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Abstract: Chronic kidney disease poses a growing global health concern, as an increasing number
of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting
various challenges including shortage of care givers and cost-related issues. In this narrative essay, we
explore innovative strategies based on in-depth literature analysis that may help healthcare systems
face these challenges, with a focus on digital health technologies (DHTs), to enhance removal and
ensure better control of broader spectrum of uremic toxins, to optimize resources, improve care
and outcomes, and empower patients. Therefore, alternative strategies, such as self-care dialysis,
home-based dialysis with the support of teledialysis, need to be developed. Managing ESKD requires
an improvement in patient management, emphasizing patient education, caregiver knowledge, and
robust digital support systems. The solution involves leveraging DHTs to automate HD, implement
automated algorithm-driven controlled HD, remotely monitor patients, provide health education,
and enable caregivers with data-driven decision-making. These technologies, including artificial
intelligence, aim to enhance care quality, reduce practice variations, and improve treatment outcomes
whilst supporting personalized kidney replacement therapy. This narrative essay offers an update on
currently available digital health technologies used in the management of HD patients and envisions
future technologies that, through digital solutions, potentially empower patients and will more
effectively support their HD treatments.

Keywords: end-stage kidney disease; kidney replacement therapy; patient outcomes; digital technol-
ogy; artificial intelligence; uremic toxins; cost-effectiveness

Key Contribution: Digital health technologies (DHTs), supported broadly by artificial intelligence and
advanced data analytics, open interesting new therapeutic avenues for improving kidney replacement
therapy. DHTs provide opportunities to enhance patient care and outcomes, improve the removal
and ensure better control of a broader spectrum of uremic toxins, optimize both human and economic
resources, personalize chronic kidney disease patient care, and empower patients while reducing the
burden of treatment. They should be embraced more widely as indispensable tools and not dismissed
out of fear by caregivers.
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1. Introduction: Challenges in the Management of End-Stage Kidney Disease Patients
and Opportunities for Digital Health Support

Chronic kidney disease (CKD) has emerged as a significant contributor to non-
communicable diseases and mortality in the 21st century [1–4]. This is partly due to
increased risk factors including aging, diabetes mellitus, hypertension, and vascular dis-
ease. This trend is expected to result in a higher number of CKD patients, leading to
an increased incidence of patients progressing to end-stage kidney disease (ESKD) and
requiring kidney replacement therapy [2,3,5].

This increasing number of ESKD patients poses a series of challenges, not only in
terms of availability of dialysis resources and trained staff but also along with escalating
health care costs [6]. An additional challenge arises from the changing patient profile, as
healthcare professionals encounter more complex problems with increasing combinations
of risk factors: aging, comorbidities, and varying degrees of disabilities. Current clinical
guidelines are based on historic patient demographics and clinical practices, but a dynamic
adaptation of kidney replacement therapy is also required to meet changing patient needs
and risks, so personalizing treatment to provide both an effective healthcare system and
improve patient coping with kidney replacement therapy (KRT) burden [6,7]. Despite
recent improvements in the treatment of ESKD patients, global studies have emphasized
that CKD patients and dialysis treatment are leading causes of cardiovascular mortality
and overall poor patient health-related quality of life worldwide [8–11].

This escalating burden on healthcare systems, driven by the increasing number of CKD
patients progressing to ESKD, poses substantial challenges [5]. Containment strategies in-
volve innovations in healthcare delivery, resource optimization, and proactive management
approaches [7]. Rapid advancements in dialysis, especially in understanding uremic toxins
and adopting new therapeutic approaches, necessitate healthcare professionals staying
informed to provide state-of-the-art care to CKD patients. Addressing the shortage of med-
ical professionals and caregivers is critical for optimal CKD patient care. Attracting and
retaining healthcare professionals, streamlining workflows, and embracing telemedicine
and digital health are key to tackling healthcare challenges [12,13].

Managing ESKD thus requires a paradigm shift in treatment approaches, including
anticipating and addressing complications, adjusting treatment plans, and optimizing
patient care for better long-term outcomes. Overcoming this challenge involves implement-
ing strategies to enhance the overall treatment efficiency of kidney replacement therapy,
ensuring better control of uremic toxins levels, improving patient education and percep-
tion, updating caregivers’ knowledge, and establishing robust digital support systems to
positively influence overall results [2,7,14].

In this developing landscape, digital health support emerges as a potential pivotal
solution, leveraging technology to support caregivers with innovative solutions, including
automation and self-adaptation of dialysis machines equipped with algorithms responding
to user-specific prescriptions, continuously monitoring quality and controlling care delivery,
with teledialysis or teleconsultation options, or remote patient monitoring with pervasive
tools, health education platforms, and data-driven decision-making [15,16]. This evolv-
ing digital health environment with artificial intelligence support will enable healthcare
providers to improve patient care, reduce practice variations, and effectively manage the
complexities associated with ESKD, and so potentially improve treatment outcomes.

Digital health technologies (DHTs), particularly to support the management of patients
with chronic diseases, are not a new concept [17,18]. Digital solutions have long been
considered potential and cost-effective ways of delivering aspects of healthcare, reducing
practice variations in care delivery, enhancing global treatment efficiency and uremic
control levels, and ultimately improving patient outcomes while reducing overall treatment
costs. In this narrative, we will focus on the use of digital solutions and tools to support the
care of ESKD patients on maintenance dialysis.
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2. Potential of Digital Health Technologies in Dialysis Patient Care

DHTs currently encompass a broad spectrum of tools for dialysis patient care. These
tools fall into several different categories. Firstly, there are technical functionalities inte-
grated into hemodialysis (HD) machines designed to enhance, secure, and improve daily
patient care. Secondly, data is automatically collected and analyzed from various sources,
including the dialysis machine, weighing scale, vital parameters (including blood pressure,
heart rate, temperature), clinician electronic medical records, laboratory results, imaging
reports, and medications. Thirdly, remote tools utilize wearable sensor devices such as
wristwatches, electronic scales, oximeters, sleep disorder monitors, and physical activ-
ity trackers. Figure 1 illustrates a schematic representation that integrates digital health
technology with the HD patient.
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Figure 1. Integrating digital health technology (DHT) in HD: a visual representation. The digital
health technology in HD is then conceptually grouped into two main levels: the inner circle indicates
patient-level application of DHTs, such as tools that enable dialysis care delivery (blue) and patient
self-empowerment (green); the outer circle indicates system-level applications of DHTs aimed to
support quality assurance, the implementation of HD networking, and decision-making through
artificial intelligence and big data analytics. Abbreviations: HD, hemodialysis; PROM, Patient-
Reported Outcome Measures.

In essence, these tools offer potentially valuable information that can be utilized at
the point of care to facilitate patient management and identify corrective actions. When
patients are at home, they can use this information to provide insights or trigger specific
actions. Additionally, these tools can be integrated into feedback-controlled algorithms
that react in real time to data, implementing preset corrective actions. This represents the
initial and fundamental level of support that can be provided by digital health technology.
Table 1 provides a concise summary of the main tools intended to optimize care delivery,
empower patients, and ultimately improve patient outcomes and reduce treatment burden.
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Table 1. Tools supported by digital health technology to support care of chronic kidney disease
patients on hemodialysis. It provides a concise summary of the main tools intended to optimize care
delivery, empower patient and ultimately improve patient outcomes and reduce treatment burden.

Category Tool Function Aim

Tools improving care delivery

Ultrafiltration and dialysate
sodium Control with Profiles

Thermal balance ControlFeedback controlled tools

Automated Sodium Control

Enhance hemodynamic
management and improve
hemodynamic stability and

tolerance

Enhance treatment efficiency
and optimize care delivery

Online Clearance
Measurement of Uremic
Compounds (Urea, ß2M)

Ensure continuous quality
control and enhance
treatment efficiency

Fluid volume Management
Including Sodium and Water

Enhance fluid volume and
hemodynamic management

Automated Substitution and
Ultrafiltration Control in

online HDF

Enhance dialysis
treatment efficiency

New biosensors on effluent
dialysate (IS, PCS, Electrolytes,

Na, K, Ca)

Optimize and personalize
treatment

More sustainable dialysis
Automated adjustment of

dialysis fluid production and
flow to blood flow

Optimize water and
electrolyte consumption,

protect the planet
Interfacing HD machines and

monitoring devices in a IT
network

Integrated medical
informatics

Optimize the management of
patient care and the resource

utilization

Tools empowering patients

Self care and home treatment Adapted and portable HD
machines Improve HR-QOL

Educating and coaching Digital connected and remote
devices

Personalize and optimize the
delivery of treatment

Patient remote monitoring Pervasive remote monitoring Prevent cardiac sudden death
Patient Reported Outcomes

Monitoring
Digital PROMs supported by

tablet and AI
At the forefront:

patient-centered care

2.1. Tools Enabling Care Delivery and Improving Outcomes

Furthermore, these devices can be connected to the internet and web systems, thus
allowing transmission of data to a cloud-based system capable of storing, analyzing,
processing, and providing more extensive support to both patients and clinicians. Such
an approach necessitates the support of advanced analytics and artificial intelligence, as
information collected from a large dataset of patients can be employed as a quality control
to check that selected indicators are on target, to develop predictive medicine, and/or assist
decision-making at an individual level.

HD machines currently incorporate basic monitoring features that ensure safety of
treatment and provide valuable information for point-of-care use in patient management
and follow-up [19]. While these tools can help identify corrective actions, they necessitate
caregiver intervention and should be regarded as fundamental components of HD machines
relying on activation of safety alarms [20].

Advancements in DHT are leading to more sophisticated tools being integrated into
advanced HD machines, which will be discussed in the sections below. These newer
tools are equipped with feedback-controlled algorithms capable of reacting to changes
in physiologic parameters (i.e., blood volume or temperature change) and implementing
preset corrective actions almost immediately [21,22]. This initial level of automation and
self-adaptation represents the foundational support provided by digital health technology,
which is already implemented as an optional function in the current generation of advanced
HD machines [23,24].

A subsequent level of advancement, currently in development, involves highly so-
phisticated tools that interface the dialysis machine, point-of-care information, and patient
electronic medical records with a cloud-based advanced analytics system using web-based
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technology [25–27]. This second level aims to provide decision-making support to physi-
cians and caregivers, refining prescriptions or enhancing the delivery of dialysis [28,29].

To categorize the initial level of automation and self-adaptation, it is convenient to
group them into three main categories based on their intended therapeutic actions. Firstly,
tools that are designed to enhance hemodynamic tolerance, primarily aiming to prevent
intradialytic hypotension caused by volume imbalances. Secondly, there are tools dedicated
to improving treatment efficiency and facilitating the delivery of optimal care. Lastly, tools
aimed at preventing resource wastage, specifically focusing on reducing water consumption.

2.1.1. Feedback-Controlled Tools Designed to Improve Hemodynamic Tolerance

A feedback-controlled system refers to an algorithm that senses physiological changes
in a patient’s biomarker during HD (HD) and provides an adapted response capable of
correcting this change and mitigating the side effects associated with it. Hemodynamic
instability is the most common adverse event in HD, mainly related to the hypovolemia
induced by ultrafiltration rate, resulting in intradialytic hypotension, ischemic events, and
intradialytic morbidity. Therefore, improving hemodynamic stability has been the focus of
investigation for several years. In addition to increasing treatment time or frequency to
reduce the ultrafiltration rate, there are three main approaches to improving hemodynamic
stability in intermittent short HD patients employing feedback-controlled algorithms: the
first approach relies on volume-controlled conditions by acting either on ultrafiltration
or dialysate sodium or a combination of both; the second approach focuses on primarily
increasing vascular resistance and venous capacitance by controlling thermal balance; the
third approach consists of sodium management by automatically aligning dialysate sodium
to plasma sodium. It is worth noting that these approaches may be used independently or
in combination. These three approaches are further discussed below.

A. Ultrafiltration Controlled System with Profiles

To maintain volemia within a user-defined corridor and prevent critical hypovolemia
based on the patient profile and hemodynamic response, a fuzzy control system is em-
ployed. This system utilizes analog input values that range continuously between 0 and 1
to modulate the ultrafiltration and vascular refilling rates, thereby ensuring that volemia
remains precisely within a safe range [23,25,26,30,31]. Essentially, a sensor on the arterial
blood line continuously measures hematocrit (using ultrasound density or refractometry).
Changes in hematocrit concentration, attributed to net ultrafiltration (resulting in hemo-
concentration), provide data to a central processing unit. This unit translates information
into the relative blood volume change (expressed as a percentage) or vascular refilling rate
and feeds this into an algorithm, which adds a correction for the Fahraeus effect, due to
differences in hematocrit in different vascular beds. This algorithm, in turn, then controls
the ultrafiltration rate to maintain volemic changes within the safety corridor set by the
user [32,33].

Moreover, various algorithms, referred to as profiles, may be applied to facilitate tissue
fluid recruitment and vascular refilling, preventing the occurrence of critical hypovolemia
and occurrence of intradialytic hypotension or ischemic event [34]. Typically, these profiles
combine ultrafiltration rate and dialysate sodium concentration, starting with a higher
ultrafiltration rate and hypertonic dialysate that gradually decreases throughout the session,
concluding with a lower ultrafiltration rate and isotonic dialysate. The challenge lies in
ensuring adequate removal of both sodium and water mass to prevent long-term sodium
and fluid overload.

Several studies have indicated that such ultrafiltration-controlled systems can signifi-
cantly reduce intradialytic hypotension, improve hemodynamic and overall tolerance during
dialysis sessions, and mitigate the burden on patients and caregivers associated with coping
better with KRT [35,36]. For example, in a recent review, fatigue associated with dialysis was
proportionally related to interdialytic weight gain and inversely to the ultrafiltration rate,
confirming that acting on this parameter is crucial [37]. However, as of now, no study has
demonstrated that this approach can improve long term cardiovascular outcomes.
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B. Thermal Balance Controlled System

HD sessions conducted with a fixed dialysate temperature of 37.5 ◦C are known to
result in positive thermal balance, indicating that patients gain significant thermal energy
during the session [38]. This hyperthermic dialysis is attributed to most patients starting
with a core temperature close to 36.5 ◦C. The combination of this warming process and
higher ultrafiltration rate can adversely affect the hemodynamic response to hypovolemia,
leading to vasodilation and tachycardia, aggravating hemodynamic instability in fragile
patients [39,40].

Numerous studies, including meta-analyses, have confirmed that implementing
isothermic or discretely hypothermic dialysis sessions significantly improves hemody-
namic tolerance. This improvement is demonstrated by a reduced incidence of intradialytic
hypotension and an increase in mean arterial pressure during dialysis sessions [39,41,42].
Additionally, clinical studies have demonstrated that hypothermic dialysis has a cardiac
and vascular protective effect, particularly on the brain, as demonstrated in an interven-
tional study using sophisticated MRI imaging of the heart and the brain [43–47]. In essence,
isothermic or hypothermic dialysis sessions are highly preferable for enhancing hemo-
dynamic tolerance and preventing organ damage caused by dialysis-induced systemic
stress [48,49].

However, the recent MyTemp study conducted in Canada did not corroborate previ-
ously reported findings [50,51]. This study, however, had notable flaws in the assessment
of hemodynamic stability Additionally, it used a much lower dialysate temperature than
previous studies, which was very close to the patient’s core temperature, providing already
an isothermic dialysis condition. In essence, this study could not provide a definitive
answer to the question of the role of cooling dialysate [51,52].

In this context, manual or, preferably, automated thermal balance adjustment based
on the individual patient’s core temperature, using specific blood temperature sensors
and adapted algorithm, is preferred to alleviate shivering effects resulting from arbitrary
reductions in dialysate temperature.

C. Automated Sodium Controlled Systems

Various tools utilizing conductivity sensors as surrogates for sodium concentration,
along with specific proprietary algorithms, have now been developed to optimize sodium
and water imbalance management for HD patients [53–55]. A recent review by Petitclerc
et al. offers technical insights and clinical applications of these devices. In essence, there
are two main categories of sodium management tools with proprietary algorithms [56,57].
The first relies on estimating plasma sodium, either using ultrafiltrate (Mozarc Medical,
Minneapolis, MN, USA) or an equilibrated dialysate to plasma concentrations achieved
by recirculation (Baxter, Deerfield, MA, USA) at the beginning of the dialysis session. The
second relies on measuring dialysate sodium concentrations (inlet and outlet) based on
conductivity measurement corrected for potassium changes to ensure a perfect sodium
mass balance and to estimate the initial plasma sodium concentration using ionic clearance
(Fresenius Medical Care, Bad Homburg, Germany). An important distinction lies in the
intended use of these tools. In the first group, the user sets a final plasma sodium target,
and the algorithm adjusts dialysate sodium while calculating sodium mass removal. In
the second group, the user sets a dialysis-plasma sodium gradient, initially set by default
isotonic to plasma and termed “zero diffusive”. Based on patient conditions, this gradient
can be set differently, either negatively (e.g., −3 mmol/L) or positively (e.g., +3 mmol/L),
to alter sodium mass removal and/or plasma tonicity changes. In both cases, sodium mass
balance is estimated across the dialysis session, but in the second option, diffusive and
convective sodium mass removal are differentiated.
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2.1.2. Tools Designed to Enhance Treatment Efficiency and to Optimize Care Delivery

A. Online Clearance Measurement of Dialysis Efficiency

Online clearance measurement of dialysis efficiency is essential for ensuring optimal
treatment outcomes for HD patients [58]. Continuous monitoring of solute clearances,
particularly urea clearance or its surrogate, ionic dialysance, is facilitated by online tools
integrated into dialysis machines. These tools provide the user a means of correcting devia-
tions from the targeted prescription in real time by adjusting the dialysis prescription (i.e.,
blood flow, treatment time). This cost-effective method provides a reliable means to assess
treatment efficiency across all dialysis sessions and allows for prescription adjustments in
response to variations during treatment delivery (e.g., changes in blood flow, recirculation,
thrombosis, or treatment time) [59,60].

These measurements rely on internal algorithms and proprietary technology within
the dialysis machine, utilizing various sensors. One type employs conductivity probes (inlet
and outlet) with timely pulses in dialysate conductivity [58–61], while another uses a UV
adsorption sensing chamber on the outlet dialysate, measuring changes in absorptiometry
at specific wavelengths to determine dialysate concentrations of the solute of interest [62].
Notably, the UV absorptiometry approach potentially allows for dosing various solutes
based on their specific wavelength characteristics, including urea, creatinine, phosphate, or
beta-2 microglobulin [62–68].

These online clearance measurement tools are integrated into various dialysis ma-
chines, providing invaluable immediate point-of-care information to caregivers about the
efficiency of individual dialysis treatments [62,69]. The DOPPS study has demonstrated
that regular delivery of effective dialysis treatments is a key factor in improving outcomes
for dialysis patients [70]. Online tools face practical concerns in daily practice: firstly, they
are not regularly used by caregivers in their workflow processes to check and improve
practices, indicating a need for implementation of training; secondly, while they have been
proven to be accurate, reliable, and valid in clinical research settings, their widespread
adoption in daily routines might be hindered by economic restrictions. In essence, while
technology has the potential to offer invaluable support in quantifying and personalizing
therapy, the critical challenge lies in determining who will bear the cost of implementing
these advanced technologies [59].

B. Sodium and Water Management

Optimal management of sodium and water balance, known as sodium homeostasis, is
recognized as essential for improving outcomes in dialysis patients, particularly regarding
cardiac health [71]. The traditional clinical approach consists of the dry weight probing ap-
proach [72]. The safety of this isolated clinical approach has been questioned, while benefits of
instrumental guidance (i.e., bioimpedance, lung ultrasound) or cardiac biomarkers have been
regularly highlighted [73–75]. In this context, the availability of automated sodium-controlled
tools has renewed clinical interest in improving outcomes for dialysis patients [71,76]. Several
studies have confirmed the validity and reliability of these sophisticated tools for managing
sodium and water imbalances during HD sessions, including high-volume hemodiafiltration
(HDF) patients [77,78]. Preliminary short-term studies have also confirmed the reliability of
their use. For example, in active sodium management mode, aiming isonatremic (isotonic)
dialysis condition, changes in plasma sodium concentration during HD sessions were less
than 1.0 mmol/L and closely resembled those observed during isolated ultrafiltration [54].
These tools provide regular estimates of sodium mass balance (total and differentiated con-
vective and diffusive) and identification of hyponatremic patients, and have shown benefits
in addressing intradialytic morbidities including headaches, paradoxical hypertension, and
fatigue in relatively recent studies [76–78]. Moreover, they tend to reduce interdialytic weight
gain by alleviating thirst induced by osmotic changes [77,78]. However, long-term studies are
still required to confirm longer term cardiovascular health benefits.
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C. Automated Substitution and Ultrafiltration Control in Hemodiafiltration

Automated substitution control in HDF is essential to ensure matching of the targeted
substitution and convective volumes while preventing the transmembrane pressure alarms
due to membrane fouling. This technology is incorporated into the HDF monitor, sensing
viscosity changes within the hemofilter during the HDF session and adjusting substitution
and ultrafiltration flows to maintain the transmembrane pressure within an ideal range. De-
pending on the type of HDF monitor (i.e., Baxter®, Mozarc Medical®, Fresenius Medical
Care®), the management of transmembrane pressure relies on different algorithms [24,79,80].
Notably, the most sophisticated, namely AutoSub+ from Fresenius Medical Care, allows
a gradual increase in transmembrane pressure during the initial phase of HDF [81–83].
This ensures slow fouling of the membrane, beneficial for preventing albumin loss, fol-
lowed by stabilizing the transmembrane pressure within an optimal range between 150 and
300 mmHg [84–86].

In all cases, it has been demonstrated that such automated ultrafiltration control
increases the total substitution and ultrafiltration volume delivered over a 4 h HDF by 4 to
5 L, while preventing activation of disruptive transmembrane pressure alarms [81–83,87].

D. More Sophisticated Biosensors Are Currently in Development or Being Tested.

Access to biological fluids, such as plasma or dialysate, offers an easy opportunity for
the non-invasive measurement of blood constituents. This can be employed for real-time
monitoring of the kinetic clearance of key solutes, evaluating the efficiency or adequacy
of dialysis s (e.g., uremic compounds, urea, creatinine, B2M, indoxyl sulfate) [67,68,88] or
facilitating feedback control of electrolytes (sodium, potassium, bicarbonate, calcium) using
appropriate microchip biosensors [89].

2.1.3. Tools Designed to Promote More Sustainable Dialysis

Both HD and on-line HDF use large volumes of water, and water consumption has
environmental consequences. Dialysate and water consumption in both HD and HDF
depend on the user’s prescription settings and the operational capabilities of the HD/HDF
machines. As such, manufacturers have developed different strategies to reduce water
consumption. Firstly, with HDF, the substitution flow is drawn from the total dialysis
fluid flow without compensation, thereby reducing the dialysis fluid passing through
the dialyzer by the same amount. Secondly, the dialysis fluid and substitution flows are
independently set, ensuring that the dialysis fluid passing through the dialyzer remains
at a constant flow unaffected by the substitution flow. An alternative approach is that the
HDF machine can manually or automatically align the dialysis fluid flow to the blood flow
(Qd/Qb) to optimize solute saturation and dialysate consumption. The dialysate to blood
flow ratio may be set between 1.5 in HD and 1.2 in online HDF. When addressing concerns
about dialysis fluid and water consumption in HD and HDF, it is crucial to precisely match
these settings with the specific type of HD or HDF machine [90]. The clinical benefits
of high-dose HDF has been demonstrated in the CONVINCE study [91], and the higher
sustainability of HDF compared to HD in this context has been shown in a recent study,
which we encourage readers to delve into for further details [92].

2.1.4. Tools for Interfacing Dialysis Machines and Monitoring Devices in a HD Unit or
Network System

An integrated medical informatics system in a dialysis unit plays a pivotal role in
facilitating and securing the workflow of a patient, from their arrival at the HD center to
their departure [93]. This relies on a meticulously designed electronic network system
that encompasses servers and caregiver tools (laptops, tablets). The system connects and
interfaces dialysis machines, monitoring devices (such as weight scales and automated
blood pressure monitors), patient electronic medical records, and various internal services
via an intranet [94,95]. These internal services include pharmacy, integrated laboratory
and imaging results, administration with secretarial, and billing services. Additionally,
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it interfaces with external services through the internet, covering healthcare services, in-
surance, transportation, general practitioners, and specialists. These solutions exemplify
the convergence of healthcare and information technology (IT) systems, representing the
culmination of a long-term evolving field known as medical informatics [96,97].

However, development of a single medical informatics system is frequently impeded
by the multitude of medical devices within a dialysis unit and their lack of interoperability,
making it challenging to share data with IT systems without manual intervention. The
pressing need to improve medical care, optimize workflow, eliminate paper forms, reduce
costs, and embrace electronic medical records (EMRs) compels clinics, hospitals, and
care providers to adopt IT solutions [98]. These IT solutions are designed to streamline
various procedures, encompassing electronic medical records processing, quality control,
laboratory testing, medical imaging, and administrative tasks including correspondence,
transportation, and billing [96]. Despite the complexity and potential cost of implementing
such global medical informatics, the adoption of such common and communicating IT
systems will reduce and reward healthcare costs in the long term.

To overcome communication barriers between medical devices and IT networks, sev-
eral digital operators’ groups have developed and proposed integrated medical informatics
systems including conversion units to deliver such services. Such solutions share the
common objective of converting medical device data into electronic medical records (EMRs)
and transmitting them to private cloud services. This enables the performance of data
analytics to enhance the assessment of a patient’s condition, with the capability to report
dashboard results [95].

2.2. Empowering Patients through Digital Health Support

Empowering dialysis patients has been demonstrated to significantly enhance their per-
ception of treatment, instill confidence and self-worth, improve mood, and alleviate anxiety or
depression, ultimately leading to improved overall outcomes while enhancing and reducing
peri-dialytic fatigue and other symptoms [99,100]. Empowering dialysis patients through digital
health tool support can manifest in various forms [101,102], briefly described here.

2.2.1. Facilitating Self-Care Empowerment and Home Treatment Options

In-center HD remains the most frequently used option for several reasons, despite the
potential for more flexible, efficient, comfortable, and cost-effective therapeutic options with
home HD [99,100]. However, a barrier to home HD is the patient’s perception of isolation
without direct medical assistance. Digital tools and IT systems, including tablets or digital
tools integrated into or alongside dialysis machines, can significantly assist patients in
staying connected with their reference center [102]. These tools facilitate communication
and enable patients to benefit from direct and continuous assistance, breaking the isolation
associated with home treatment and restoring self-confidence and trust in dialysis through
teleassistance [100–102].

2.2.2. Educating and Coaching Patients

Digital connected personal tools (such as tablets and cellular phones) have the potential
to provide valuable information to dialysis patients, not only regarding their conditions and
educational tool but also by sharing annotated results of their dialysis treatment, including
clinical, biological, or paraclinical testing. Pervasive remote tools (such as watches, trackers,
and vital sensors) as part of enhancing well-being may provide details on physical activity,
estimated caloric expenditure, metabolic data, sleep quality, and vital parameters. Further-
more, these digital tools may offer guidance on the timing of medication administration and
reactivate functionalities to assist patients in more effectively managing their health.

2.2.3. Monitoring Patient Remotely and Detecting Potential Life-Threatening Complications

Recognizing that mortality among HD patients often occurs during the interdia-
lytic period, especially after longer intervals (e.g., 3 days), and is frequently associated
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with cardiovascular causes, addressing the heightened incidence of arrhythmias becomes
crucial [103–105]. This increased risk has been unequivocally identified through im-
plantable monitoring devices, revealing a prevalence much higher than previously reported.
Implementing vigilant monitoring for ambulatory dialysis patients is essential to identify
those at risk at an earlier stage.

Utilizing currently available pervasive remote tools, such as connected watches (e.g.,
iWatch, ScanWatch), is hypothesized to aid in the early identification of arrhythmic dis-
orders or critical sleep apnea, facilitating timely corrective actions [101]. The optimal
utilization of remote monitoring or tracking tools, including weight scales, blood pressure
monitors, heart rate monitors, sleep monitors, oxygen saturation monitors, and temperature
sensors connected to a cloud, would be immensely beneficial in monitoring and managing
high-risk patients, as discussed in a recent comprehensive review [15,101].

2.2.4. Assessing Patient Reported Outcomes in Real-Time

Patient-self-reported outcome measures (PROMs) are increasingly vital tools for eval-
uating health-related quality of life (HRQoL) and the burden associated with KRT. Current
practices in HD involve the use of questionnaires such as the SF36, KDQoL, and EQ5 to
assess and monitor health-related quality of life and to gauge the treatment adequacy
of HD patients [106]. While these tools demonstrate significant predictive value for pa-
tient outcomes, they are somewhat cumbersome to administer and lack high specificity or
sensitivity in detecting subtle changes in dialysis patients [107–109].

Recent advancements have introduced digitally supported tools, such as PROMIS®,
designed to assess patient-reported outcome measures more efficiently [110]. As previously
mentioned, the CONVINCE study has developed and tested a web-based, kidney-specific
questionnaire linked to a dedicated library with computer-adaptive questions [91]. These
questions delve more specifically into various domains of dialysis patients, utilizing a tablet
interface. This innovative approach is poised to usher in a new era in the assessment of
PROMs in dialysis patients.

3. Future Developments and Trends

Additional tools, currently available or in development stage, leverage digital health
support to facilitate and enhance care delivery or transition towards personalized dialysis
treatment aligned with precision medicine. They are briefly outlined below and schemati-
cally presented in Figure 2.
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Figure 2. Digital health technology helps to transition from population-based to individual based
dialysis. Additional tools, currently available or in development, are presented to leverage digital health
technology support. These tools aim to facilitate and enhance care delivery, fostering the transition from
contemporary population-based dialysis towards personalized and individualized dialysis.
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3.1. Tools Designed to Facilitate Self-Care, Limited Care, and Remote Care Support for HD
Patients, Including Teledialysis or Telemedicine

Among the challenges in providing effective kidney replacement therapy are the
shortage of caregivers and the increasing cost of treatment. To partially address these chal-
lenges, it has been demonstrated that implementing self-care, limited care, and remote care
supported by teledialysis is an important option. This approach ensures the maintenance
of quality care while containing costs. Several experiments, particularly in countries with
large remote areas (e.g., Canada, Australia, France), have been conducted worldwide with
conclusive positive results [111].

In this context, digital health support technologies can play a crucial role in ensuring
the safety and success of dialysis therapy. Without delving into details, we refer inter-
ested readers to guidance and best practices that have been developed to support the
implementation of such approaches [112–116].

3.2. Tools of Continuous Quality Improvement in Patient Management

The DOPPS study clearly demonstrated that implementation of best practice patterns
in HD, including achieving treatment time and dialysis dose, as well as vascular access
policy and education and training of caregivers, significantly influence patient outcomes,
often more so than the technical or dialysis therapy options [117,118]. Policy makers and
caregivers should be aware of this finding, emphasizing that ensuring the correct and
optimal delivery of care as prescribed is the most effective way to reduce mortality for HD
patients, as well as the correct of caregiver-to-patient ratio. This discovery underscores the
importance of continuous quality improvement in dialysis care and adequate staffing and
competence as cornerstones of success.

Given the complexity of managing dialysis patients and the multitude of parameters
or data, covering various domains, to consider (such as clinical parameters, vital signs,
subjective symptoms, dialysis machine parameters, laboratory values, and imaging data),
it is evident that only an electronic medical record capturing, analyzing, and presenting
simplified dashboards with visual graphic data can provide adequate and timely support
to physicians and caregivers [95,96].

The use of digital tools, along with advanced analytics and imaging tools presented
via a visual and user-friendly dashboard, has shown tremendous value in a large chain of
dialysis care providers, where optimal efficiency is a top priority. This technology improves
patient outcomes by identifying individuals or groups of patients deviating from targeted
key parameters, enabling swift corrective action.

As evidenced in a recent prospective study within a large international network of
dialysis care providers, the combination of monthly quality control assessments clustered
in various categories of interest (i.e., dialysis dose, fluid and hemodynamic control, vascular
access, electrolytes, bone mineral disorders, nutritional, inflammatory, and anemia control)
associated with peer review significantly reduced hospitalization and mortality rates [119].
This approach streamlines the implementation of corrective actions and, consequently,
minimizes variations in care delivery practices among different caregivers and units.

Several examples illustrate this purpose, such as increasing dialysis dose delivery by
adjusting blood flow and effective treatment time, promoting the increased use of native
arteriovenous fistula, reducing erythropoietin use to correct anemia, and improving fluid
volume management when combined with bioimpedance devices.

3.3. Tools Designed to Support Decision-Making and Advance towards Personalized Dialysis

Predictive medicine is emerging as an innovative and valuable tool to support physi-
cians in their daily practice. Drawing on extensive population data and large datasets,
the development of sophisticated predictive models, whether guided or not, is primarily
driven by artificial intelligence. These tools offer new opportunities to predict events,
outline trajectories of biomarkers, and assess responses to specific therapies or treatment
modalities with a high level of reliability.
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To illustrate this point, we have identified four categories of tools which are voluntary
exhaustive:

3.3.1. The First Category Is Dedicated to Establishing the Risk Stratification Profile of Incident
Dialysis Patients and Predicting Their Outcomes within the Next One or Two Years

Various tools within this category have been developed, requiring basic information
including patient characteristics, underlying kidney disease, comorbidities, clinical and
laboratory data, and the choice of treatment modality [120,121]. By leveraging these
elements, predictive tools can forecast patient outcomes over the next one or two years [121].
Simulating the effects of a specific treatment modality on mortality can assist physicians
and patients in determining the optimal therapeutic option in these scenarios. As example,
such tools may prevent selection biases based on subjective physician assessment and
introduce a more objective method with multiparametric items to estimate the chance of
success or failure according to dialysis modality choice (i.e., home dialysis versus in-center)
before engaging the patient and/or family in a particular treatment modality. Such an
approach will reduce patient disease burden and the risk of failure.

3.3.2. The Second Category Aims to Support Physician Decision-Making in Controlling
Anemia through Erythropoietin-Stimulating Agents and Iron Supplementation

Recent studies indicate that modeling anemia control using machine learning can
correct anemia more efficiently than conventional approaches [122]. This involves main-
taining hemoglobin in a narrow range (10 to 12 g/dL), virtually eliminating hemoglobin
fluctuations, reducing the consumption of erythropoietin-stimulating agents and iron
supplementation, and tending to decrease the occurrence of cardiovascular events.

3.3.3. The Third Category Centers on Predicting the Occurrence of Intradialytic
Hypotension within a HD Session [28,29]

Two recent studies have demonstrated that predicting intradialytic hypotension or
hemodynamic events was possible within the next 15 to 75 min with an accuracy of 85%,
as estimated from the area under the curve (AUC) parameter. This achievement resulted
from combining dialysis prescription and patient features, data from previous sessions,
and data trends from the current dialysis session. Interestingly, it appears that artificial
intelligence utilizing machine learning was more accurate than traditional modeling relying
on correlations.

3.3.4. The Fourth Category Focuses on the Allocation of Dialysis Modality to the Most
Appropriate Patients to Optimize Their Survival Expectancy [123]

Several tools have already been developed to predict patient outcomes over the next
years, with external validation conducted through large databases [123–125]. It is important
to note that these tools are not designed to replace the clinical judgment of physicians or
patient preferences. Instead, they have the capacity to predict outcomes over the next few
years with reasonable accuracy and can serve as a valuable support for both physicians
and patients in making informed choices.

3.4. Tools to Assess Health Related Quality of Life

HD is linked to a substantial symptom burden and diminished health-related quality
of life (HRQoL). Patient self-reported outcome measures (PROMs), standardized tools
capturing patients’ symptom burden, functional level, and HRQoL, offer a valuable means
to monitor overlooked health aspects, guide care planning, and support treatment ad-
herence or choice. The integration of PROMs into clinical practice serves as a strategic
empowerment tool for patients, involving them in care decisions and outcomes [107–109].

Despite the potential benefits, the incorporation of PROMs faces challenges within
busy HD units, characterized by limited human resources and the burden on patients
in completing questionnaires. However, the growing demand from health authorities
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necessitates the implementation of PROMs and their connection to actionable treatment
interventions to alleviate symptoms and enhance patient well-being.

Practical considerations include selecting specific questionnaires reflecting CKD pa-
tients’ concerns, analyzing reports, and integrating results into electronic medical records
for optimal utilization. Here, electronic tools such as tablets, utilizing web-based platforms
with adaptive questions based on patient concerns (as exemplified by PROMIS®), present a
potentially disruptive approach [110].

By leveraging on these self-adaptive and easily handle tools, it is plausible that dialysis
patients can regularly provide PROMs, offering caregivers more efficient opportunities for
corrective actions or treatments.

4. Barriers to Adoption of Digital Health Technologies in Dialysis Patient Care

As with all new and potentially disruptive technologies, there are several barriers to overcome
for the implementation and widespread acceptance of digital health technologies [15,124,125].
We will briefly address the main challenges along with potential solutions.

4.1. Technical Challenges Are Not the Most Complex to Solve

As indicated, technology progresses rapidly, offering new solutions every day. HD
machines and patient environments are already equipped with numerous digital and
connected medical devices that allow the capture and transmission of a substantial amount
of data to server and cloud systems. The next challenge lies in capturing and analyzing
the data, providing actionable information to users to facilitate care and decision support.
Subsequently, the challenge will be to securely store big data within an appropriately
secured cloud system.

4.2. Ethical Challenges Are Certainly More Complex to Address, as They Involve Issues Related to
Individual Privacy

Addressing confidentiality and the risk of sharing personal health data is a daunting
task, especially considering recent cyberattacks and data breaches. Ensuring the anonymiza-
tion and secure storage of personal health data requires significant additional effort.

4.3. Regulatory Challenges Are Twofold

First, there is the concern related to data protection and individual privacy, falling
under the General Data Protection Regulation (GDPR) in the European Union (EU). The
GDPR aims to enhance individuals’ control and rights over their personal information.
Given the high trade exchange between the EU and the USA, efforts should be made to align
EU data protection regulations with international rules. The second regulatory concern
involves medical devices, governed by the European Medical Device Regulation. Devices
such as HD machines, water treatment systems, and other medical devices, including
monitoring and electronic networks, must adhere to specific features outlined in their
registration files.

4.4. Liability Challenges Represent Another Aspect That Needs Addressing, Particularly as They
Involve Various Devices and Manufacturers

While liability is clearly defined for specific medical devices, it becomes more complex
when multiple devices interact and interface through an electronic network responding to
a cloud-based analytic system.

4.5. Personal Challenges May Reflect the Fears and Reluctance of Caregivers, Including Doctors, to
Adopt New Medical Devices, Especially Those with New Functionalities Which May Interfere with
Their Existing Skills, Competence Domain, or Job Responsibilities [125]

Overcoming these human reflexes requires appropriate learning and training to master
the functionalities of the new medical technologies.
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5. Conclusions

Managing ESKD patients requires a paradigm shift in treatment approaches to address
the increasing demand, optimize patient care for improved long-term outcomes, and
contain overall costs. In this landscape, digital health technologies emerge as a pivotal
solution, leveraging technology to support caregivers with innovative solutions. This
digital health support, whether embedded in the dialysis machine or provided through
external support via a digital network and artificial intelligence, will potentially enable
healthcare providers to enhance patient care, reduce practice variations, improve care
quality, effectively manage the complexities associated with ESKD, and optimize treatment
outcomes. However, these innovative technologies must overcome barriers related to
technical, ethical, regulatory, liability, or personal beliefs for their implementation and
widespread acceptance within nephrology communities.
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