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Abstract: Among the various natural compounds used in alternative and Oriental medicine, toxins
isolated from different organisms have had their application for many years, and Apis mellifera venom
has been studied the most extensively. Numerous studies dealing with the positive assets of bee
venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence
of diseases and for their treatment is often referred to as apitherapy and is based mainly on the
experience of the traditional system of medical practice in diverse ethnic communities. Today, a large
number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic
polypeptide melittin (MEL). Previous studies have indicated that BV and its major constituent MEL
cause a strong toxic effect on different cancer cells, such as liver, lung, bladder, kidney, prostate, breast,
and leukemia cells, while a less pronounced effect was observed in normal non-target cells. Their
proposed mechanisms of action, such as the effect on proliferation and growth inhibition, cell cycle
alterations, and induction of cell death through several cancer cell death mechanisms, are associated
with the activation of phospholipase A2 (PLA2), caspases, and matrix metalloproteinases that destroy
cancer cells. Numerous cellular effects of BV and MEL need to be elucidated on the molecular level,
while the key issue has to do with the trigger of the apoptotic cascade. Apoptosis could be either
a consequence of the plasmatic membrane fenestration or the result of the direct interaction of the
BV components with pro-apoptotic and anti-apoptotic factors. The interaction of BV peptides and
enzymes with the plasma membrane is a crucial step in the whole process. However, before its
possible application as a remedy, it is crucial to identify the correct route of exposure and dosage of
BV and MEL for potential therapeutic use as well as potential side effects on normal cells and tissues
to avoid any possible adverse event.

Keywords: natural products; apitherapy; apitoxin; bee venom; melittin; phospholipase A2; anticancer
properties; therapeutic application

Key Contribution: Summarized properties of BV and its major components MEL and PLA2 will con-
tribute to a better understanding of their effects on cancer cells and possible therapeutic applications.

1. Introduction

Regardless of the significant developments in modern medicine, pharmaceuticals re-
sulting from plant and animal species continuously make important contributions to health
in terms of the prevention and treatment of numerous diseases [1–5]. Many treatments that
are frequently used in Western countries come from Asia, and their popularity is increasing
rapidly [6–9]. Animal venoms, especially those from insects, have historical usage in scien-
tific research, and are used today as a source of various products and drugs with potential
medical applications [10–15]. Among the several natural compounds that have found their
place in Oriental and alternative medicine, toxins isolated from a large number of organ-
isms have had their application for many years, the most important being bee venom (BV)
isolated from Apis mellifera (Figure 1A) [3,12,16,17]. Numerous studies speak in favor of the
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positive properties of BV, which include its radioprotective [18–20], antimutagenic [21,22],
anti-inflammatory [23,24], antinociceptive [24,25], and antimicrobial [26,27] properties.

Toxins 2024, 16, x FOR PEER REVIEW 2 of 20 
 

 

number of organisms have had their application for many years, the most important being 
bee venom (BV) isolated from Apis mellifera (Figure 1A) [3,12,16,17]. Numerous studies 
speak in favor of the positive properties of BV, which include its radioprotective [18–20], 
antimutagenic [21,22], anti-inflammatory [23,24], antinociceptive [24,25], and antimicro-
bial [26,27] properties. 

  
(A) (B) 

Figure 1. European honey bee Apis mellifera (A) and lyophilized bee venom (B). 

In recent decades, the number of cancer patients and their mortality rate have in-
creased, thereby creating enormous health as well as economic problems, especially in the 
aging population [28]. The increasing incidence of tumors leads to the need to create novel 
drugs and strategies for the prevention and treatment of this particular disease. Therefore, 
anticancer research and exploration of different options for cancer treatment are some of 
the key tasks of modern science [29–31]. The efforts of modern medicine and science to 
discover remedies for this disease have not been completely successful, and although to-
day prescribed therapies such as surgery, radiotherapy, and chemotherapy help patients 
to control the disease, the result is still lethal for many of them. Hence, recently we have 
seen an increased reliance on alternative treatments for these diseases, based mostly on 
using natural compounds of plant and animal origin in therapies against tumors [32–37]. 

Different animal toxins isolated from spiders, scorpions, snakes, snails, sea urchins, 
and corals can kill cancer cells [1,12,15,38–42]. Furthermore, in recent years growing im-
portance has been given to bee products, especially BV, which is used for a variety of me-
dicinal purposes [12,16,21,22,35]. The use of bee products for preventing and treating 
many different diseases is referred to as apitherapy. The use of natural products and their 
active ingredients in the prevention and treatment of chronic diseases is largely based on 
the experience of the traditional medical system found in different ethnic communities 
and epidemiological data of the relationship between diet and disease [12,21,35,36]. Alt-
hough Apis mellifera venom has been studied the most extensively, there are several other 
Apis species, namely, Apis cerana and Apis florea, whose venom and/or peptides have also 
shown promising pharmacological effects and anticancer properties [43,44]. 

Interest in the medicinal properties of bee products that have been known for millen-
nia, as well as their potential anticancer effects, increased in the last 30 years, and the com-
position of bee products is being researched for their possible biological activities with 
modern methodological approaches. Nowadays, there are more than 20,000 species of 
bees in the world, and people’s interest is largely related to the medicinal properties of 
bee products such as propolis, honey, beeswax, pollen, and royal jelly, as well as BV 
[35,45,46]. In recent years, numerous studies have also discussed the anticancer properties 
of BV and its components. Hence, recent studies point to several mechanisms of toxicity 
of this natural compound towards various cancer cells that include changes in the cell 
cycle, effects on cell survival and proliferation, and the induction of both apoptosis and 
necrosis as the cell death mechanism [3,12,16,21,47]. Although there are numerous animal 
venoms and components that often show good results towards cancer cells, there are al-
ways open questions regarding their potential toxicity to normal non-target cells and 

Figure 1. European honey bee Apis mellifera (A) and lyophilized bee venom (B).

In recent decades, the number of cancer patients and their mortality rate have in-
creased, thereby creating enormous health as well as economic problems, especially in the
aging population [28]. The increasing incidence of tumors leads to the need to create novel
drugs and strategies for the prevention and treatment of this particular disease. Therefore,
anticancer research and exploration of different options for cancer treatment are some of
the key tasks of modern science [29–31]. The efforts of modern medicine and science to
discover remedies for this disease have not been completely successful, and although today
prescribed therapies such as surgery, radiotherapy, and chemotherapy help patients to
control the disease, the result is still lethal for many of them. Hence, recently we have seen
an increased reliance on alternative treatments for these diseases, based mostly on using
natural compounds of plant and animal origin in therapies against tumors [32–37].

Different animal toxins isolated from spiders, scorpions, snakes, snails, sea urchins,
and corals can kill cancer cells [1,12,15,38–42]. Furthermore, in recent years growing
importance has been given to bee products, especially BV, which is used for a variety of
medicinal purposes [12,16,21,22,35]. The use of bee products for preventing and treating
many different diseases is referred to as apitherapy. The use of natural products and their
active ingredients in the prevention and treatment of chronic diseases is largely based on
the experience of the traditional medical system found in different ethnic communities and
epidemiological data of the relationship between diet and disease [12,21,35,36]. Although
Apis mellifera venom has been studied the most extensively, there are several other Apis
species, namely, Apis cerana and Apis florea, whose venom and/or peptides have also shown
promising pharmacological effects and anticancer properties [43,44].

Interest in the medicinal properties of bee products that have been known for mil-
lennia, as well as their potential anticancer effects, increased in the last 30 years, and the
composition of bee products is being researched for their possible biological activities with
modern methodological approaches. Nowadays, there are more than 20,000 species of
bees in the world, and people’s interest is largely related to the medicinal properties of bee
products such as propolis, honey, beeswax, pollen, and royal jelly, as well as BV [35,45,46].
In recent years, numerous studies have also discussed the anticancer properties of BV
and its components. Hence, recent studies point to several mechanisms of toxicity of
this natural compound towards various cancer cells that include changes in the cell cycle,
effects on cell survival and proliferation, and the induction of both apoptosis and necrosis
as the cell death mechanism [3,12,16,21,47]. Although there are numerous animal venoms
and components that often show good results towards cancer cells, there are always open
questions regarding their potential toxicity to normal non-target cells and tissues, which is
one of the biggest obstacles to applying such natural products as medications. Therefore,
in this review we will summarize the composition of BV and its anticancer properties, as
well as possible ways to overcome obstacles to its usage as a therapeutic modality.
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2. Bee Venom

BV is a secretion from the venom gland of bees that is used to defend bee colonies
from the enemy and as a warning signal. It is assumed that after a bee sting, a volatile
part of the venom evaporates and serves as a certain alarm to other bees regarding the
presence of an enemy. BV is positioned in the bee’s abdominal cavity, which is on one side
connected with a venom gland that secretes venom, while on the other side, it is connected
by a small canal that leads to the stinger. The venom gland produces venom that pours
into the venom gland. A few weeks after metamorphosis, bees have the highest amount
of venom in the gland. While flying and collecting nectar, the level of venom gradually
decreases. Upon a sting, a bee injects 50 to 140 µg of venom. The bee stinger consists of two
parallel needles that have hooks for deeper penetration and attachment and they release
the venom through a channel. The stinger is located in the abdomen and is released upon
stinging. Due to its specific build, after a sting, bees are not able to remove it and the stinger
itself along with the venom gland remains in the skin of a vertebrate. The muscles that
hold the structure break and the bee dies [48–54].

In mammals, BV causes toxic effects throughout the whole body, especially on the
cardiovascular and nervous systems. Because of its diverse composition, the venom has
various effects on multiple organs. In its effect, BV is very similar to snake venom, but the
amount of venom that is released during a bee sting is much lower compared to a snake
bite. The venom itself causes the degradation of blood cells, reduces the ability of blood
clotting, and increases the permeability of blood vessels as evidenced by swelling and
bleeding in internal organs. In humans, BV causes an inflammatory reaction manifested
by swelling, redness, and pain at the injection site. The most dangerous are stings in the
mouth, tongue, or eyeball. A large amount of BV can also be deadly in certain cases and
death can occur due to the bronchial spasm that arises due to the paralysis of the brain
center responsible for breathing. BV in the body causes an immune system reaction which,
in hypersensitive individuals, causes allergic reactions that can be very dangerous and can
also induce death [55–62].

For scientific purposes, BV is collected with a special device made of glass panels and
wires emitting a low-voltage current from 18 to 22 V. This device is placed at the entrance
to the bee hive. Under the influence of an electric field, irritated bees secrete their venom
directly to the slide from which venom is scraped after drying. BV is a thick liquid with a
characteristic odor resembling honey and a bitter sour taste. Lyophilized BV that is dried
without the liquid phase is a volatile, light gray to grayish-yellow powder (Figure 1B).
As such, BV is kept in airtight containers at −20 ◦C according to the manufacturer’s
instructions [63–66].

3. The Composition of Bee Venom

The main component of BV is water which makes up about 88% of the venom itself.
Other dry parts of BV comprise the peptides melittin (MEL), apamin, secapin, procamine
A and B, adolapin, tertiapin, and mast cell degranulating (MCD) peptide. The dominant
enzymes in BV are phospholipase A2 (PLA2) and at a lower rate phospholipase B (PLB),
hyaluronidase, acid phosphomonoesterases, lysophospholipase, and α-glucosidase. BV is
also composed of several physiologically active amines and neurotransmitters (histamine,
dopamine, and noradrenalin), glucose and fructose, phospholipids, amino acids, and higher
amounts of mineral substances (Figure 2 and Table 1). Nearly all of these components which
are contained in BV have effects on many cell systems to some extent. The three most abun-
dant peptide components of BV are MEL, apamin, and MCD peptide [12,15,21,49,67–71]. It
has to be pointed out that the composition of bee venom is subject to various factors such
as the region and time of year when the venom is collected [47,72].
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Figure 2. Composition of dry bee venom.

Table 1. Composition of dry bee venom (BV) expressed as type of molecule, components, and weight per-
centages.

Class of Molecules Components % of Dry BV

Enzymes Phospolipase A2 10–12
Hyaluronidase 1–3
Acid phosphomonoesterase 1
Lysophopholipase 1
α-glucosidase 0.6

Proteins and peptides Melittin 40–50
Apamin 1–3
Mast cell degranulating peptide 1–2
Secapin 0.5–2
Procamine 1–2
Adolapin 1.0
Protease inhibitor 0.8
Tertiapin 0.1
Other small peptides
(<5 amino acids) 13–15

Physiologically active amines Histamine 0.5–2.0
Dopamine 0.2–1.0
Noradrenalin 0.1–0.7

Amino acids Aminobutyric acid 0.5
α-amino acids 1

Sugars Glucose and fructose 2
Phospholipids 5
Volatile compounds 4–8

3.1. Melittin

MEL is a major component and toxin of BV comprising about 50% of the dry venom
based on literature data. MEL is a basic peptide consisting of the 26 known amino acid
sequences with a molecular weight of 2847.5 Da (Figure 3). The peptide amino acid
sequence is Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-Ile-Ser-
Trp-Ile-Lys-Arg-Lys-Arg-Gln-Gln [73–75]. MEL is an amphoteric molecule because of the
specific arrangement of amino acids in its chain. At the N-terminus (positions 1 to 20), there
are non-polar, hydrophobic, and neutral amino acids, whereas at the C-terminus (positions
21 to 26) there are hydrophilic and basic amino acids. This amino acid arrangement gives
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MEL amphipathic properties. MEL is regarded as a natural detergent with high surface
and membrane tension. Though it is soluble as a tetramer or monomer, MEL can easily
incorporate in the membrane and form ion pores that lead to disorder in the phospholipid
bilayer structure. MEL tetramers cause the depolarization of nerve endings and trigger
pain [76–78]. MEL may also enhance the activity of PLA2 and thus also affect cells [79,80].
Each MEL chain has two α-helical segments forming a bent rod. MEL occurs as a tetramer
at a concentration present in the venom gland and as a monomer at a minimal concentration
necessary for cell lysis [73–75,81]. These structural features may have a crucial role in its
cytotoxic properties.
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So far, data suggest that MEL is toxic to hematopoietic cells including lymphocytes,
erythrocytes, and thymocytes, as well as to intestinal cells [15,82–86]. Furthermore, MEL
may impact several metabolic functions of cells by disturbing the plasma membrane and
causing changes in the enzymatic system, whereas its lytic activity is mainly related to the
possibility of integrating into the cell membrane phospholipid bilayer [87,88].

3.2. Apamin

Apamin as the BV neurotoxin is a rather small basic peptide consisting of 18 amino
acids with two disulfide bridges, which makes the structure extremely solid with a molecular
weight of 2027.3 Da (Figure 4). The apamin amino acid sequence is Cys-Tyr-Cys-Lys-Ala-Pro-
Glu-Thr-Ala-Leu-Cys-Ala-Arg-Arg-Cys-Gln-Gln-His [89,90]. The peptide causes neurotoxic
effects in mammals’ spinal cord, which leads to muscle spasms. Moreover, apamin owns a
selective inhibitory action on calcium-dependent potassium channels [91–93].

https://pubchem.ncbi.nlm.nih.gov/compound/Melitten
https://pubchem.ncbi.nlm.nih.gov/compound/Melitten


Toxins 2024, 16, 117 6 of 20Toxins 2024, 16, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 4. Structure of apamin (Cys-Tyr-Cys-Lys-Ala-Pro-Glu-Thr-Ala-Leu-Cys-Ala-Arg-Arg-Cys-
Gln-Gln-His). National Center for Biotechnology Information. PubChem Compound Summary for 
CID 44134548, Apamine. https://pubchem.ncbi.nlm.nih.gov/compound/Apamine (Accessed on 15 
January 2024). 

3.3. Mast Cell Degranulating (MCD) Peptide 
The MCD peptide is a basic peptide consisting of 22 amino acids with two disulfide 

bridges and a molecular weight of 2587.2 Da (Figure 5). The MCD peptide amino acid 
sequence is Ile-Lys-Cys-Asn-Cys-Lys-Arg-His-Val-Ile-Lys-Pro-His-Ile-Cys-Arg-Lys-Ile-
Cys-Gly-Lys-Asn [94,95]. The MCD peptide causes mast cell degranulation and histamine 
release at low concentrations leading to inhibition of potassium channels. Moreover, this 
peptide is responsible for the swelling and pain after a sting as well as for the allergic 
reaction [94,96]. 

 
Figure 5. Structure of mast cell degranulating (MCD) peptide (Ile-Lys-Cys-Asn-Cys-Lys-Arg-His-
Val-Ile-Lys-Pro-His-Ile-Cys-Arg-Lys-Ile-Cys-Gly-Lys-Asn). National Center for Biotechnology In-
formation. PubChem Compound Summary for CID 16132290, Mast cell degranulating peptide. 
https://pubchem.ncbi.nlm.nih.gov/compound/Mast-cell-degranulating-peptide (Accessed on 15 
January 2024). 

3.4. Other Peptides of Bee Venom 
The other peptides found in BV are contained only in a small percentage and their 

functions are relatively unknown [49,97]. Adolapin accounts for about 1% of the total BV 
and is noted for its anti-inflammatory and analgesic effects [98,99]. Secapin accounts for 

Figure 4. Structure of apamin (Cys-Tyr-Cys-Lys-Ala-Pro-Glu-Thr-Ala-Leu-Cys-Ala-Arg-Arg-Cys-
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3.3. Mast Cell Degranulating (MCD) Peptide

The MCD peptide is a basic peptide consisting of 22 amino acids with two disulfide
bridges and a molecular weight of 2587.2 Da (Figure 5). The MCD peptide amino acid
sequence is Ile-Lys-Cys-Asn-Cys-Lys-Arg-His-Val-Ile-Lys-Pro-His-Ile-Cys-Arg-Lys-Ile-Cys-
Gly-Lys-Asn [94,95]. The MCD peptide causes mast cell degranulation and histamine
release at low concentrations leading to inhibition of potassium channels. Moreover, this
peptide is responsible for the swelling and pain after a sting as well as for the allergic
reaction [94,96].
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Figure 5. Structure of mast cell degranulating (MCD) peptide (Ile-Lys-Cys-Asn-Cys-Lys-Arg-His-
Val-Ile-Lys-Pro-His-Ile-Cys-Arg-Lys-Ile-Cys-Gly-Lys-Asn). National Center for Biotechnology In-
formation. PubChem Compound Summary for CID 16132290, Mast cell degranulating peptide.
https://pubchem.ncbi.nlm.nih.gov/compound/Mast-cell-degranulating-peptide (Accessed on 15
January 2024).

3.4. Other Peptides of Bee Venom

The other peptides found in BV are contained only in a small percentage and their
functions are relatively unknown [49,97]. Adolapin accounts for about 1% of the total BV
and is noted for its anti-inflammatory and analgesic effects [98,99]. Secapin accounts for

https://pubchem.ncbi.nlm.nih.gov/compound/Apamine
https://pubchem.ncbi.nlm.nih.gov/compound/Mast-cell-degranulating-peptide
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about 0.5% of the total BV and consists of 21 amino acids with a high proline composition
and one disulfide bridge [69,97]. Tertiapin accounts for about 0.1% of the total BV and also
consists of 21 amino acids with one disulfide bridge [97,100].

3.5. Phospholipase A2

PLA2 is the most important enzyme in BV, which constitutes about 10% of the dry
venom itself. This enzyme catalyzes the hydrolysis of the sn-2 fatty acyl-ester bond of
membrane glycero-3-phospholipids, resulting in varied biological effects. Hydrolysis of
these compounds generates lysophospholipids. PLA2, as well as its hydrolysis products,
also acts on the biological membranes. This enzyme in combination with MEL causes
lysis of the cell membrane. Unsaturated fatty acids, the products of the hydrolysis of this
enzyme, are precursors for the synthesis of inflammatory mediators (leukotrienes and
prostaglandins). Also, this enzyme is the most important allergen of BV [101–105].

3.6. Other Enzymes of Bee Venom

In a small percentage, BV also contains PLB, which catalyzes the hydrolysis of phos-
phoglycerides [67,106]. The enzyme hyaluronidase breaks down hyaluronic acid in tissues
and creates openings for venom entry [49,70,107].

4. The Therapeutic Properties of Bee Venom

The origins of apitherapy date back to 6000 years ago in ancient Egyptian medicine.
Moreover, ancient Greeks and Romans also used several bee products for medicinal pur-
poses. The first written records on the use of BV as a therapeutic agent were found in
ancient writings of Hippocrates, Aristotle, Pliny, and Galen. In the 19th century in Russian
and Austrian medical journals, one could find descriptions of painful joint, rheumatism,
neuralgia, and heart pain treatments using bee stings [45,46,108–110]. In folk medicine
and especially in Oriental medicine, BV is used as a rheumatic and pain killer, as well
as for lowering blood pressure and cholesterol levels. Furthermore, BV has been used
against infectious diseases in the treatment of certain inflammations, and for general im-
munological resilience. The oldest, and the only possible, method of treatment with BV in
folk medicine was a direct bee sting in the desired body area. Besides a direct bee sting,
in Oriental medicine, acupuncture using BV was also used and was called apipuncture.
After the development of processes that enable isolation of BV, the procedure was car-
ried out by subcutaneously injecting venom into the affected area or into acupuncture
points [12,109–111].

Today, a large number of scientific papers describe numerous applications of BV for
therapeutic purposes, especially in anticancer treatment, in which its various components
show a wide range of different beneficial activities.

5. Anticancer Effects of Bee Venom and Its Components
5.1. Anticancer Effects of Bee Venom

Today, large numbers of studies are being conducted to explore the antitumor action
of BV towards different types of cancers and the underlying mechanisms. The anticancer
effect is mainly accredited to a basic polypeptide, MEL, that makes up about 50% of the
dry BV. Havas [112] was one of the first who recorded the impact of BV on cancer cells.
Afterward, Mufson and colleagues [113] reported that MEL can pass through a phospho-
lipid bilayer, and thus display its ability. The relation between MEL and cell membranes
caused impairment of the phospholipid’s acyl groups, higher sensitivity to phospholipid
hydrolysis by phospholipase, and increased synthesis of prostaglandins from arachidonic
acid released from phospholipids. Furthermore, McDonald et al. [114] examined BV’s
anticancer property in a mortality study which involved 580 beekeepers. Beekeepers were
identified through the obituaries published in three different US beekeeping industry jour-
nals between 1949 and 1978. Based on the obituaries, they established the cause of death
of the beekeepers and made a comparison with the general population. Results showed a
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slightly lower incidence of death from cancer in beekeepers professionally exposed to BV
during their working life compared to the rest of the population and a significantly lower
death rate from lung cancer, while the mortality from other diseases was equal to the rest
of the general population. The obtained results were among the first to suggest the possible
anticancer potential of BV. After that, numerous studies showed anticancer properties of
BV and its major component MEL [3,12,15–17,21,27,47,115–117].

5.2. Anticancer Effect of Melittin

Hait et al. [118] were the first to demonstrate an inhibiting potential of MEL in vitro.
They showed that MEL, as an inhibitor of calmodulin, inhibits the growth and clonogenic
capacity of human leukemia cells. Lee and Hait [119] have also observed an inhibitory
impact of MEL on astrocytoma cell growth. Lazo et al. [120] noted a comparable mechanism
of action of MEL as an inhibitor of calmodulin in leukemia cells. They also noted that MEL
enhances bleomycin toxicity in human granulocyte macrophages and erythroid stem cell
colonies [121]. Hait and Lee [122] noted that the cytotoxicity of MEL is proportional to the
antagonistic effect of calmodulin. The aforementioned studies support the pharmacological
role of calmodulin as a potential intracellular target of MEL antiproliferative activity.

Additionally, Killion and Dunn [123] showed that leukemia cells are more sensitive to
MEL action compared to normal mouse spleen cells and bone marrow cells, reasoning that
bone marrow cells have several binding sites on the membrane for carbohydrates, and these
places disappear in the adult spleen cells, while they are almost absent after neoplastic
changes that could make cancer cells more sensitive to the peptide. Zhu et al. [124] have
reported that MEL does not prevent the growth of normal cells at a concentration that
prevents the proliferation of cancer cells such as lung cancer cells. The observed cell
response differences indicated an unalike activation of signaling pathways between normal
and cancer cells. MEL has proven particularly effective in cultured cells that express high
levels of the ras oncogene [125,126]. MEL also enhances the PLA2 activation in the ras
oncogene-transformed cells resulting in its selective destruction. The results suggest that
the enhanced activation of PLA2 by MEL could be the target of MEL’s cytotoxicity against
cancer cells [12].

5.3. Anticancer Effects of Phospholipase A2

MEL causes increased activation of PLA2 activity and calcium intake in ras-transformed
cells, which could be the basis for the antitumor activity of this compound [126]. Following
these findings, a large number of studies made a connection between PLA2 activity and
MEL’s cytotoxic effect on a variety of tumor cells [127–130]. Activation of PLA2 could play
a role in the cytotoxicity of tumor cells through several different cell changes such as a
synergistic effect of PLA2 and phosphatidylinositol (3,4)-bisphosphate in the induction
of cell death [131]. Death caused by PLA2 and phosphatidylinositol (3,4)-bisphosphate is
associated with the disruption of cell membrane integrity, abolition of signal transduction,
and creation of a cytotoxic lyso-phosphatidylinositol (3,4)-bisphosphate. It was also found
that their combined effect results in the formation of a tumor lysate that enhances the
maturation of human monocyte-derived immunostimulatory dendritic cells. Such a tumor
lysate, which is a complex mixture of tumor antigens with potential activity, has everything
needed for a potential tumor vaccine [132].

5.4. The Mechanisms of Bee Venom and Melittin Anticancer Activity

One of the main issues in anticancer therapy is related to the concentration of the
substance used, as it may cause serious side effects. Therefore, drug intake should be
adequate and specific. A large number of insect lithic peptides, including those isolated
from BV, have an amphipathic structure that binds and incorporates into negatively charged
cell membranes. Compared to normal cells, which have a low membrane potential, the
membrane of cancer cells has a high membrane potential [12,15,133,134] and that is why
numerous lytic peptides selectively disrupt the membrane structure of cancer cells rather
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than the normal cell membrane. MEL should thus have a suitable role in anticancer
therapy [12]. Gawronska et al. [135] have thus found that MEL is toxic to ovarian cancer
cells and that the toxicity is dose-dependent.

Bee venom-induced apoptosis has been observed both in vitro and in vivo. Liu
et al. [136] observed that BV inhibits the proliferation of melanoma cancer cells both
in vitro and in vivo. The apoptosis observed in those cells was regarded as one of the pos-
sible mechanisms of action by which BV inhibits proliferation and induces differentiation
of those same cells in vitro. Apoptosis was also observed in lung cancer cells by inhibition
of cyclooxygenase 2 (COX-2) [137] and in osteosarcoma cells by increased Fas expression
after BV treatment [138]. Holle et al. [134] observed that the MEL avidin conjugate has
strong cytolytic activity in cells with a high metalloproteinase activity, such as prostate
and ovary cancer cells. In contrast, the same activity was much lower in normal cells with
limited metalloproteinase activity in vitro. In vivo, a significant reduction in tumor size
was observed after treatment with the MEL avidin conjugate compared to untreated tumors.
These studies also suggest the possible application of MEL avidin conjugate for therapeutic
purposes. Moon et al. [133] suggested a molecular mechanism by which BV causes apopto-
sis in leukemia. Apoptosis was induced by reduced regulation of ERK and Akt signaling
pathway. Furthermore, apoptosis induced by BV was associated with the downregula-
tion of Bcl-2, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase (PARP).
Moreover, induction of apoptosis was accompanied by a reduced regulation of inhibitory
apoptosis protein (IAP proteins). BV also activated p38, MAPK, and JNK and decreased
regulation of ERK and Akt [12].

These results indicate that the induction of apoptosis might have a role in the anticancer
activity of BV and MEL, although the mechanisms behind this induction have still not
been fully elucidated. Moreover, the apoptosis induction in cancer cells is also shown
throughout gene therapy with MEL [139]. As the possibility of using the peptides from BV
in anticancer therapy has been attracting increasing attention in recent years, Hu et al. [140]
also found that these peptides could successfully kill liver cancer cells both in vitro and
in vivo. A major mechanism of cancer growth inhibition by these peptides is again cell
death induced by apoptosis. Oršolić et al. [141] have found that intravenous application of
BV significantly reduces the number of lung metastases in mice. However, subcutaneous
BV intake failed to show such a good effect on metastases, indicating route dependence as
well as the proximity effects of BV when used for anticancer purposes.

Previous studies indicated that BV and MEL can induce strong toxic effects in various
cancer cells such as lung, liver, kidney, breast, prostate, bladder, and leukemic cells, with
a less pronounced effect in normal cells [12,15,16]. The proposed mechanisms of action
are mainly related to the activation of PLA2, caspase, and matrix metalloproteinases that
destroy cancer cells [133,134]. Conjugation of MEL with hormone receptors and MEL gene
therapy could be useful in the future treatment of breast and prostate cancer [139,142–144].
Accordingly, MEL as an amphipathic protein may have a desirable role in therapeutic
purposes. MEL is particularly active against cultured cells that express high levels of the
ras oncogene [125,126]. Additionally, MEL enhances PLA2 activity in the ras oncogene-
transformed cells, which results in their selective destruction, suggesting that such hyper-
activation of PLA2 by MEL could be one of the major pathways of MEL’s cytotoxic activity
against cancer cells [12].

In the past few decades, numerous studies showed quite potent anticancer effects
of BV and MEL towards various cancer cells such as hepatocellular cells, prostate cells,
lung cells, bladder cells, ovarian cells, mammary cells, and melanocyte cells, as well as in
leukemia through different mechanisms of action [12,16,21,145].

The numerous cellular effects of BV and MEL summarized above need explanation on
a molecular level, and the main issue here has to do with the trigger of the apoptotic cascade.
Apoptosis could be either a consequence of the plasmatic membrane fenestration or the
result of the direct interaction of BV components with pro-apoptotic and anti-apoptotic
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factors. Interaction of BV peptides and enzymes with the plasma membrane is a crucial
step in the whole process (Figure 6).
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in apoptosis and impairment of signaling pathways.

Application of biophysical methods showed that MEL brought a small decrease in
local membrane fluidity in homogeneous lipid membranes, as the lipids appear to be
more closely packed in the proximity of the MEL pore. On the contrary, in heterogeneous
lipid membranes in cells, the local order of lipids is diminished by the peptide [146]. The
selective affinity of MEL to cancer cells is determined mostly by acidic phosphatidylserine
exposure to the outer layer of the cell membrane in cancer cells [147]. The binding of MEL
to the membranes causes the formation of non-bilayer lipid phases in the membranes [148].
According to data from computer modeling, after penetration, the lipid bilayer MEL can
adopt either a transmembrane or a U-shaped conformation. Several peptides of different
conformations aggregate to form a pore. In the pores, peptides are organized in a manner
such that polar residues face inward and hydrophobic residues face outward, which
stabilizes the pores and forms water channels [149]. Depending on the local concentration
of MEL, it can induce toroidal pores owing to the collective insertion of multiple MEL
peptides from the N-termini. The pore formation is initiated by a local increase in membrane
curvature in the vicinity of the peptide aggregate. Pore formation can be also achieved by a
detergent-like mechanism when lipids are extracted or bursting, causing rapid formation
of a large pore in a strongly curved membrane [150]. Membrane cholesterol impedes pore
formation by MEL [151]. Membrane deformities induced by MEL enhance the activity of
PLA2, and the synergistic action of the two BV components enhances the lytic effect of the
venom [152].

Besides membrane lipids, MEL can directly interact with plasma membrane proteins,
Na/K ATPase, for example. Binding causes inhibition of the enzyme [153]. MEL stimulates
TRPM2 Ca2+ channels in glioblastoma cells, decreasing their resistance to chemother-
apy [154]. BV and MEL suppress the activation of EGFR and HER2 in triple-negative and
HER2-enriched breast cancer cells by interfering with the phosphorylation of these recep-
tors in the plasma membrane [155]. Reports about the suppression of the Wnt/β-catenin
pathway by MEL suggest the destruction of the Wnt receptors by the peptide [156].
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What happens after the formation of the pore? Sure, it enables an influx of free rad-
icals which can damage the cell; however, it seems that MEL action is better targeted. It
was shown that MEL directly affected the mitochondrial membrane of the human lung
adenocarcinoma cells A549. MEL caused changes in mitochondrial membrane potential,
triggered mitochondrial ROS burst, and activated the mitochondria-related apoptosis
pathway Bax/Bcl-2 [157]. Interaction with the mitochondrial membrane is localized to the
cardiolipin-rich sites, where non-bilayer structures are formed [158]. Indeed, this effect is al-
ready sufficient to induce the terminal stage of apoptosis—leakage of cytochrome C, formation
of apoptosomes, activation of executioner caspases, and fragmentation of chromatin.

MEL can also interact with proteins involved in different regulation pathways. MEL
and calmodulin complexes can even be crystallized [159] and used as a model system of
protein–protein complexes. Multiple binding modes exist. Whereas the helical structure
of MEL remains, the swapping of its salt bridges and partial unfolding of its C-terminal
segment can occur. Different sets of residues can anchor at the hydrophobic pockets of
calmodulin, which are considered the main recognition sites [160]. A block of calmodulin
can cause disruptions of the PI3K/Akt and other pathways caused by BV; numerous data
have been summarized in recent exhaustive reports [22,145].

Being a positively charged peptide, MEL can directly interact with DNA and RNA [161,
162]. Data about these interactions are few and might indicate direct damage of DNA by
MEL or interference in the transcription mechanism. Treatment with BV triggers the
intensive accumulation of the γ-H2AX histone, a marker of the DNA double-strand breaks,
in cancer cell nuclei, but the effect is not observed in normal fibroblasts [163]. MEL
binds centrin, an enzyme involved in nucleotide-excision repair. Binding is stabilized
by the hydrophobic triads—leucine–leucine–tryptophan [161]. BV causes changes in the
mitochondrial genome by modification of the methylation pattern and mitochondrial DNA
copy number [164].

6. Conclusions and Future Prospects

Since ancient times, it has been known that many natural compounds, herbs, and
spices have different beneficial properties that are used to treat a variety of diseases, in-
cluding cancer [32,34]. The term chemoprevention, established in the late 1970s, includes
prevention and treatment of tumors by chemical compounds usually derived from plants.
The research area of chemoprevention is studying such compounds to establish their poten-
tial effectiveness [165]. Using natural products as chemopreventive agents has increased
dramatically in recent years and large numbers of such compounds are tested on different
models. A large number of those chemicals and compounds, which provided promis-
ing results in experimental systems, are today already in pre-clinical studies, while for
a large number of chemicals, science is still seeking the exact mechanism of action. Fur-
thermore, numerous studies have shown that such chemicals used alone do not exhibit
the desired results, but that their combination with existing chemotherapeutic agents may
be promising, which is why this area has become particularly interesting to the scientific
community [33,166,167].

Insects and their products have been used since ancient times in folk medicine to
treat a variety of diseases. Numerous studies indicate that the use of those products,
in addition to conventional treatments, could provide great benefits in combating many
difficult but preventable diseases. Some promising therapies have already been experi-
mentally tested [35,168]. Products that are obtained from bees, like honey, were used for
the treatment of chronic and post-surgical wound and burn treatment, and in many cases
have proven to be as effective as standard medicinal preparations. Moreover, beeswax is
successfully used for the treatment of several dermatological disorders including psoriasis,
dermatitis, numerous fungal skin diseases, and for skin discolorations. Royal jelly is used
to treat postmenopausal symptoms, while propolis is used in the treatment of gastric
ulcers [16,35,169,170]. In addition, BV is traditionally used as an anti-rheumatic, as a pain
killer, for blood pressure treatment, and for lowering cholesterol levels. Furthermore, BV is
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used against infectious diseases, in the treatment of inflammations, and to improve general
immunity [50,171–173].

Besides the traditional applications of BV, modern science has begun to research the
possible anticancer potential of not only BV, but also of its components. BV toxicity is
dependent on constituents such as MEL and PLA2, whose activity is amplified by MEL, as
well as on several other small peptides such as apamin and MCD peptide [12,15,16,172,174].
Research on the medical applications of natural compounds derived from plants and
animals is common not only in Oriental but also in Western medicine. Many of these studies
deal with the mechanism of action of venoms and especially of BV on various cancer cells. A
large number of currently available studies suggest that this toxin could have applications in
the treatment of various cancers, but the exact mechanism of action of this anticancer effect
has still not been fully understood. Some of the mechanisms of BV and MEL are related to
the activation of PLA2, matrix metalloproteinases, and caspases that can destroy cancer
cells [133,134]. Conjugation of MEL with hormone receptors and gene therapy with MEL
could be used in the further development of cancer treatment [139,142–144]. Ling et al. [175]
also noted an inhibitory effect towards carcinoma in vitro and in vivo of the recombinant
virus carrying the MEL gene which could also be one way of combating cancers.

MEL is an especially interesting candidate in cancer therapy due to its lytic activ-
ity [176–178]. But apart from the toxic action of BV and MEL on cancer cells, its toxic effect
on normal cells is also something that should be kept in mind. Studies have shown that
BV and MEL display cytotoxic effects on cancer cells, but their cytotoxic activity towards
normal non-cancerous cells is also expressed which makes them insufficiently suitable
candidates for the development of new chemotherapeutic drugs [3,82,179–185]. What
might be helpful in this case is finding a suitable carrier to transport MEL to the desired
location. Incorporation of MEL in nanoparticles that possess the ability to carry a note-
worthy amount of MEL to the cells of choice would be a useful way to suppress tumors
and reduce melittin toxicity [186–188]. Additionally, there is a new genetically engineered
vesicular antibody–melittin drug delivery platform that could be used for targeted cancer
combination therapy [189]. Another option would be combination therapy that uses some
of the existing cytostatic or other drugs of choice in combination with BV and/or MEL,
where the additive/synergistic effect of the two agents may provide desirable results in the
suppression of tumors, but could also lead to a reduction in the concentration of the existing
cytostatic drug in the course of therapy, which could subsequently reduce undesirable
effects caused by chemotherapy in many patients [190–194].

Up until now, research has shown a quite potent anticancer potential of both crude bee
venom and MEL by inducing apoptosis and inhibiting the cell cycle without significantly
affecting physiological cells. Moreover, increasing evidence from animal studies indicates
the safety of venom doses effective in in vitro studies [47]. Studies done mainly on mice
and rats using both whole BV and MEL indicated inhibition of tumors and metastasis
growth, suppression of tumor proliferation, inhibition of angiogenesis, reduction of tumor
size, and induction of apoptosis [195–200]. To the best of our knowledge, currently, there
have been no clinical trials on humans that could confirm the clinical effectiveness of bee
venom and evaluate the safety of its administration concerning cancer treatment, although
there have been several clinical trials either completed or recruiting for other disorders
which are registered at https://clinicaltrials.gov/ (Accessed on 5 February 2024).

As for now, the possibilities of clinical applications of BV as a sole drug are still distant,
but the ongoing research on this topic could bring us closer to the possibility of using
it in the future. Therefore, further research should focus on the cellular and molecular
mechanisms of action of BV and its constituents on different cell types to determine their
beneficial effects that could potentially be used in future anticancer therapy. However,
before its possible clinical use, the route of injection, molecular target, mechanism of action,
exact dosage, and possible side effects that they might have on normal cells and tissues,
as well as other fundamental parameters, should be further investigated to avoid any

https://clinicaltrials.gov/
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possible adverse event. Making BV applicable requires extensive pre-clinical trials, with
some applications also demanding clinical trials.
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