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Abstract: The handling of data on food contamination frequently represents a challenge because
these are often left-censored, being composed of both positive and non-detected values. The latter
observations are not quantified and provide only the information that they are below a laboratory-
specific threshold value. Besides deterministic approaches, which simplify the treatment through
the substitution of non-detected values with fixed threshold or null values, a growing interest has
been shown in the application of stochastic approaches to the treatment of unquantified values. In
this study, a multiple imputation procedure was applied in order to analyze contamination data
on deoxynivalenol, a mycotoxin that may be present in pasta and pasta substitute products. An
application of the proposed technique to censored deoxynivalenol occurrence data is presented. The
results were compared to those attained using deterministic techniques (substitution methods). In this
context, the stochastic approach seemed to provide a more accurate, unbiased and realistic solution
to the problem of left-censored occurrence data. The complete sample of values could then be used to
estimate the exposure of the general population to deoxynivalenol based on consumption data.

Keywords: left-censored data; limit of quantification; chemical contaminants; dietary exposure

Key Contribution: With the aim of minimizing the influence of left-censored data and reducing
the associated uncertainty in dietary exposure estimations, the proposed approach is considered
appropriate for the purpose of processing complex occurrence datasets of certain contaminants.

1. Introduction

In order to assess the dietary exposure of population groups to a contaminant that
can pose a risk for human health, information regarding contamination values for food
commodities and food consumption data need to be collected. When performing chemical
risk assessment for dietary exposure, food analyses provide positive contamination values
(VAL, values in µg/kg) and non-detected, left-censored values that, for certain classes of
contaminants, can be high in number [1,2]. With regard to the latter, the numerical value
is not known, and the only information available is that it is below a given threshold,
often representing a laboratory-specific feature. The parameters that describe non-detected
values are particularly important for exposure estimations, as these correspond to the
lower tail of occurrence data distribution. These parameters, which are indicative of the
threshold value, are the limit of detection (LOD), defined as the lowest concentration level
that can be determined to be different from zero [1–3], and the limit of quantification (LOQ),
defined as the minimum concentration or mass of an analyte that can be quantified with a
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given confidence and a given analytical procedure [3–5]. Non-detected values are a real
challenge for any statistical analysis involving occurrence data. Ignoring the undetected
values and analyzing only the quantified ones will inevitably result in extensively biased
and therefore unrepresentative estimates. In addition to the analytical thresholds of the
LOD or LOQ, the percentages of non-detected values in a sample also depend on the type
of contaminant and on the food category. Since a large portion of non-detected values may
lead to computational difficulties in calculating percentile or mean values [6,7], decision
tree recommendations are provided to guide the statistical treatment of datasets containing
various proportions of non-quantified results [7].

Currently, different statistical methods are available to interpret non-detected values
and model combinations of positive (VALs) and non-detected values. Traditionally, expo-
sure assessment is performed through a deterministic substitution method, which is widely
used in food risk assessment [8–10]. The substitution method is based on the replacement
of non-detected values with a value of zero, the LOQ, or the LOQ/2 to obtain and represent
the lower-bound (LB) and upper-bound (UP) or to approximate a medium-bound (MB)
occurrence scenario, respectively [6,7]. This substitution approach has the advantage of
being simple in its implementation. However, as any deterministic procedure for simple
imputation, it also has some disadvantages. For instance, it may produce biased estimates
of summary statistics (even when the maximum extent of such biases is assessed and does
not exceed the difference between the upper and the lower bounds) [11]. Additionally, it
does not consider the intrinsic variability of non-detected values that, through the process
of imputation, are treated as observed, thus deflating the variability of any estimator based
on such completed data.

Such drawbacks have been an object of study, and more recently the international
interest has moved towards the application of stochastic approaches to impute (multiple)
non-detected values in food contamination data. The literature includes several efforts to
deal with the issue of non-detected values, especially via maximum likelihood (ML) esti-
mation applied to parametric models with censored data [11,12]. For this purpose, several
attempts have been made using marginal and pseudo-likelihood-based methods [13] by
fitting truncated parametric (e.g., lognormal) distributions to observed data [14]; log-probit
regression (LPR) [15]; or non-parametric methods, such as the non-parametric estimator of
the survival function [12,16–18].

Quantification limits (and all the associated issues) are likely to be found in data
obtained from analyses performed in different environmental contexts such as water,
air, food, and even biological specimens like urine samples. For example, Jones (2018)
applied complex linear regression models, which allowed outcomes and covariates to be
linear combinations of left-censored data on polychlorinated biphenyls (a class of tocix
industrial chemicals), for the estimation of means and covariance matrices [13]. A further
study proposed a transformation to convert (multiple) left-censored data on water quality
to right-censored data enabling the use of common survival analysis techniques [18].
Stochastic approaches impute non-detected values via a number of plausible values drawn
from a given statistical model, and all approaches are implemented to understand the
variability in the resulting estimates and overcome the uncertainty arising in the imputation
of non-detected values. In this study, alternative approaches were employed to deal with
non-detected values and with the presence of multiple LOQ values, aiming to analyze
and handle contamination data related to deoxynivalenol (DON), a mycotoxin that is an
agricultural contaminant occurring in cereals and all derived products (including pasta
and pasta substitutes) produced by toxigenic fungi from the Fusarium genus. Mycotoxins
are toxic substances produced by toxigenic micromycetes, such as those of the Aspergillus,
Penicillium, and Fusarium genera, and when they occur in food or feed they represent a risk
to human and animal health [19].

Contamination levels are highly influenced by weather conditions and agricultural
practices [20,21], which, when unfavorable, may lead to severe Fusarium spp. infections
affecting cereals, such as Fusarium head blight and European corn borer. Humid conditions
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at the time of flowering favor fungal proliferation on the spikelet and promote high levels
of DON and other Fusarium toxins on crops. In its opinion published in 2017 [22], the
European Food Safety Authority (EFSA) identified vomiting as the critical acute adverse
effect of the sum of DON, its 3-glucoside, and the acetylated forms (3-Ac-DON and 88
15-Ac-DON) for pigs, farmed minks, dogs, cats, and human risk assessment.

Despite the limitations in the available human data, the EFSA established a group
acute reference dose (ARfD) of 8 µg/kg body weight (bw) per eating occasion for the
sum of DON, 3-Ac-DON, 15-Ac-DON, and DON-3-glucoside. Moreover, in the absence
of data on chronic effects in humans, the EFSA recognized the reduced body weight
gain in experimental animals as the critical chronic effect for human risk assessment and
established a group tolerable daily intake (TDI) of 1 µg/kg bw per day for the sum of DON
and its metabolites [22].

Conventionally, the analytical detection of DON is carried out by liquid chromatog-
raphy (LC) coupled with UV detection (typically, wave length λ = 220 nm) [23,24]. In
order to gain better selectivity, a purification step with an immunoaffinity column (IAC) is
recommended to be used during the extraction of the mycotoxin. Nowadays, tandem mass
spectrometry (LC-MS/MS) techniques are the most commonly used for the detection of
mycotoxins in general, and DON in particular. The literature includes extensive examples
of analytical methods applied to the analysis of DON, its metabolites, and even multiple
mycotoxins in cereal-based foods [25–29].

In this study, DON contamination values detected in pasta and pasta substitutes
were produced by a battery of laboratories that used several analytical techniques and/or
different analytical methods, thus providing a range of LOQ/LOD values in the dataset.
Therefore, the available data were not only censored, but the level and “quality” of cen-
soring depended on the specific laboratory. To cope with this complexity, three different
multiple imputation (MI) techniques for imputing non-detected values with multiple LOQ
values were considered. Through the replacement of each non-detected value with mul-
tiple plausible contamination values, these techniques allowed us to obtain multiple sets
of plausible contaminations. In order to achieve a completed contamination dataset, each
set obtained by a given imputation procedure was merged with the VALs. The estimates
obtained by imputation were compared to those derived from the application of standard,
deterministic, and substitution methods on the same dataset, which could be used to define
boundaries for the former.

As will be shown in the present paper, the proposed approach is appropriate for
processing complex datasets with a high number of non-detected values and a range of
different LOD/LOQ values.

2. Results
2.1. Exploratory Statistics

The number of LOQ values present in the analyzed dataset and the exploratory
statistics for the data on DON contamination are reported in Table 1. For each LOQ stratum,
the number of contaminated samples; the corresponding percentage, mean, median, and
standard deviation for the measured values; the number and percentage of non-detected
values; and the size and percentage (with respect to the global sample) of the corresponding
subsample, are reported.

Considering VALs only (i.e., 131 values), the mean values in the total sample as well
as in each subsample associated with each LOQ value were higher than the medians,
denoting a positive skewness in the distribution of the contamination data related to DON
in pasta and pasta substitute products. This result empirically supported the selection
of lognormal, Weibull, and gamma as appropriate candidate distributions. To provide
a clearer representation of the data at hand, Figure 1a,b show the empirical distribution
of the contamination data. In particular, Figure 1a shows the CDF for the contamination
data, with the crosses representing observed contamination data and each bin representing
the cumulative frequency of non-detected values according to the value of the laboratory-
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specific LOQ. Figure 1b shows the distribution of VALs only, and the positive skewness in
the distribution of data on DON contamination in pasta and pasta substitute products can
be clearly observed. Prior to the imputation, the average contamination in the total sample
was 207.11 µg/kg.

Table 1. Contamination values (µg/kg) of pasta and pasta substitute products by LOQ. Exploratory
statistics and frequency distribution.

Detected Non-Detected Total
LOQ (µg/kg) n % Mean (µg/kg) Median (µg/kg) SD n % n %

26 23 59.0 111.5 101.0 56.9 16 41.0 39 18.8
50 94 70.7 225.6 169.2 230.8 39 29.3 133 63.9

92.5 3 75.0 371.0 220.5 288.4 1 25.0 4 1.9
100 9 45.0 203.2 164.0 99.6 11 55.0 20 9.6
150 2 28.6 207.0 207.0 35.3 5 71.4 7 3.4
500 0 0.0 - - - 5 100.0 5 2.4

Abbreviations: n—number, %—percentage, SD—standard deviation.

Figure 1. Distribution of observed data on DON contamination in pasta and pasta substitute products:
(a) cumulative density function (CDF), (b) histogram of contaminations (VALs only).

Before proceeding to exposure estimates, a choice had to be made as to the three
candidates and the MA distributions. The last one was preferred because it summarized
different behaviors that were specific to each candidate distribution without the need to



Toxins 2023, 15, 521 5 of 16

refer to a more complex (in terms of the number of parameters) single parametric form.
This procedure seems to produce a more honest measure of precision with a reduced bias
when compared to a best fit model [30]. Additionally, inference based on a model averaging
(MA) procedure seems to outperform that obtained using the best model strategy [31].

2.2. Comparing Stochastic and Deterministic Methods

In Table 2, a comparison of the results obtained by applying the (deterministic) sub-
stitution method with the stochastic multiple imputation approach for the distribution
obtained by MA is shown in terms of some basic exploratory statistics. The application of
both the proposed MI procedures and the standard deterministic substitution method in
order to replace the 77 non-detected values led to a decrease in the estimate of the average
contamination value with respect to that based on the VALs only (207.11 µg/kg). This was
to be expected, as the non-detected values lay in the left tail of the contamination data
distribution.

Moreover, Table 2 shows that the contamination distributions estimated through the
three procedures were similar. More specifically, since the values to be imputed were below
a certain threshold, as expected, the estimates of contamination mainly differed in the right
tails of the distributions. A statistical comparison of the three distributions was performed
using the Kullback–Leibler measure, a method that is widely used in order to quantify
the dissimilarity between probability distributions [32]. The calculated Kullback–Leibler
measures were consistently small, ranging from 0.03 to 0.96, which provided a confirmation
of the similarity between the distributions obtained through the three procedures.

Table 2. Exploratory statistics of the completed distribution for DON in pasta and pasta substitute
products (µg/kg).

CONTAMINATION VALUES
Procedure Min 1st Quartile Median Mean 3rd Quartile Max

All 0.3 29.7 98.9 139.4 180.1 1519.6
Gold-standard 5.1 44.0 101.0 145.3 181.0 1519.6

Single 0.4 20.1 98.9 137.7 181.0 1519.6
LB 0.0 0.0 94.2 128.1 178.9 1519.6
UB 26.0 50.0 108.2 160.8 195.2 1519.6

Figure 2 shows the density estimates for the completed contamination data provided
by the stochastic MI procedure (All). As for the Gold-Standard and Single procedures (see
Appendix A, Figures A1 and A2, respectively), the positive skewness of the contamination
data increased. This meant that DON contamination in pasta and pasta substitute products
was effectively reduced when compared to the starting VAL distribution. With respect
to the latter, after the MI and substitution methods, the distribution of contamination
shifted to the left. This implied a reduction in the effective contamination scenario observed
in pasta and pasta substitute products. In particular, a peak was shown between 0 and
50 µg/kg (see the top right portion of Figure 2), since the largest number of non-detected
values (71%) belonged to the two largest strata, those associated with LOQ values equal to
26 and 50 µg/kg (see Table 1).

The estimated average contamination, the minimum and maximum values, and the
quantiles provided by the suggested procedures were compared with the corresponding
values obtained by the standard substitution method. This method is typically used because
it is easy to understand and apply. It includes the LB, where the true contaminations are set
equal to the minimum value that a non-detected value may assume (in this case zero), as
well as the UB, where the true contaminations are all set equal to the corresponding LOQ,
which represents their possible maximum value.

As shown in Table 2, the distributions of data on DON contamination in pasta and
pasta substitute products derived from the stochastic multiple imputation approach (All,
Gold-Standard, and Single) were included in LB and UB boundaries.
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Figure 2. Density estimates of data on DON contamination in pasta and pasta substitute products
applying All (MA only).

Figures 3 and 4 show the estimated average DON contamination in pasta and pasta
substitute products and the corresponding 95% confidence interval (CI) based on the
B = 100 imputed datasets, according to the three procedures. Estimated using the All
procedure, the average level of DON contamination in pasta and pasta substitute products
was approximately 139.4 µg/kg, with a 95% confidence interval ranging from 137.0 µg/kg
to 141.9 µg/kg. The Gold-Standard procedure yielded a slightly higher mean estimate
of 145.3 µg/kg. The estimates from the Single procedure (mean of 137.7 µg/kg) closely
aligned with those obtained from the All procedure. Finally, the lower- and upper-bound
scenarios (of the substitution methods) were included in this 95% CI obtained by the
proposed stochastic procedures.

Figure 3. Mean estimate and 95% confidence interval (CI) for the mean of data on DON contamination
in pasta and pasta substitute products across iterations (multiple imputation) (All procedure).
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Figure 4. Mean estimate and 95% confidence interval (CI) for the mean of data on DON contamination
in pasta and pasta substitute products across iterations (multiple imputation) (left: Gold-Standard
procedure, right: Single procedure).

3. Discussion

The strength of the substitution methods lies in the fact that they can be easily used to
screen the levels and evaluate which of the components in the assessment path are likely
critical. However, it has been widely recognized that the substitution method is biased. The
bias is a function of the true data variability, the percentage of non-detected values, and the
sample size. Moreover, the substitution method ignores the variability due to uncertainty in
the real non-detected values that are imputed. In other words, whether a sample contains
1% or 90% detected values does not drive the way the non-detected values are treated. This
applies even in cases where the two types of samples have different features [11], with the
most critical situation being that with the highest number of non-detected values and the
presence of multiple LOQ values [11,12].

Stochastic approaches introduce more realism, since they are based on fitting distri-
butions to VALs and thus, as opposed to the deterministic approach, take the variability
of the data into account when imputing non-detected values. Further, they may help to
provide estimates of the variability ascribed to each imputation, whereas in the substitution
method this is completely neglected. By using a stochastic approach, each missing value
is imputed by B potential values taken from the selected distribution. Therefore, the B
estimated values of contamination and incidence represent a set of scenarios that allow one
to derive measures of synthesis (e.g., averages) and variability, such as 95% CIs.

The Best Stochastic Procedure

The results of the exploratory statistics obtained by the procedure All, for which the
imputation of non-detected values was based on the whole contamination sample, were
the most reliable, as they took into account the whole left-censored contamination dataset.
In the Gold-Standard procedure, the results depended on the stratum that was selected
to be the best-fitted to the observed distribution. The selection could have limited the
ability of the estimates to capture the real variability in the data on DON contamination
in pasta and pasta substitute products, since it may not have reflect the variability and
number of VALs in those strata that were characterized by a different LOQ value. Therefore,
through the selection of the stratum with an LOQ equal to 50 µg/kg, the exploratory
statistics for the contamination estimates provided by the Gold-Standard procedure proved
to be slightly different from those obtained through the other two stochastic procedures
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(see Table 2). The Single and All procedures provided quite similar outputs. This was
probably due to the fact that these two techniques had similarities, as they both considered
all the contamination data to fit the candidate distributions. However, the Single procedure
did not allow the imputation of non-detected values for the strata with no VALs (whose
presence was mandatory in order to estimate the density distribution), and it did not make
it possible to compute the likelihood for the stratum with an LOQ equal to 500 µg/kg. In
addition, when the number of VALs was lower than 4 (as occurred in the stratum with an
LOQ = 92.5 µg/kg), the estimated distribution was not informative and it was not sufficient
for drawing imputations for non-detected values.

4. Conclusions

Three different procedures for the multiple imputation (MI) of left-censored data on
DON contamination in pasta and pasta substitute products, which included a number of
both detected (VALs) and non-detected values, were proposed. As a first output, the MI
carried out through model averaging was to be preferred to the best fit model. This was
due to its ability to produce estimates with a reduced bias as well as to summarize different
behaviors that were specific to each candidate distribution. The procedure provided
suitable imputations for pasta and pasta substitute products that were in agreement with
each other and with those obtained by the deterministic estimates (LB and UB). In fact, the
substitution method provided extreme scenarios for data on DON contamination in pasta
and pasta substitute products, whereas MI provided contamination scenarios that were
between the deterministic boundaries, which were too high (UB) or low (LB), respectively.
Additionally, MI, which was based on fitting a specific parametric distribution, allowed
us to account for (and estimate) the variability in the obtained contamination scenario
due to imputation, which could not be achieved via deterministic methods. Among those
proposed in this paper, the All procedure seemed to be the most appropriate.

In conclusion, MI provided suitable imputations and reliable contamination scenarios,
especially for the All procedure performed via MA. However, the stochastic approach,
which supplied distributions to be used for probabilistic calculations, should be considered
complementary to the deterministic method rather than a replacement, since the latter
led to conservative estimate calculations and offered an immediate assessment of the
contamination boundaries.

Finally, although distributions and related mixtures other than lognormal, Weibull,
gamma, and MA could be considered, the proposed approach was found to be appropriate
for processing complex datasets of occurrence for contaminants with a high number of
non-detected values, where the additional issue of a range of LOD/LOQ values makes the
data handling even more challenging.

5. Materials and Methods
5.1. Occurrence Data

The available occurrence data for DON in pasta and pasta substitutes were gathered
from the outcomes of the Italian National Official Control Plan for mycotoxins, which
is the annual control plan (CP) requested by the European Commission from Member
States. The main purpose of this is to verify the application of the rules and the functioning
of national control systems. The CP is set each year by the Italian Ministry of Health to
monitor and survey certain contaminants in food products throughout the national territory.
The food sampling plans are defined with the support and collaboration of regions and
provincial authorities, the “Direzione Generale per l’Igiene e la Sicurezza degli Alimenti e
la Nutrizione” (DGISAN, Italian Ministry of Health, Rome, Italy) and the Italian National
Reference Laboratory for mycotoxins in food and feed (NRL, Italian National Institute
of Health, Istituto Superiore di Sanità), and they are approved by the “Coordinamento
Tecnico Interregionale” (Technical Committee for the Heath Commission of the State-Region
Conference). The annual CP provides guidance to regional and autonomous provincial
authorities on the activities to be carried out by the official controlling body for the detection
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of mycotoxin occurrence (including DON) in food. It outlines and coordinates the actions
for the verification of compliance with EU legislation and promotes the assessment of
consumer exposure to contaminants.

The available dataset included data gathered and registered in the years 2016, 2017,
and 2018. The pasta and pasta substitute samples were drawn at the final stage of the
production and distribution of foodstuffs. The concentration levels of the contaminant in
food were reported in terms of µg of DON per kg of food (µg/kg).

The samples were analyzed and the data were recorded by several official laboratories,
distributed over the whole Italian territory. All laboratories operated under a quality
control system following the ISO EN 17025 standard; they were equipped with different
instruments for the detection and quantification of DON and used different analytical
methods, for which different LOD/LOQ values were applied. The sample consisted of
208 contamination data for DON in pasta and pasta substitute products. Among these, 77
values (37.0%) were non-detected. The data collected came from laboratories distributed
over eleven Italian regions and included six different LOQ values. Table 3 reports the
distribution of DON occurrence, the production methods, the LOQ values, and the number
of detected and non-detected contamination values reported by each laboratory.

Table 3. Distribution of DON occurrence, production methods, LOQ values, and detected/non-
detected values across different laboratories.

Region Production Method LOQ N. VAL %VAL N. LOQ

Basilicata Unknown 50 1 100 0
92.5 3 75 1

Emilia Romagna Non-organic production 50 39 87 6
Friulia-Venezia Giulia Non-organic production 100 8 73 3
Lazio Unknown 26 23 59 16
Liguria Unknown 50 2 67 1
Lombardia Organic production 100 0 0 5

Piemonte Unknown 50 2 50 2
500 0 0 5

Puglia Unknown 50 50 63 30
Sicilia Unknown 100 0 0 3
Umbria Unknown 150 2 29 5
Veneto Unknown 100 1 100 0

Abbreviation: %—percentage.

5.2. The Proposed Stochastic Approach

In order to impute non-detected values, specific candidate parametric distributions
were considered and fitted by maximum likelihood to the left-censored contamination data.
After obtaining estimates for the parameters that indexed the parametric distributions, these
were plugged in and used to draw plausible contamination values for the non-detected
values. The whole (multiple) imputation procedure can be described by the following
steps:

1. Consider a (possibly wide) family of candidate distributions;
2. Estimate parameters for each candidate distribution;
3. Assess the quality of fit and select the best distribution in terms of fit;
4. Model-average the candidate distributions with weights proportional to penalized

likelihood criteria;
5. Impute non-detected values (three techniques) by drawing several (i.e., 100) values

from the model-averaged distribution for each non-detected value.

STEP 1. Specify the (possibly wide) family of candidate distributions

The contamination values of DON in pasta and pasta substitute products were con-
sidered to form an independent and identically distributed (iid) sample drawn from a
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known parametric distribution. The contamination values were assumed to be independent
across food commodities, and therefore they could be modeled by univariate distributions.
Contamination measurements usually show a skewed distribution. These distributions are
particularly common when VAL data are at hand, as they are characterized by large vari-
ances, a high proportion of non-detected values, and multiple LOQ values. The lognormal
distribution properly describes VALs, and it is parsimonious in the sense that it is indexed
by a two-dimensional (mean, variance) parameter [33,34]. For these reasons, it was selected
as the starting point while defining the set of candidate distributions [35–38]. In addition to
the lognormal model, the Weibull and gamma distributions were also considered in the
analysis, as they represent two further parametric models that are often used to model
contaminant data in food [39–42].

STEP 2. Estimate parameters for each candidate distribution

For each candidate distribution, the problem of estimating the parameters can be
summarised as follows: a sample of observations y, y2, . . . , yn of a quantitative variable
(representing data on DON contamination) was given, and it was assumed to be drawn
from a probability density function (PDF) f (x, θ) , which could either describe a lognormal,
Weibull, or gamma random variable, where θ is the vector of parameters that indexed such
a density. Since the parametric form of the distribution was known, in order to use such a
distribution, the vector of parameters needed to be estimated. In this context, estimation
was carried out based on the maximum likelihood (ML). The likelihood function, which
represents the objective function to be maximized, is defined as the joint probability density
function evaluated at the sample points:

L(y1, y2, ..., yn, θ) =
n

∏
i=1

f (yi; θ), (1)

while the maximum likelihood estimate (MLe) is defined as the value θ that maximizes the
likelihood function.

In order to find this estimate, standard calculus methods (solving likelihood equations
obtained by setting partial derivatives equal to 0 and checking that the matrix of second
derivatives is negative-definite) are usually employed. However, when left-censored data
are at hand, more complex methods are needed. ML estimation in the context of data
left-censored by an LOQ [11,12] should consider the fraction of values above the LOQ and,
therefore, the fraction of data below the LOQ, as well as the distribution for measured VALs.
To summarise, let δ denote an indicator that is equal to 1 when the observation is noted and
0 when it is not. When δ = 0, the information is that the value is below the threshold, i.e.,
y < LOQ. Further, let F(y; θ) denote the cumulative distribution function (CDF), associated
with f (x, θ), for the selected parametric distribution with parameter vector θ. The MLe for
θ is the value that maximizes the likelihood function L for such left-censored data:

L(θ) =
n

∏
i=1

( f (yi; θ))δi (F(LOQi; θ))(1−δi) (2)

where LOQi denotes the LOQ for the i− th value. The censored observations could, in
fact, contribute only through the CDF, as the only information they gather is that the
corresponding values are not greater than the LOQ. Maximizing the likelihood function is
equivalent to maximizing the corresponding log-likelihood function:

log(L(θ)) =
n

∑
i=1

δilog + (1− δi)log(F(LOQi; θ)) (3)

Finally, the first and second derivatives of the log-likelihood with respect to θ are used
to calculate the estimate for θ, usually via iterative Newton-type algorithms [43].
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STEP 3. Assessing the quality of fit and selecting the best distribution in terms of fit

A number of model selection criteria can be used to choose the “best fitting” distri-
bution, such as the Bayesian information criterion (BIC) [44] and the Akaike information
criterion (AIC) [45]. While inspired by different motivations, they are both based on the
idea that model fit can be measured by the maximized value of the log-likelihood function,
once this has been penalized according to the model complexity. Therefore, the AIC is
defined as:

AIC = −2logL(θy; δ) + 2K (4)

where logL(θy; δ) is the maximized value of the log-likelihood function for a candidate
distribution, and K represents the corresponding number of parameters. The lower the
AIC value, the better the fit. In this study, the AIC index was used as the model selection
criterion.

STEP 4. Model averaging

The MA step was performed using AIC-based weights [30]. MA starts from a set
of plausible candidate statistical models (here, lognormal, Weibull, and gamma distribu-
tions were the considered distributions), and it combines such models in order to obtain
a weighted average model where the weight associated with each candidate model is
proportional to the corresponding measure of fit.

In detail, let us denote by M the family of candidate models, by Mj, j = 1, . . . , K
the individual model belonging to this family, and by Fj the corresponding CDF. The
procedure starts with the estimation of the natural parameters θj by ML; let us denote
the corresponding covariance matrix COV(θj) and the estimate of the p− th quantile ξp,
p ∈ (0, 1). In a direct approach to MA, the quantile ξp is estimated for each candidate
model, and the MA estimate is a weighted average of the K estimates. Based on model Mj,
the MLe for ξp is ξp,j = Fj(p; θj) [30]. The variance of the averaged estimate is approximated
by the delta method:

VAR(ξ̂) ≈ ∆F−1
j (p; θ)TCOV(θ̂)∆F−1

j (p; θ) (5)

where the gradient ∆F−1
j (p; θj) can be estimated by ∆F−1

j (p; θ̂j). The MA estimate is defined

as the weighted average ξ̂p,MA1 = ∑K
i=1 wi ξ̂p,i, where the weights wi associated with each

candidate model are defined by:

wi =
exp(− 1

2 ∆i)

∑K
j=1 exp(− 1

2 ∆j)
(6)

and
∆j = AICj − AICmin (7)

The model closest to the best fitting one is associated with the highest weights.

STEP 5. Impute non-detected values (All, Gold-Standard, Single)

In the presence of a single LOQ, it is assumed that a specific q-th percentile corresponds
to the LOQ value or each candidate model. For each non-detected value B (i.e., B = 100),
random values (u1, . . . , uB) were drawn from a continuous uniform distribution defined on
the segment 0 to q, representing the tail of the distributions associated with non-detected
values. Each value u1, . . . , uB represents a potential quantile q1, . . . , qB ≤ q for the distribu-
tions (lognormal, Weibull, gamma, and MA) associated with the contamination values. In
order to perform imputation, such quantiles were back-transformed to values between 0
and the corresponding LOQ value. A number (B) of completed datasets were obtained,
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each of them corresponding to a set of draws for the non-detected values. However, as
remarked above, contamination data were characterized by different LOQ values, as these
were specific to the recording laboratory. In order to handle the problem of multiple LOQ
values, three procedures for the MI of non-detected values were proposed (namely, All,
Gold-Standard, and Single). The All and Gold-Standard procedures imputed non-detected
values by taking all the different LOQ values collectively, whereas the Single procedure
imputed non-detected contaminations stratified by each LOQ value taken individually (i.e.,
taking 6 strata, see Table 1).

Procedure 1 (All).

The parameters for the candidate distributions were estimated using ML for left-
censored data on the incomplete contamination sample, considered as a whole. This
method did not take into account the laboratory from which the data originated. The basic
idea of this procedure was to impute non-detected values according to the best fit to all
the observed data and all considered distributions (including the MA distribution). The
distributions were estimated on all contaminations, considered as a unique sample.

Procedure 2 (Gold-Standard).

After stratifying the contamination data according to the LOQ values, the stratum
with the largest number of data (VALs and non-detected values) was selected as the Gold-
Standard stratum, as this stratum provided the most accurate major empirical evidence.
Therefore, the parameters indexing the candidate distributions were estimated through ML
on the contamination data belonging to the Gold-Standard stratum. This procedure based
the imputation of all non-detected contamination on the distributions of the contamination
estimated using data from the Gold-Standard stratum only. In pasta and pasta substitute
products, the Gold-Standard stratum had an LOQ equal to 50 µg/kg, with n = 133 contami-
nations in total, (94 VALs, and 39 non-detected values). Thus, all candidate distributions
(including MA) were estimated based on observed contamination data with an LOQ of
50 µg/kg.

Procedure 3 (Single).

After stratifying the contamination data according to the LOQ values, the parameters
indexing the candidate distributions were estimated via ML applied to contamination
data from each stratum separately. The basic idea of this procedure was to impute the
non-detected values, lower than the LOQ, considering the potential variability of the
contamination for that stratum when compared with those of other strata. Then, imputed
contamination data corresponding to each LOQ-specific stratum were joined as a unique
completed contamination dataset.

Obviously, the imputation procedure was repeated in each case B = 100 times, and
B completed datasets were obtained by the following procedure. Once parameters for
candidate distributions were estimated according to one of the procedures previously
discussed, the percentiles corresponding to each LOQ (i.e., 26 µg/kg, 50 µg/kg, 92.5 µg/kg,
100 µg/kg, 150 µg/kg, and 500 µg/kg) were computed for each candidate distribution.
Thus, considering, for example, the stratum with LOQ = 26 µg/kg, which contained 16 non-
detected values to be imputed, 100 values between 0 and the (distribution-specific) quantile
corresponding to 26 µg/kg were randomly drawn for each non-detected value from the
three candidate distributions. Afterwards, the corresponding quantiles as well as those
obtained with a step of MA were computed. These quantiles were back-transformed (using
the inverse sampling method) to contamination values in order to replace non-detected
values below LOQ = 26 µg/kg. In this way, pseudo-random contamination values were
drawn below the corresponding LOQ. This procedure was carried out for all the strata,
each having a different number of non-detected values. Regardless of the imputation
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procedure selected (All, Gold-Standard, and Single), the set of imputed contaminations
was then joined to the VALs. The multiple completed contamination datasets obtained by
applying the All and Gold-Standard procedures consisted in 208 rows and 100 columns;
each column referred to a completed dataset, where each of the 77 non-detected values
was replaced by a set of reliable/plausible values drawn as discussed before from the
candidate distributions, whereas the subset of 131 VALs was kept fixed. The procedure
was repeated B = 100 times, and so the columns were filled in. As opposed to others, the
Single procedure provided a smaller multiple complete contamination dataset (203 rows
and 100 columns). Indeed, it was not possible to impute 5 non-detected values with an
LOQ equal to 500 µg/kg, since the estimation of the candidate distributions is not possible
for strata with no VALs. The phase of drawing several values lower than the corresponding
LOQ for each non-detected value of DON in pasta and pasta substitute products is coherent
with the Monte Carlo approaches used for sampling from a given theoretical (parametric)
probability distributions [46].

5.3. Comparison between Deterministic Substitution Methods and Stochastic Approaches

To obtain contamination references as boundary levels to be compared with the results
provided by MI, a substitution method (deterministic approach) was also applied. The
contamination boundaries were defined as the LB and UB.
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Appendix A

Figure A1. Density of DON contamination in pasta and pasta substitute products applying the
Gold-Standard procedure (MA only).

Figure A2. Density of DON contamination in pasta and pasta substitute products applying the Single
procedure (MA only).
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