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Abstract: Probiotics and their bacteriocins have increasingly attracted interest for their use as safe
food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus
MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese
with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to
control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged
shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial,
texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus
(CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous,
while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g),
while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected
the panelists’ preference for CPB, which gained higher scores than the control (CS). Fortification
with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from
6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to
3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB
showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased
(69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave
the way for more suggested food applications of safe food production by fortification with both Lb.
paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.

Keywords: Lactobacillus paracasei MG847589; bacteriocin; biopreservation; anti-mycotoxigenic; soft
white cheese; microstructure; shelf life; safe food production

Key Contribution: Cheese fortification with Lb. paracasei MG847589 or its bacteriocin changes its
porous microstructure. This fortification showed inhibition against harmful bacteria and toxigenic
fungi, indicating their functionality in preservation.
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1. Introduction

Food consumption is intended to deliver required nutrients, while functional foods
provide additional properties that contribute positively to health, especially in preventing
various diseases and disorders [1]. Increasing demands for natural and chemical-free prod-
ucts have led food research to search for an alternative technique for food biopreservation
with novel strategies [2,3], and extending shelf life remains challenging [4]. The genus Lacto-
bacillus is essential to modern food technologies for its potential to replace antibiotic growth
promoters [5]. Various applications have recently been used to produce dairy products that
resist mycotoxicological contamination and can reduce dairy product contamination [3,6,7].
The antibacterial efficacy of Lactobacillus and its bacteriocin (ribosomal peptides or proteins
synthesized by bacteria) is a promising alternative to natural preservatives that prevent
or reduce the growth of foodborne pathogen S. aureus [8–10]. Furthermore, Lactobacillus
bacteria suppressed the conidial germination and mycelial growth of Aspergillus parasiticus
and Penicillium chrysogenum. There are opportunities for future research to prevent fungal
growth and eliminate mycotoxins from food or their transformation into less dangerous
compounds using the strains of lactic acid bacteria [11,12].

Natural contaminants such as mycotoxins, are a significant food safety concern, consid-
ered the main hazard in food products, particularly aflatoxins (AFB1 and AFM1) classified
in Group 1 (human carcinogen) by the International Agency for Research on Cancer [13].
Several applications were recorded by efficiently reducing the aflatoxin contamination us-
ing antagonism impact [14]. Otherwise, the application of natural extracts rich in bioactive
molecules can reduce these types of hazards [15,16]. In addition to antifungal poten-
tials, the Lactobacillus bacterial strain showed many anti-mycotoxigenic possibilities to be
widely used in food and feed commodities to either inhibit the production of mycotoxins
or reduce the quantity of already produced mycotoxins through physical and chemical
binding involving the use of acidification and absorbents with a multi-mycotoxin binding
capacity [17]. White cheese is the dominating category and popular choice, with approxi-
mately 32% of the cheese market in Egypt [18]; therefore, it can be considered the perfect
cheese product for producing probiotic cheese as a delivery system for viable probiotic
microorganisms.

Additionally, the consumption of probiotic cheese has been found to attenuate exercise-
induced immune suppression, improve symptoms of constipation, and improve body mass
index and blood pressure indices [19]. The shelf life of white cheese was reportedly found
to be between days 14 and 28 as white cheese generally ages slowly, while the microbiota
agents can potentially prolong cheese shelf life [20]. However, some investigations focused
on the metabolomic benefits of other milk sources [21].

Nevertheless, cheese manufacturing is carried out through several steps, including
ripening, storage, and handling, and several issues could occur, such as microbial contami-
nation. A novel strain of Lacticaseibacillus MG847589 (Lb. paracasei MG847589), isolated in
previous work from local dairy products, has a bioactive metabolite (bacteriocin) that has a
potential application in cheese production. This study aimed to produce soft white cheese
fortified with this strain (Lb. paracasei MG847589), its bacteriocin, and their combination to
evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life
and safe food applications. Also, this study aimed to evaluate this strain’s functionality
to improve cheese products’ safety and preservation qualities, such as reducing contam-
ination levels with fungi that produce mycotoxins. The effects of these fortifications on
physiochemical, microbial, texture, microstructure, and sensory properties were studied.
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2. Results
2.1. Physicochemical Characteristics of Functional White Cheese

Changes in the mean values of moisture, protein, fat, and fiber in dry matter (DM)
are presented in (Table 1). All parameters ranged in levels usually observed in soft white
cheeses [22,23]. All the cheese treatments did not affect the moisture, total protein, fiber,
and fat content. These results agree with previous studies in which various adjunct cultures
were used in white cheeses [24,25].

Table 1. Physicochemical analyses of functional soft white cheese.

Parameters CS CP CB CPB

Chemical composition
Moisture (%) 64.16 ± 1.20 a 62.50 ± 0.50 a 64.87 ± 2.07 a 62.55 ± 1.42 a

Protein (%) 8.41 ± 0.31 a 8.51 ± 0.07 a 8.40 ± 0.25 a 8.39 ± 0.18 a

Fat (%) 6.65 ± 0.26 a 6.46 ± 0.35 a 6.31 ± 0.46 a 6.62 ± 0.45 a

Fiber (%) 0.50 ± 0.02 a 0.55 ± 0.05 a 0.54 ± 0.06 a 0.53 ± 0.03 a

pH 6.21 ± 0.11 a 6.01 ± 0.35 a 6.20 ± 0.22 a 5.95 ± 0.21 a

Acidity
(g lactic acid/g) 0.53 ± 0.01 c 0.61 ± 0.02 ab 0.58 ± 0.01 b 0.65 ± 0.02 a

Color analysis
L* 90.20 ± 1.33 a 90.83 ± 1.16 a,b 92.48 ± 0.74 b 91.16 ± 1.76 a,b

a* −0.37 ± 0.07 a −0.42 ± 0.03 a −0.42 ± 0.02 a −0.41 ± 0.03 a

b* 6.46 ± 0.25 a 7.23 ± 1.26 a 6.60 ± 0.20 a 6.20 ± 0.60 a

The different letters in superscripts next to the mean values in the same rows within variables indicate significant
differences (p ≤ 0.05). Control cheese with commercial starter (CS); Cheese with probiotic lactic acid bacteria Lb.
paracasei MG847589 (CP); Cheese with bacteriocin (CB); Cheese with probiotics and its bacteriocin (CPB).

The pH and lactic acid were found at levels usually observed in soft white cheeses [26,27].
In general, soft white cheese production targets high acidification rates using starter cultures
that can differ among producers or areas of milk origin [28]. It was observed that Lb.
paracasei and bacteriocin did not significantly affect the chemical composition of the cheese
studied, except for the acidity values that were significantly higher in the presence of the
probiotic Lb. paracasei MG847589 treatments: CP and CPB. A similar observation was
reported by Allam et al. [5].

The sensory assessment of soft white cheese products is shown in Figure 1. All
sensory evaluation parameters were affected by and reflected panelists’ preference for CPB,
followed by CP and CB. These results are correlated with texture analyses and indicated
that increased hardness of the products fortified with probiotics or bacteriocin positively
affected their sensory properties. The enhanced microstructure of CPB pronounced in
(Figure 1) was reflected in texture scores. Sensory perception of innovative products is
crucial as it is one of the keys to the widespread flavorful and wholesome image that dairy
foods continue to enjoy with the consumer. Consequently, sensory measurement is often
the final step in many experiments or applications for quality or consistency evaluation [29].

Color analyses indicated that compared with control cheese, cheese with probiotics
(CP), bacteriocin (CB), and probiotics and bacteriocin (CPB) did not significantly affect
cheese lightness (L), yellowness (b), or redness (a). However, CP tended to be slightly
yellowish, as shown in (Figure 1), exhibiting soft white cheese products. Sensory properties
illustrated in Figure 2 showed that CPB color was preferable. Similar observations were
recorded for probiotic cheese applying two lactobacilli strains [30].
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Figure 1. Sensory assessment of prepared cheese. Control cheese (CS); Probiotic cheese with strain 
MG847589 (CP); Cheese with bacteriocin (CB); Cheese with probiotics and their bacteriocin (CPB). 
Data represented are mean of triplicates ± SD. 
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Figure 1. Sensory assessment of prepared cheese. Control cheese (CS); Probiotic cheese with strain
MG847589 (CP); Cheese with bacteriocin (CB); Cheese with probiotics and their bacteriocin (CPB).
Data represented are mean of triplicates ± SD.
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Figure 2. The morphology of manufactured cheese using several strategies. 1: Control cheese (CS);
2: Probiotic MG847589 cheese (CP); 3: Cheese with bacteriocin (CB); 4: Cheese with probiotics and
their bacteriocin (CPB).
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2.2. Microbiological Analysis of Cheese during Maturation and Storage

Microbiological analyses of the cheese samples were carried out during cold storage
for different microbial groups when fresh (1 day) and after 15, 30, and 45 days (Table 2).
Fortification with the probiotic strain, bacteriocin, or their mixture affected the Lactobacilli
counts significantly (p < 0.05) compared to the control samples. In all cheese samples,
coliforms, yeasts, and mold were not detected during storage except on the 30th and 45th
day of storage for control and the 45th day of storage for probiotic treatment. Adjunct
probiotic cultures were reported to have the ability to reduce coliforms during cheese
maturation faster than in cheeses produced with a single starter culture [31–33].

Table 2. Microbiological evaluation (CFU/mL) of cheese samples during ripening and storage.

Cheese Time (Days) Total Aerobic Counts Lactobacilli Cocci Coliforms Yeasts and Mold

CS 1 6.51 ± 0.14 ef 7.74 ± 0.47 abcde 7.64 ± 0.36 ab ND ND
15 6.44 ± 0.16 f 7.60 ± 0.21 bcde 7.65 ± 0.31 ab ND ND
30 7.00 ± 0.20 cdef 7.06 ± 0.24 ef 7.43 ± 0.36 abcd 2.36 ± 0.23 b 3.54 ± 0.39 b

45 8.07 ± 0.13 ab 6.40 ± 0.28 f 6.13 ± 0.09 d 3.31 ± 0.22 a 4.11 ± 0.16 a

CP 1 6.93 ± 0.54 cdef 8.17 ± 0.34 abc 7.60 ± 0.48 abc ND ND
15 7.26 ± 0.10 cde 8.00 ± 0.45 abcd 7.90 ± 0.51 a ND ND
30 7.67 ± 0.17 abc 7.83 ± 0.32 abcde 7.43 ± 0.49 abcd ND ND
45 8.40 ± 0.32 a 7.60 ± 0.49 bcde 6.53 ± 0.61 bcd 2.42 ± 0.18 b 2.15 ± 0.31 c

CB 1 6.53 ± 0.45 ef 8.20 ± 0.16 abc 7.50 ± 0.35 abc ND ND
15 7.13 ± 0.49 cdef 7.96 ± 0.33 abcd 7.50 ± 0.50 abc ND ND
30 7.55 ± 0.18 bcd 7.63 ± 0.81 bcde 7.46 ± 0.41 abc ND ND
45 8.10 ± 0.53 ab 7.26 ± 0.20 de 6.26 ± 0.55 cd ND ND

CPB 1 6.70 ± 0.45 ef 8.42 ± 0.23 ab 7.63 ± 0.57 ab ND ND
15 6.84 ± 0.28 def 8.50 ± 0.21 a 7.60 ± 0.94 abc ND ND
30 7.49 ± 0.23 bcd 8.27 ± 0.11 abc 7.23 ± 1.10 abcd ND ND
45 8.40 ± 0.32 a 7.46 ± 0.12 cde 6.43 ± 0.47 bcd ND ND

Data represented in means ± SD. ND represents the undetected data (n = 5; p ≤ 0.05). Microbial count was
recorded as colony forming unit per milliliter (CFU/mL). Means that the same column with different superscript
letters are significantly differences. CS: Control cheese; CP: Probiotic cheese MG847589; CB: Cheese manufactured
with bacteriocin; CPB: Cheese manufactured with probiotics and bacteriocin.

In Table 2, the counts of cocci did not significantly differ among all samples during
cheese storage. On the other hand, the addition of probiotics significantly increased the pop-
ulation of Lactobacilli (p < 0.05) along with providing a healthy character to the cheese sam-
ples since the Lactobacilli population was maintained at high levels (>10.6 log10 CFU/g) [34]
during 45 days of storage. The cheese with probiotics and bacteriocin (CPB) significantly
affected the Lactobacilli counts in cheese (8.42 to 7.46 log10 CFU/g) compared to the cheese
with probiotics (CP) (8.17 to 7.60 log10 CFU/g).

Lactobacilli counts most likely originated from starter and probiotic cultures but also
from milk non-starter cultures that survived after pasteurization [35]. The decreased
number of lactobacilli during ripening and storage may be due to low pH, high salt content,
lack of fermentative sugars, or possible bacteriocin production.

2.3. Texture Profile Analyses (TPA)

Texture profile analyses of functional soft white cheese are illustrated in Table 3.
Comparing the three treatments with control (CS), the results showed that the highest
hardness values were observed with CPB, followed by CP, CS, and then CB (3988.03, 3357.73,
2648.73, 2525.7 g, respectively) in cycle one. CP treatment showed higher adhesive force,
adhesiveness, and springiness (378.17 g, 378.17 mJ, and 6.71 mm, respectively). Applying
bacteriocin in CB significantly decreased the hardness of cycle 1 and ycle 2 (2525.73 g and
2016.03 g, respectively). The reduction in hardness in soft cheese with bacteriocin may be
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related to moisture content (64.87%), which acts as a plasticizer in the protein matrix. A
similar observation was reported by Zaky and Mahmoud [4].

Table 3. Texture evaluation for white cheese manufactured by various strategies.

Texture Parameter Unit CS CP CB CPB

Hardness cycle 1 g 2648.73 ± 2.30 c 3357.73 ± 6.80 b 2525.73 ± 4.04 d 3988.03 ± 6.00 a

Adhesive force g 156.02 ± 3.60 d 378.17 ± 3.54 a 200.02 ± 2.64 c 220.02 ± 2.00 b

Adhesiveness mJ 1.60 ± 0.26 a 4.53 ± 0.64 a 2.00 ± 0.34 a 3.53 ± 0.50 b

Hardness cycle 2 g 2689.03 ± 2.64 b 2833.03 ± 3.0 a 2016.03 ± 4.58 d 2555.33 ± 4.72 c

Hardness work cycle
2 mJ 66.50 ± 5.63 b 74.50 ± 3.12 a 56.16 ± 2.92 c 60.00 ± 4.35 bc

Springiness mm 6.44 ± 0.14 c 6.71 ± 0.18 ab 7.30 ± 0.20 a 6.91 ± 0.20 b

Springiness index - 0.92 ± 0.05 b 0.98 ± 0.03 ab 1.09 ± 0.10 a 1.09 ± 0.05 a

For the same raw data, means with different superscript letters are significantly different (p ≤ 0.05). CS: Control
cheese; CP: Probiotic cheese MG847589; CB: Cheese manufactured with bacteriocin; CPB: Cheese manufactured
with probiotics and bacteriocin.

2.4. Microstructure of Cheese Samples

Scanning electron micrographs of the cross-section in soft white cheese products
are presented in Figure 3. Compared to control soft white cheese (Figure 3A), cheese
with Lb. paracasei (CP) (Figure 3B) showed a porous structure that may be reflected in
texture analyses showing the highest adhesiveness (Table 3). Fewer pores were observed
in CB (Figure 3C), and the smooth structure reflected less hardness (Table 3). Cheese
with probiotics and bacteriocin (CPB) (Figure 3C) showed an intact structure, as low
moisture and high acidity might cause the highest hardness and adhesive force (Table 3).
Microstructure differences were reflected significantly in the panelist’s evaluation to prefer
CPB hard texture (Figure 1). These observations were noticed as well in the appearance of
soft white cheese products (Figure 2). Application of probiotics, bacteriocin, or their mixture
to soft cheese is recommended for the maintenance of sensory properties in addition to
microbiological safety [4].

Version February 7, 2024 submitted to Journal Not Specified 4 of 8

Figure 2. This is a wide figure.

Table 2. This is a wide table.

Title 1 Title 2 Title 3 Title 4

Entry 1 *
Data Data Data
Data Data Data
Data Data Data

Entry 2
Data Data Data
Data Data Data
Data Data Data

Entry 3
Data Data Data
Data Data Data
Data Data Data

Entry 4
Data Data Data
Data Data Data
Data Data Data

* Tables may have a footer.

Figure 3. Cross-section of cheese samples captured using the SEM. (A): Control cheese (CS); (B): A
probiotic MG847589 cheese (CP); (C): Cheese with bacteriocin (CB); (D): Cheese with probiotics and
their bacteriocin (CPB).
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2.5. Inhibitory Effects of Lb. paracasei MG847589 against Pathogenic Microorganisms

The inhibition effects caused by Lb. paracasei MG847589 against S. aureus are shown in
(Figure 4). The cheese fortification with Lb. paracasei MG847589 (CPS) showed an inhibition
effect against S. aureus, decreasing its colonies from 6.54 to 3.32 log10 CFU/g after 28 days of
storage (p > 0.05); also, the cheese fortification with Lb. paracasei MG847589 and bacteriocin
(CPBS) showed an inhibition effect against S. aureus, from 6.52 to 2.10 log10 CFU/g after
28 days of storage (p > 0.05). L. casei subsp. paracasei was reported to exhibit inhibition
effects, at the rates of 7.87% and 23.63%, against S. aureus on the 14th and 21st day of
storage, respectively [36].
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2.6. Inhibitory Effect of Lb. paracasei MG847589 against Pathogenic Bacteria

The inhibition effects caused by Lb. paracasei MG847589 against S. aureus are shown in
(Figure 4). The cheese fortification with Lb. paracasei MG847589 (CPS) showed an inhibition
effect against S. aureus, decreasing its colonies from 6.54 to 3.32 log10 CFU/g after 28 days of
storage (p > 0.05); also, the cheese fortification with Lb. paracasei MG847589 and bacteriocin
(CPBS) showed an inhibition effect against S. aureus, from 6.52 to 2.10 log10 CFU/g after
28 days of storage (p > 0.05). L. casei subsp. paracasei was reported to exhibit inhibition
effects, at the rates of 7.87% and 23.63%, against S. aureus on the 14th and 21st day of
storage, respectively [36].

The presence of Lb. paracasei MG847589 in CPA and CPP treatments succeeded
in decreasing the A. parasiticus and P. chrysogenum counts from 5.18 to 3.33 and 5.20 to
3.55 log10 CFU/g, respectively, after 45 days of storage (p > 0.05), indicating that the probi-
otic culture had an inhibitory effect against these fungal pathogens (Figure 5). After 45 days
of storage, A. parasiticus and P. chrysogenum counts decreased from 5.06 to 3.03 and 5.11 to
2.86 log10 CFU/g in treatments CPBA and CPBP (Lb. paracasei MG847589 + bacteriocin),
respectively (Figure 5). The ability of Lb. paracasei to inhibit A. parasiticus ITEM11 was
reported by Shehata et al. [7]. The observed reduction in food pathogens in formulations
fortified with Lb. paracasei MG847589 or its bacteriocin, compared to the negative control
after 45 days of storage, can be relied on for the production of a series of antimicrobial
compounds such as lactic acid, organic acids, hydrogen peroxide, ethanol, and diacetyl,
which can inhibit pathogenic bacteria and fungi.
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Table 4. Inhibitory effects of Lactobacillus paracasei MG847589 and/or bacteriocin, on aflatoxins (AFB1 or AFM1). 

Cheese 
Treatments 

Aflatoxin Reducing in Concentration (ng/mL) and the Reduction Ratio (%) 
(2 h) (24 h) (48 h)  

Spiked cheese 
(AFB1) 

 ng/mL (%) ng/mL (%) ng/mL (%) 
CS 401.33 ± 0.47 a 0 400 ± 1.63 a 0 400.33 ± 0.94 a 0 
CP 212.66 ± 1.69 b 47.01 ± 0.59 a 193.33 ± 2.05 b 51.66 ± 0.75 a 148 ± 2.16 b 63.0 ± 0.54 a 
CB 195.66 ± 0.94 c 51.25 ± 0.42 b 182 ± 1.41 c 54.50 ± 0.48 b 135.33 ± 1.69 c 66.17 ± 0.21 b 

CPB 179.5 ± 0.5 d 55.27 ± 0.71 c 166 ± 0.1 d 58.5 ± 0.47 c 121.5 ± 2.5 d 69.63 ± 0.44 c 

Figure 5. Inhibition of A. parasiticus and P. chrysogenum in soft cheese products during 45 days of
storage at 4 ◦C. Inhibition rate expressed as mean ± SD (SD: standard deviation; n = 3; p ≤ 0.05).
(A) A. parasiticus: Control cheese with commercial starter (CSA); Cheese with probiotic Lb. paracasei
MG847589 (CPA); Cheese with bacteriocin (CBA), Cheese with probiotics and their bacteriocin
(CPBA). (B) P. chrysogenum: Control cheese with commercial starter (CSP); Cheese with probiotic
Lb. paracasei MG847589 (CPP); Cheese with bacteriocin (CBP), Cheese with probiotics and their
bacteriocin (CPBP).

Furthermore, this strain can produce bacteriocin with a molecular weight of 2611 Da
and peptides that show anti-Gram-positive and anti-Gram-negative bactericidal activity [7,37].
Consequently, probiotic strains that exhibit antimicrobial activity against spoilage or
pathogenic bacteria within the matrix in which they are incorporated represent an in-
terest for industrial application, as in addition to performing their probiotic effects, they
contribute to extended products’ shelf life [38,39].

2.7. Antimycotoxigenic Effect of L. paracasei MG847589

The impact of applied treatment in manufactured cheese was also evaluated for
the detoxification effect since AFM1 contaminated the raw materials or when the cheese
samples were exposed to cross-contaminated by AFB1, as shown in Tables 4 and 5. The
result exhibited that, the increment in incubation time for the exposed spiked toxin to
cheese treated by probiotic, its metabolite bacteriocin, or their mixture reflected increased
detoxification potency (Table 4). The degradation ratio in AFM1-contaminated samples
was recorded more efficiently than the reduction reported for the AFB1-spiked samples.
After 48 hrs of incubation of the toxin within probiotic, bacteriocin, or their mixture,
the detoxification ratio spanned between 63% and 69% for the AFB1 contamination, and
between 64% and 71% for the AFM1-spiked in the cheese samples.
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Table 4. Inhibitory effects of Lactobacillus paracasei MG847589 and/or bacteriocin, on aflatoxins (AFB1

or AFM1).

Cheese
Treatments

Aflatoxin Reducing in Concentration (ng/mL) and the Reduction Ratio (%)
(2 h) (24 h) (48 h)

Spiked cheese
(AFB1)

ng/mL (%) ng/mL (%) ng/mL (%)

CS 401.33 ± 0.47 a 0 400 ± 1.63 a 0 400.33 ± 0.94 a 0
CP 212.66 ± 1.69 b 47.01 ± 0.59 a 193.33 ± 2.05 b 51.66 ± 0.75 a 148 ± 2.16 b 63.0 ± 0.54 a

CB 195.66 ± 0.94 c 51.25 ± 0.42 b 182 ± 1.41 c 54.50 ± 0.48 b 135.33 ± 1.69 c 66.17 ± 0.21 b

CPB 179.5 ± 0.5 d 55.27 ± 0.71 c 166 ± 0.1 d 58.5 ± 0.47 c 121.5 ± 2.5 d 69.63 ± 0.44 c

Spiked cheese
(AFM1)

ng/mL (%) ng/mL (%) ng/mL (%)

CS 405 ± 1.41 a 0 404 ± 1.41 a 0 404.33 ± 2.86 a 0
CP 236.60 ± 1.69 b 41.58 ± 0.50 a 203.66 ± 2.35 b 49.59 ± 0.93 a 143 ± 1.41 b 64.6 ± 0.70 a

CB 209.33 ± 0.47 c 48.31 ± 1.28 b 192.66 ± 1.24 c 52.31 ± 0.19 b 133.33 ± 3.29 c 66.99 ± 0.31 b

CPB 179.66 ± 1.88 d 55.64 ± 0.63 c 160 ± 1.41 d 60.39 ± 0.25 c 115.66 ± 1.69 d 71.38 ± 0.75 c

Values of each column with the different superscript letter were significantly different (n = 3; p ≤ 0.05). CS: Control
cheese; CP: Probiotic cheese MG847589; CB: Cheese manufactured with bacteriocin; CPB: Cheese manufactured
with probiotics and bacteriocin.

Table 5. Treatments and inoculation levels of antimicrobial and anti-mycotoxigenic assays.

-ve Control Food Pathogens Mycotoxins

Lb. paracasei
MG847589 +S. aureus +A. parasiticus

ITEM 698
+P. chrysogenum

ATCC 11709 +Aflatoxin B1 +Aflatoxin M1

7 log10 CFU/g 6.5 log10 CFU/g 5 log10 CFU/g 5 log10 CFU/g 400 ng/mL 400 ng/mL
CS CSS CSA CSP CSB1 CSM1
CP CPS CPA CPP CPB1 CPM1
CB CBS CBA CBP CBB1 CBM1

CPB CPBS CPBA CPBP CPBB1 CPBM1

Every treatment was inoculated individually to Lb. paracasei MG847589 and/or its bacteriocin.

Previous studies referred to the better impact of bacteriocin as a probiotic metabolite
to access aflatoxin detoxification [9,37,40]. Moreover, it was reported that several probiotics
can reduce aflatoxin contamination through various mechanisms [41,42]. The results re-
flected the uniqueness of the applied strain to possess a detoxification potency, represented
by the so-close efficiency of the bacterial cells and their metabolite bacteriocin. These
results indicate the possibility of utilizing L. paracasei as a common starter in the predicted
contaminated raw materials, which may be used for fresh or semi-fresh products; this step
will provide an additive characteristic regarding the safety of the final dairy product.

Bacterial metabolites, particularly those generated by probiotic bacteria, can potentially
contribute to the decontamination of aflatoxins via numerous approaches. The results
exhibit variations in applying entire bacteria or metabolites in the targeted products [17,40].
Introducing bacterial cells into food items was crucial in influencing mycotoxicological
fungi’s development and inhibiting mycotoxins’ formation. Certain beneficial bacteria can
outcompete fungi that produce aflatoxin to acquire nutrients and occupy physical space.
Through the process of colonizing similar ecological niches, these bacteria can restrict
the development and propagation of toxin-producing fungi, resulting in a reduction in
aflatoxin contamination [43,44].

The abovementioned phenomenon is often referred to as competitive exclusion. The
second mechanism could be linked to the antagonism phenomena. Certain bacterial species
can synthesize compounds with antifungal characteristics, impeding fungi proliferation
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that creates aflatoxins [45]. The potential impact of these metabolites includes the disruption
of fungal cell membranes, interference with their metabolic activities, and the production
of enzymes that break down aflatoxins [46,47].

Several bacterial species have been shown to exhibit enzymes that can degrade afla-
toxins into molecules that are either less toxic or non-toxic [48]. The enzymatic activity
can mitigate the toxicity of food and feed items that have been contaminated. It is plausi-
ble that beneficial bacteria have enzyme pathways capable of altering aflatoxins into less
harmful variants or eliminating their toxicity [49]. These routes could be used to improve
the safety of food and feed products. Specific bacterial metabolites can potentially adsorb
aflatoxins, forming a binding interaction that hinders their absorption in vitro [12,41] or
in vivo inside the gastrointestinal tracts of animals or humans [33,47]. The study consis-
tently identifies certain strains of bacteria and their metabolites that can decrease aflatoxin
exposure successfully. Nevertheless, it is crucial to acknowledge that the effectiveness of
using bacterial metabolites for aflatoxin decontamination may differ depending on several
aspects, including the particular bacterial strains used, environmental circumstances, and
the extent of aflatoxin contamination.

3. Conclusions

Fortification with Lb. paracasei MG847589 increased acidity and microbial counts,
which may affect the porous microstructure, while bacteriocin enhanced the microstructure
to be intact. CPB showed a hard texture, while CB tended to be softer. Consequently, the
sensory assessment reflected the panelists’ preference for CPB, which gained higher scores
than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB)
showed inhibition effects against S. aureus, A. parasiticus, and P. chrysogenum,—as reflected
by their reduced counts—which indicates their preservative potentials. Additionally,
CPB showed significant anti-mycotoxigenic effects against aflatoxin B1 and M1. These
potentials can extend shelf life, guarantee food safety, and encourage recommendations for
fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives for
many food applications.

4. Materials and Methods
4.1. Materials and Microorganisms

Lactobacillus paracasei MG847589 [GenBank accession No. MG847589] was isolated
from traditional Egyptian Karish cheese [7]. The strain is currently preserved at −80 ◦C in
20% glycerol. Before inoculation, the strain was activated in de Man Rogosa and Sharpe
(MRS) broth (37 ◦C/24 h). The commercial rennet enzyme and commercial starter culture
Yo-Mix 495 were gifted by Dairy Pilot Plant, Alexandria University, Egypt. The milk protein
(MPC), milk powder (RCM), and butter were purchased from the local market. Bacteriocin
of the bacteria was extracted and purified as described before [7].

4.2. White Cheese Preparation

White cheese was manufactured using the technique suggested by Tamime et al. [50],
albeit with some modifications (Figure S1). Target total solids were 38%, 29% protein,
and 7% fat content in the standardized reconstituted milk. A laboratory homogenizer
was utilized for the MPC and RCM blinding in water (20965 g force/6 min). The resul-
tant was stood to age overnight (4 ◦C) to ensure that powders were evenly dispersed
before pasteurization.

The mixture was divided into three sections, each with a different type of cheese: a
control cheese with commercial starter (CS, 1.81 × 109 CFU/mL); a probiotic cheese (CP,
1.34 × 109 CFU/mL) of L. paracasei MG847589; and a bacteriocin-supplemented cheese
(CB, at 500 AU/mL). The fourth portion was a combination of probiotics and bacteriocin
(CPB). The commercial starter (Yo-Mix 495) containing S. thermophilus and L. delbrueckii was
re-activated in milk before being added to the mixture. The cheeses were then mixed and
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left undisturbed for two hours. Table 6 shows the ingredients for producing white cheese
(1 Kg).

Table 6. Components required for white cheese manufacturing.

Components Quantity

Skim Milk 145 (g)
Milk protein concentrate 145 (g)
Butter 70 (g)
Commercial stabilizer 2.5 (mL)
NaCl 15 (g)
CaCl2 2 (g)
Rennet (1%) 10 (mL)
H2O 620 (mL)

4.3. Physicochemical Analysis

The pH value of all the cheese samples produced was measured by immersing the
electrode of a digital pH meter (ADWA AD1030, Inc., Romania) directly into the cheese
samples. The titratable acidity (expressed as lactic acid per 100 g of cheese) was determined.
The moisture content was determined by drying 5-gram samples in an oven (70 ◦C/24 h),
while the fat and fiber contents were determined following AOAC protocol [50]. The total
nitrogen (TN) was determined following the Kjeldahl procedure [51] and was expressed as
crude protein on a dry weight basis.

A tristimulus colorimeter (Smart Color Pro, USA) was utilized to determine the
samples’ color characteristics. The color was measured using L, a, and b values, where L
values range from 0 (black) to 100 (white), where positive values indicate redness, negative
a values indicate greenness, positive b values indicate yellowness, and negative b values
indicate blueness. The color analysis was conducted in triplicate, and the means ± SD
were recorded.

4.4. Microbiological Profile Analysis of Cheese

Representative samples of cheese weighing 10 g were analyzed at various time in-
tervals (1st, 7th, 15th, 30th, and 45th days) throughout the storage period. The samples
were blended with 90 mL of sterile saline (0.9% w/v) solution. Microbiological tests for
total aerobic mesophilic bacteria, Lactobacilli count, S. thermophiles, yeasts, and molds were
performed according to the previous methodology [52,53]. All cell counts were expressed
as log10 CFU/g of cheese.

4.5. Texture Profile Analyses (TPA)

The texture profile analysis (TPA) was carried out using a texture analyzer (TA1000,
Lab Pro (FTC TMS-Pro), USA) following the method proposed before [54]. The TPA
parameters, including peak force of the first compression (hardness cycle 1) (g), peak force
of the second compression (hardness cycle 2) (g), adhesive forces, adhesiveness, resilience,
springiness, and springiness index, were determined from force–time curves [55]. Texture
profile analyses (TPA) were carried out in triplicates on day one [56].

4.6. Scanning Electron Microscopy and Sensory Evaluation

The cheese samples were prepared and fixed using glutaraldehyde solution (3%) as
described before [57]. Panelists (a group of 20 humans) conducted a sensory evaluation
of cheese, as Allam et al. [58] described. Sensory evaluation was conducted following
institutional committee approval. The samples’ color, odor, taste, texture, appearance, and
overall acceptability were evaluated using a scale of ten categories ranging from 1 (dislike)
to 9 (like). For the scanning electron microscopy (SEM) inspection, samples were first given
a sputter coating of gold ions using an Edwards model S 140A sputter coater to create a
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conducting medium. Sputtered materials were then scanned using a scanning electron
microscope (SEM) with a JEOL Model JSM-T20.

4.7. Antimicrobial Assessment against Food Pathogens

Approximately 100 g of cheese was divided into sterile plastic bottles (200 mL). Cheese
samples were divided into four treatments for each pathogen. Following previous work,
probiotic bacteria were inoculated (1 mL/100 g cheese) to provide a system containing
7 log10 CFU/g of probiotic strain [7,59,60]. For pathogens, 6.5 log10 CFU/g of S. aureus,
5 log10 CFU/g of A. parasiticus ITEM 698, and 5 log10 CFU/g of P. chrysogenum ATCC
11709 were inoculated individually. Pathogen treatment groups are illustrated in (Table 5).
Following inoculation, the electric mixer (Kenwood, UK) was used to shake all cheese
samples (5 min). Afterward, they were stored (at 6 ◦C/45 days), resulting in 48 samples
(3 pathogenic strains x 4 treatments x 4 storage time intervals). Viable cell counts were
performed on each sample at 0, 15, 30, and 45 days of refrigerated storage. For the viable
cell counts of fungi strains, potato dextrose agar (Sigma Aldrich, St. Louis, MO, USA)
was used for 48 h/25 ◦C. For S. aureus, mannitol-sodium chloride-phenol red agar (Merck,
Lowe, NJ, USA) was used for 24 h/37 ◦C. The results were expressed as means of log10
CFU/g cheese.

4.8. Anti-Mycotoxigenic Assessment against Aflatoxins (AFB1 and AFM1)

Certified vials of the AFB1 and AFM1 were utilized for spiked cheese (Sigma-Aldrich).
The standards were dissolved in phosphate buffer saline (PBS, 400 ng/mL) and spiked
in the targeted samples. The biopreservative activity of the MG847589 strain was esti-
mated using white cheese as a food model. Samples were randomly assigned to one of
four treatments, where different amounts of aflatoxins were applied (Table 5). The bacte-
rial effectiveness and bacteriocin in reducing aflatoxin content were investigated against
a control.

Quantitative determination of AFs was conducted using the Agilent 1100 HPLC sys-
tem. The mobile phase was methanol (1): acetonitrile (3): and water (6). The determination
was achieved using the previously mentioned conditions [61].

4.9. Statistical Analysis

The experiments were performed in triplicates and expressed in mean ± SD. The
ANOVA with a general linear model was used to test for significance, and p-values of less
than 0.05 were considered significant (using SPSS Ver.20).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxins16020093/s1, Figure S1:. Diagram shows the steps of
manufacturing functional soft white cheese MPC, Milk protein concentrate; RCM, Reconstituted
skimmed milk.
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