; Chi, Y.I.; Crum, K.K.; Stevens, D.L.; 
Stauffacher, C.V.; Bohach, G.A. Investigation of the role of the disulphide bond in the activity 
and structure of staphylococcal enterotoxin C1. Mol. Microbiol. 1994, 13, 897–909. 

74. Wang, X.; Xu, M.; Cai, Y.; Yang, H.; Zhang, H.; Zhang, C. Functional analysis of the disulphide 
loop mutant of staphylococcal enterotoxin C2. Appl. Microbiol. Biotechnol. 2009, 82, 861–871. 

75. Alber, G.; Hammer, D.K.; Fleischer, B. Relationship between enterotoxic- and T lymphocyte-
stimulating activity of staphylococcal enterotoxin B. J. Immunol. 1990, 144, 4501–4506. 

76. Stelma, G.N.; Bergdoll, M.S. Inactivation of staphylococcal enterotoxin A by chemical 
modification. Biochem. Biophys. Res. Commun. 1982, 105, 121–126. 

77. Hoffman, M.; Tremaine, M.; Mansfield, J.; Betley, M. Biochemical and mutational analysis of 
the histidine residues of staphylococcal enterotoxin A. Infect. Immun. 1996, 64, 885–890. 

78. Harris, T.O.; Grossman, D.; Kappler, J.W.; Marrack, P.; Rich, R.R.; Betley, M.J. Lack of 
complete correlation between emetic and T-cell-stimulatory activities of staphylococcal 
enterotoxins. Infect. Immunol. 1993, 61, 3175–3183. 

79. Sugiyama, H.; Hayama, T. Abdominal viscera as site of emetic action for staphylococcal 
enterotoxin in monkey. J. Infect. Dis. 1965, 115, 330–336. 

80. Hu, D.L.; Zhu, G.; Mori, F.; Omoe, K.; Okada, M.; Wakabayashi, K.; Kaneko, S.; Shinagawa, 
K.; Nakane, A. Staphylococcal enterotoxin induces emesis through increasing serotonin release 
in intestine and it is downregulated by cannabinoid receptor 1. Cell. Microbiol. 2007, 9,  
2267–2277. 

81. Shupp, J.W.; Jett, M.; Pontzer, C.H. Identification of a transcytosis epitope on staphylococcal 
enterotoxins. Infect. Immun. 2002, 70, 2178–2186. 

82. Alber, G.; Scheuber, P.H.; Reck, B.; Sailer-Kramer, B.; Hartmann, A.; Hammer, D.K. Role of 
substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in 
unsensitized monkeys. J. Allergy Clin. Immunol. 1989, 6, 880–885. 

83. Jett, M.; Brinkley, W.; Neill, R.; Gemski, P.; Hunt, R. Staphylococcus aureus enterotoxin B 
challenge of monkeys: Correlation of plasma levels of arachidonic acid cascade products with 
occurrence of illness. Infect. Immun. 1990, 58, 3494–3499. 



Toxins 2010, 2   
 

1769 

84. Scheuber, P.H.; Denzlinger, C.; Wilker, D.; Beck, G.; Keppler, D.; Hammer, D.K. Cysteinyl 
leukotrienes as mediators of staphylococcal enterotoxin B in the monkey. Eur. J. Clin. Invest. 
1987, 17, 455–459. 

85. Shanahan, F.; Denburg, J.A.; Fox, J.; Bienenstock, J.; Befus, D. Mast cell heterogeneity: Effects 
of neuroenteric peptides on histamine release. J. Inmunol. 1985, 135, 1331–13337. 

86. Scheuber, P.H.; Golecki, J.R.; Kickhöfen, B.; Scheel, D.; Beck, G.; Hammer, D.K. Skin 
reactivity of unsensitized monkeys upon challenge with staphylococcal enterotoxin B: A new 
approach for investigating the site of toxin action. Infect. Immun. 1985, 50, 869–876. 

87. Holmberg, S.D.; Blake, P.A. Staphylococcal food poisoning in the United States: New facts and 
old misconceptions. JAMA 1984, 251, 487–489. 

88. Palmer, E.D. The morphologic consequences of acute exogenous (staphylococcic) gastroenteritis 
of the gastric mucosa. Gastroenterology 1951, 19, 462–475. 

89. Kent, T.H. Staphylococcal enterotoxin gastroenteritis in rhesus monkeys. Am. J. Pathol. 1966, 
48, 387–407. 

90. Sheehan, D.G.; Jervis, H.R.; Takeuchi, A.; Sprinz, H. The effect of staphylococcal enterotoxin on 
the epithelial mucosubstance of the small intestine of rhesus monkeys. Am. J. Pathol. 1970, 60, 
1–18. 

91. Sullivan, R. Effects of enterotoxin B on intestinal transport in vitro. Proc. Soc. Exp. Biol. Med. 
1969, 131, 1159–1162. 

92. Hamad, A.R.; Marrack P.; Kappler, J.W. Transcytosis of staphylococcal superantigen toxins.  
J. Exp. Med. 1997, 185, 1447–1454. 

93. Omoe, K.; Hu, D.L.; Takahashi-Omoe, H.; Nakane, A.; Shinagawa, K. Identification and 
characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds 
of plasmids. Infect. Immun. 2003, 71, 6088–6094. 

94. Bayles, K.W.; Iandolo, J.J. Genetic and molecular analyses of the gene encoding staphylococcal 
enterotoxin D. J. Bacteriol. 1989, 171, 4799–4806. 

95. Fueyo, J.M.; Mendoza, M. C.; Martín, M.C. Enterotoxins and toxic shock syndrome toxin in 
Staphylococcus aureus recovered from human nasal carriers and manually handled foods: 
Epidemiological and genetic findings. Microbes Infect. 2005, 7, 187–194. 

96. Goerke, C.; Pantucek, R.; Silva Holtfreter, S.; Berit Schulte, B.; Manuel Zink, M.; Grumann, D.; 
Bröker, B.M.; Doskar, J.; Wolz, C. Diversity of prophages in dominant Staphylococcus aureus 
clonal lineages. J. Bacteriol. 2009, 191, 3462–3468. 

97. de Haas, C.J.; Veldkamp, K.E.; Peschel, A.; Weerkamp, F.; Van Wamel, W.J.; Heezius, E.C.; 
Poppelier, M.J.; Van Kessel, K.P.; van Strijp, J.A. Chemotaxis inhibitory protein of 
Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 2004, 199, 687–695. 

98. Rooijakkers, S.H.; Ruyken, M.; Roos, A.; Daha, M.R.; Presanis, J.S.; Sim, R.B.; van Wamel, 
W.J.; van Kessel, K.P.; van Strijp, J.A. Immune evasion by a staphylococcal complement 
inhibitor that acts on C3 convertases. Nat. Immunol. 2005, 6, 920–927. 

99. Ji, Y.; Yin, D.; Fox, B.; Holmes, D.J.; Payne, D.; Rosenberg, M. Validation of antibacterial 
mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS 
Microbiol. Lett. 2004, 231, 177–184. 



Toxins 2010, 2   
 

1770 

100. Rooijakkers, S.H.; van Wamel, W.J.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. Anti-opsonic 
properties of staphylokinase. Microbes Infect. 2005, 7, 476–484. 

101. van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. The innate 
immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of 
Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 
2006, 188, 1310–1315. 

102. Coleman, D.C.; Sullivan, D.J.; Russell, R.J.; Arbuthnott, J.P.; Carey, B.F.; Pomeroy, H.M. 
Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of  
beta-lysin, staphylokinase and enterotoxin A: Molecular mechanism of triple conversion. J. Gen. 
Microbiol. 1989, 135, 1679–1697. 

103. Lindsay, J.A.; Ruzin, A.; Ross, H.F.; Kurepina, N.; Novick, R.P. The gene for toxic shock toxin 
is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 
1998, 29, 527–543. 

104. Tallent, S.M.; Langston, T.B.; Moran, R.G.; Christie, G.E. Transducing particles of 
Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded 
proteins. J. Bacteriol. 2007, 189, 7520–7524. 

105. Novick, R.P.; Subedi, A. The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem. 
Immunol. Allergy 2007, 93, 42–57. 

106. Sumby, P.; Waldor, M.K. Transcription of the toxin genes present within the Staphylococcal 
phage phiSa3ms is intimately linked with the phage's life cycle. J. Bacteriol. 2003, 185,  
6841–6851. 

107. Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.; Oguchi, A.; Nagai, Y.; Iwama, N.; 
Asano, K.; Naimi, T.; Kuroda, H.; Cui, L.; Yamamoto, K.; Hiramatsu, K. Genome and virulence 
determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. 

108. Baba, T.; Bae, T.; Schneewind, O.; Takeuchi, F.; Hiramatsu K. Genome sequence of 
Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: 
polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 2008, 190,  
300–310. 

109. Waldron, D.E.; Lindsay, J.A. Sau1: A novel lineage-specific type I restriction-modification 
system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus 
isolates of different lineages. J. Bacteriol. 2006, 188, 5578–5585. 

110. Fitzgerald, J.R.; Reid, S.D.; Ruotsalainen, E.; Tripp, T.J.; Liu, M.; Cole, R.; Kuusela, P.; 
Schlievert, P.M.; Järvinen, A.; Musser, J.M. Genome diversification in Staphylococcus aureus: 
Molecular evolution of a highly variable chromosomal region encoding the staphylococcal 
exotoxin-like family of proteins. Infect. Immun. 2003, 71, 2827–2838. 

111. Bestebroer, J.; Poppelier, M.J.; Ulfman, L.H.; Lenting, P.J.; Denis, C.V.; van Kessel, K.P.;  
van Strijp, J.A.; de Haas, C.J. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits  
P-selectin-mediated neutrophil rolling. Blood 2007, 109, 2936–2943. 

112. Fitzgerald, J.R.; Monday, S.R.; Foster, T.J.; Bohach, G.A.; Hartigan, P.J.; Meaney, W.J.; Smith, 
C.J. Characterization of putative pathogenicity island from bovine Staphylococcus aureus 
encoding multiple superantigens. J. Bacteriol. 2001, 183, 63–70. 



Toxins 2010, 2   
 

1771 

113. Monday, S.R.; Bohach, G.A. Genes encoding staphylococcal enterotoxins G and I are linked and 
separated by DNA related to other staphylococcal enterotoxins. J. Nat. Toxins 2001, 10, 1–8. 

114. Collery M.M.; Smyth, D.S.; Tumilty, J.J.; Twohig, J.M.; Smyth, C.J. Associations between 
enterotoxin gene cluster types egc1, egc2 and egc3, agr types, enterotoxin and enterotoxin-like 
gene profiles, and molecular typing characteristics of human nasal carriage and animal isolates of 
Staphylococcus aureus. J. Med. Microbiol. 2009, 58, 13–25. 

115. Holden, M.T.; Feil, E.J.; Lindsay, J.A.; Peacock, S.J.; Day, N.P.; Enright, M.C.; Foster, T.J.; 
Moore, C.E.; Hurst, L.; Atkin, R.; Barron, A.; Bason, N.; Bentley, S.D.; Chillingworth, C.; 
Chillingworth, T.; Churcher, C.; Clark, L.; Corton, C.; Cronin, A.; Doggett, J.; Dowd, L.; 
Feltwell, T.; Hance, Z.; Harris, B.; Hauser, H.; Holroyd, S.; Jagels, K.; James, K.D.; Lennard, N.; 
Line, A.; Mayes, R.; Moule, S.; Mungall, K.; Ormond, D.; Quail, M.A.; Rabbinowitsch, E.; 
Rutherford, K.; Sanders, M.; Sharp, S.; Simmonds, M.; Stevens, K.; Whitehead, S.; Barrell, B.G.; 
Spratt, B.G.; Parkhill, J. Complete genomes of two clinical Staphylococcus aureus strains: 
Evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 
2004, 101, 9786–9791. 

116. Collery, M.M.; Smyth, C.J. Rapid differentiation of Staphylococcus aureus isolates harbouring 
egc loci with pseudogenes psient1 and psient2 and the selu or seluv gene using PCR-RFLP.  
J. Med. Microbiol. 2007, 56, 208–216. 

117. Omoe, K.; Hu, D.L.; Takahashi-Omoe, H.; Nakane, A.; Shinagawa, K. Comprehensive analysis 
of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus 
aureus isolates. FEMS Microbiol. Lett. 2005, 246, 191–198.  

118. Noto, M.J.; Archer, G.L. A subset of Staphylococcus aureus strains harboring staphylococcal 
cassette chromosome mec (SCCmec) type IV is deficient in CcrAB-mediated SCCmec excision. 
Antimicrob. Agents Chemother. 2006, 50, 2782–2788. 

119. Bergdoll, M.S. Monkey feeding test for staphylococcal enterotoxin. Meth. Enzymol. 1988, 165, 
324–333. 

120. Holmberg, S.D.; Blake, P.A. Staphylococcal food poisoning in the United States. New facts and 
old misconceptions. JAMA 1984, 251, 487–489. 

121. Wieneke, A.A.; Roberts, D.; Gilbert, R.J. Staphylococcal food poisoning in the United Kingdom, 
1969–90. Epidemiol. Infect. 1993, 110, 519–531. 

122. Kérouanton, A.; Hennekinne, J.A.; Letertre, C.; Petit, L.; Chesneau, O.; Brisabois, A.; De Buyser, 
M.L. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks 
in France. Int. J. Food Microbiol. 2007, 115, 369–375. 

123. Schmid, D.; Fretz, R.; Winter, P.; Mann, M.; Höger, G.; Stöger, A.; Ruppitsch, W.; Ladstätter, J.; 
Mayer, N.; de Martin, A.; Allerberger, F. Outbreak of staphylococcal food intoxication after 
consumption of pasteurized milk products, June 2007, Austria. Wien. Klin. Wochenschr. 2009, 
121, 125–131. 

124. Casman, E.P. Staphylococal enterotoxin. Ann. N.Y. Acad. Sci. 1965, 128, 124–131. 
125. Veras, J.F.; do Carmo, L.S.; Tong, L.C.; Shupp, J.W.; Cummings, C.; Dos Santos, D.A.; 

Cerqueira, M.M.; Cantini, A.; Nicoli, J.R.; Jett, M. A study of the enterotoxigenicity of  



Toxins 2010, 2   
 

1772 

coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks 
in Minas Gerais, Brazil. Int. J. Infect. Dis. 2008, 12, 410–415. 

126. Cha, J.O.; Lee, J.K.; Jung, Y.H.; Yoo, J.I.; Park, Y.K.; Kim, B.S.; Lee, Y.S. Molecular analysis 
of Staphylococcus aureus isolates associated with staphylococcal food poisoning in South Korea.  
J. Appl. Microbiol. 2006, 101, 864–871. 

127. Shimizu, A.; Fujita, M.; Igarashi, H.; Takagi, M.; Nagase, N.; Sasaki, A.; Kawano, J. 
Characterization of Staphylococcus aureus coagulase type VII isolates from staphylococcal food 
poisoning outbreaks (1980–1995) in Tokyo, Japan, by pulsed field gel electrophoresis. J. Clin. 
Microbiol. 2000, 38, 3746–3749. 

128. Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An 
extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of 
enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 2003, 130, 
33–40. 

129. Kitamoto, M.; Kito, K.; Niimi, Y.; Shoda, S.; Takamura, A.; Hiramatsu, T.; Akashi, T.; Yokoi, 
Y.; Hirano, H.; Hosokawa, M.; Yamamoto, A.; Agata, N.; Hamajima, N. Food poisoning by 
Staphylococcus aureus at a university festival. Jpn. J. Infect. Dis. 2009, 62, 242–243. 

130. Jones, T.F.; Kellum, M.E.; Porter, S.S.; Bell, M.; Schaffner, W. An outbreak of  
community-acquired foodborne illness caused by methicillin-resistant Staphylococcus aureus. 
Emerg. Infect. Dis. 2002, 8, 82–84. 

131. McLauchlin, J.; Narayanan, G.L.; Mithani, V.; O’Neil, G. The detection of enterotoxins and toxic 
schock síndrome toxin genes in Staphylococcus aureus by polymerase chain reaction. J. Food 
Prot. 2000, 63, 479–488. 

132. Morris, C.A.; Conway, H.D.; Everall, P.H. Food poisoning due to staphylococcal enterotoxin E. 
Lancet 1972, 2, 1375–1376. 

133. Ostyn, A.; De Buyser, M.L.; Guillier, F.; Groult, J.; Felix, B.; Salah, S.; Delmas, G.; Hennekinne, 
J.A. First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, 
France, 2009. Euro. Surveill. 2010, 15, pii. 19528. 

134. Su, Y.C.; Wong, A.C. Detection of staphylococcal enterotoxin H by an enzyme-linked 
immunosorbent assay. J. Food Prot. 1996, 59, 327–330. 

135. Omoe, K.; Ishikawa, M.; Shimoda, Y.; Hu, D.L.; Ueda, S.; Shinagawa, K. Detection of seg, seh, 
and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin 
productivities of S. aureus isolates harboring seg, seh, or sei genes. J. Clin. Microbiol. 2002, 40, 
857–862. 

136. Ikeda, T.; Tamate, N.; Yamaguchi, K.; Makino, S. Mass outbreak of food poisoning disease 
caused by small amounts of staphylococcal enterotoxins A and H. Appl. Environ. Microbiol. 
2005, 71, 2793–2795. 

137. Jørgensen, H.J.; Mathisen, T.; Løvseth, A.; Omoe, K.; Qvale, K.S.; Loncarevic, S. An outbreak 
of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. 
FEMS Microbiol. Lett. 2005, 252, 267–272. 

138. Pereira, M.L.; do Carmo, L.S.; dos Santos, E.J.; Pereira, J.L.; Bergdoll, M.S. Enterotoxin H in 
staphylococcal food poisoning. J. Food Prot. 1996, 59, 559–561. 



Toxins 2010, 2   
 

1773 

139. Abe, J.; Ito, Y.; Onimaru, M.; Kohsaka, T.; Takeda, T. Characterization and distribution of a new 
enterotoxin-related superantigen produced by Staphylococcus aureus. Microbiol. Immunol. 2000, 
44, 79–88. 

140. Bania, J.; Dabrowska, A.; Bystron, J.; Korzekwa, K.; Chrzanowska, J.; Molenda, J. Distribution 
of newly described enterotoxin-like genes in Staphylococcus aureus from food. Int. J. Food 
Microbiol. 2006, 108, 36–41. 

141. Blaiotta, G.; Ercolini, D.; Pennacchia, C.; Fusco, V.; Casaburi, A.; Pepe, O.; Villani, F. PCR 
detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat 
and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J. Appl. 
Microbiol. 2004, 97, 719–730. 

142. Jørgensen, H.J.; Mørk, T.; Caugant, D.A.; Kearns, A.; Rørvik, L.M. Genetic variation among 
Staphylococcus aureus strains from Norwegian bulk milk. Appl. Environ. Microbiol. 2005, 71, 
8352–8361. 

143. Martin, M.C.; Fueyo, J.M.; González-Hevia, M.A.; Mendoza, M.C. Genetic procedures for 
identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning 
outbreaks. Int. J. Food Microbiol. 2004, 94, 279–286. 

144. Rosec, J.P.; Gigaud, O. Staphylococcal enterotoxin genes of classical and new types detected by 
PCR in France. Int. J. Food Microbiol. 2002, 77, 61–70. 

145. Hwang, S.Y.; Kim, S.H.; Jang, E.J.; Kwon, N.H.; Park, Y.K.; Koo, H.C.; Jung, W.K.; Kim, J.M.; 
Park, Y.H. Novel multiplex PCR for the detection of the Staphylococcus aureus superantigen and 
its application to raw meat isolates in Korea. Int. J. Food Microbiol. 2007, 117, 99–105. 

146. Naik, S.; Smith, F.; Ho, J.; Croft, N.M.; Domizio, P.; Price, E.; Sanderson, I.R.; Meadows, N.J. 
Staphylococcal enterotoxins G and I, a cause of severe but reversible neonatal enteropathy. Clin. 
Gastroenterol. Hepatol. 2008, 6, 251–254. 

147. Argudín, M.A.; Mendoza, M.C.; Méndez, F.J.; Martín, M.C.; Guerra, B.; Rodicio, M.R.  
Clonal complexes and diversity of exotoxin gene profiles in methicillin-resistant and  
methicillin-susceptible Staphylococcus aureus isolates from patients in a Spanish hospital. J. 
Clin. Microbiol. 2009, 47, 2097–2105. 

148. Fueyo, J.M.; Mendoza, M.C.; Alvarez, M.A.; Martín, M.C. Relationships between toxin gene 
content and genetic background in nasal carried isolates of Staphylococcus aureus from Asturias, 
Spain. FEMS Microbiol. Lett. 2005, 243, 447–454. 

149. Fueyo, J.M.; Mendoza, M.C.; Rodicio, M.R.; Muñiz, J.; Alvarez, M.A.; Martín, M.C. Cytotoxin 
and pyrogenic toxin superantigen gene profiles of Staphylococcus aureus associated with 
subclinical mastitis in dairy cows and relationships with macrorestriction genomic profiles. J. 
Clin. Microbiol. 2005, 43, 1278–1284. 

150. Dauwalder, O.; Thomas, D.; Ferry, T.; Debard, A.L.; Badiou, C.; Vandenesch, F.; Etienne, J.; 
Lina, G.; Monneret, G. Comparative inflammatory properties of staphylococcal superantigenic 
enterotoxins SEA and SEG: implications for septic shock. J. Leukoc. Biol. 2006, 80, 753–758. 

151. Dauwalder, O.; Pachot, A.; Cazalis, M.A.; Paye, M.; Faudot, C.; Badiou, C.; Mougin, B.; 
Vandenesch, F.; Etienne, J.; Lina, G.; Monneret, G. Early kinetics of the transcriptional response 



Toxins 2010, 2   
 

1774 

of human leukocytes to staphylococcal superantigenic enterotoxins A and G. Microb. Pathog. 
2009, 47, 171–176. 

152. Mempel, M.; Lina, G.; Hojka, M.; Schnopp, C.; Seidl, H.P.; Schäfer, T.; Ring, J.; Vandenesch, 
F.; Abeck, D. High prevalence of superantigens associated with the egc locus in Staphylococcus 
aureus isolates from patients with atopic eczema. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 
306–309. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


