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Abstract: Alternariol is a metabolite produced by Alternaria fungus that can contaminate a variety of
food and feed materials. The objective of the present paper was to provide a prediction of Phase I
and II metabolites of alternariol and a detailed ADME/Tox profile for alternariol and its metabolites
using an in silico working model based on the MetaTox, SwissADME, pKCMS, and PASS online
computational programs. A number of 12 metabolites were identified as corresponding to the
metabolomic profile of alternariol. ADME profile for AOH and predicted metabolites indicated
a moderate or high intestinal absorption probability but a low probability to penetrate the blood–
brain barrier. In addition to cytotoxic, mutagenic, carcinogenic, and endocrine disruptor effects,
the computational model has predicted other toxicological endpoints for the analyzed compounds,
such as vascular toxicity, haemato-toxicity, diarrhea, and nephrotoxicity. AOH and its metabolites
have been predicted to act as a substrate for different isoforms of phase I and II drug-metabolizing
enzymes and to interact with the response to oxidative stress. In conclusion, in silico methods can
represent a viable alternative to in vitro and in vivo tests for the prediction of mycotoxins metabolism
and toxicity.

Keywords: alternariol; metabolism; toxicity

Key Contribution: The present paper provides a prediction of Phase I and II metabolites of alternariol
and a detailed ADME/Tox profile for alternariol and predicted metabolites using an in silico working
model based on online computational programs.

1. Introduction

Alternaria molds can contaminate a wide variety of food and feed materials, such
as cereals, oilseeds, apples, tomatoes, olives, and several other fruits and vegetables [1].
These fungi produce several toxins, the most important being alternariol (AOH), alternariol
monomethyl ether (AME), tenuazonic acid, altenuene, and altertoxins [2].

Alternaria mycotoxins can lead to significant economic losses and negatively impact
human and animal health [3]. Among Alternaria mycotoxins, the toxicity of AOH and AME,
the toxins responsible for genotoxic, mutagenic, cytotoxic, and carcinogenic effects, has
been investigated the most [4]. These toxins act as topoisomerase poisons, generating DNA
strand breaks and gene mutations in cultured human and animal cells by altering the redox
balance [4].

Alternaria toxins, including AOH, belong to the group of “emerging” mycotoxins
that are not routinely determined and not regulated by legislation but for which there
is increasing evidence of their occurrence and toxic effects [5]. AOH has been found in
unprocessed cereals and cereal products from Europe (n = 1665) in concentrations ranging
between 0.75 and 832 mg/kg [2], but also in other commodities as fruits, legumes, nuts,
oils, and oilseeds [1,6,7]. There are no regulations at present concerning the amount of
AOH concentration in food and feed. This is despite the fact that, according to the EFSA,
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human dietary exposure to alternariol exceeds the threshold of toxicological concern, and
there is increasing evidence concerning the toxic effect of AOH [8]. The EFSA considers
that studies assessing the toxicological properties of Alternaria mycotoxins are insufficient
for a correct health risk assessment to be made, thus making the establishment of specific
regulations impossible [9].

Living organisms have biological systems that facilitate the elimination of xenobi-
otics, including mycotoxins [10]. In plants, metabolic transformations of mycotoxins
generate modified forms of mycotoxins called “masked mycotoxins”, which are mainly
metabolites that have resulted from phase-II plant metabolism [11]. These metabolites can
co-contaminate food and feed along with their parent compounds, which can result in
an underestimation of the actual amount of mycotoxins in foods [12,13]. Some papers re-
ported the simultaneous presence of Alternaria toxins and their metabolites (AOH-3-sulfate,
AOH-9-glucoside, AOH-3-glucoside, AME-3-sulfate) in samples of different origins [14].
In animals, the biotransformation of drugs and xenobiotics is realized mainly through
oxidative (Phase I) or conjugative (Phase II) reactions. In some situations, metabolization
of mycotoxins can lead to compounds with higher toxicity than the parent compounds,
such as the transformation of aflatoxin B1 into AFB1 epoxide by cytochrome P450 enzymes
that are responsible for DNA damage in the liver [15]. Due to a limited number of in vivo
experiments, data concerning Alternaria toxins metabolism in animal organisms are scarce,
but the prediction of metabolism products is important for toxicological studies in or-
der to identify their effects in humans and animal organisms. Few data concerning the
toxicological effects of AOH metabolites are available in the literature. For example, the
DNA strand-breaking potential of AOH decreases significantly following hydroxylation or
glucuronidation reactions [16,17]. Additionally, AOH and its metabolite, AOH-3-O-sulfate,
may have a similar interaction with estrogen receptors, as described in an in silico study,
indicating a possible comparative estrogenic effect of the two compounds [18]. For iden-
tifying harmful toxins, computational methods represent a viable alternative to in vivo
animal tests that are expensive, time consuming, raise ethical considerations, and should be
limited according to the principle of 3Rs. In silico toxicology aims to generate rapid results
for toxicity prediction that can be complementary to the existing toxicity data, providing
a general frame for future toxicity tests and avoiding possible failure in their design [19].
Lately, there have been important advances regarding the in silico modeling of absorp-
tion, distribution, metabolism, and excretion (ADME) properties for the assessment and
prediction of toxicological effects that have resulted in a large number of free commercial
in silico prediction tools [20,21]. Previous studies have used in silico approaches in order
to assess the estrogenic potential of Alternaria mycotoxins and other xenoestrogens. A
recent study by Dellafiora et al., has shown that in silico approaches can be used as useful
tools for assessing differences between species in terms of mycotoxin estrogenicity [22].
Additionally, an in silico approach was used for assessing the xenoestrogenic potential of
Alternaria mycotoxins and metabolites, indicating that methylation reaction can increase
AOH estrogenicity [18].

The objective of the present paper was to provide (i) a prediction of Phase I and II
metabolites of alternariol; and (ii) a detailed ADME/Tox profile for alternariol and pre-
dicted metabolites using an in silico working model based on the following computational
programs: MetaTox, SwissADME, pKCMS, and PASS online.

2. Results
2.1. Metabolomics Profile of Alternariol

The prediction of Phase I and II metabolites of alternariol were realized by MetaTox
software based on the calculation of the probability of their formation, starting from
the AOH canonical SMILE structure. Twelve compounds were proposed, as predicted
metabolite products form Phase I and II reactions.
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Figure 1 illustrates the metabolomic profile of alternariol, predicted by MetaTox soft-
ware, resulting from the reaction of aromatic hydroxylation (three predicted metabo-
lites: M1–M3), which corresponds to Phase I metabolites, or from the reaction of o-
glucuronidation (three predicted metabolites: M4–M6), o-sulfation (three predicted metabo-
lites: M7–M9), and methylation (three predicted metabolites: M10–M12), which correspond
to Phase II metabolites.

Figure 1. Phase I and II metabolites of alternariol predicted by MetaTox software.

2.2. Physicochemical Properties, Pharmacokinetic Predictions and Drug Likeness

SwissADME and pharmacokinetic servers pKCMS were used in order to predict
and calculate physicochemical properties, drug likeness, and the ADME/Tox-related de-
scriptors of AOH and AOH-predicted metabolites. These two web servers were selected
based on the accessibility (free access) and robustness of their computational methods
used for the estimation of the pharmacokinetics and toxicity of small molecules [23,24].
Additionally, these methods have been extensively used and validated with experimental
data [25–27]. The 2D chemical structure of AOH and metabolites was imported from
MetaTox in SwissADME molecular sketcher, based on ChemAxon’s Marvin JS, in order to
obtain the canonical SMILE for each compound (Table 1) and to predict the physicochemical
properties, pharmacokinetic predictions, and drug likeness (Table 2). Drug likeness repre-
sents the probability that a molecule can be an oral active drug based on its bioavailability
and was assessed via SwissADME, which filters chemical libraries in order to exclude
incompatible molecules [23].

The Lipinski filter characterizes small molecules based on their physicochemical
property profiles, which include a molecular weight (MW) less than 500, lipophilicity
(cLogP) < 5, hydrogen bond acceptor (HBA) ≤ 10, and hydrogen bond donor (HBD)≤ 5 [28].

Out of the thirteen mycotoxins listed in Table 2, ten of them do not violate Lipinski’s
rule of five for oral availability, except for metabolites M4–M6, which resulted from the
o-glucuronidation reaction, suggesting a low permeability or poor absorption for these
compounds [28].
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Table 1. Canonical SMILES for alternariol and its MetaTox predicted metabolites.

Parent Compound/Metabolite Canonical SMILES

Alternariol (AOH) CC1=CC(O)=CC2=C1C1=CC(O)=CC(O)=C1C(=O)O2
Aromatic Hydroxylation

Metabolite (M1) CC1=CC(O)=CC2=C1C1=CC(O)=C(O)C(O)=C1C(=O)O2
Metabolite (M2) CC1=CC(O)=C(O)C2=C1C1=CC(O)=CC(O)=C1C(=O)O2
Metabolite (M3) CC1=CC(O)=CC2=C1C1=C(O)C(O)=CC(O)=C1C(=O)O2

O-Glucuronidation
Metabolite (M4) CC1=CC(O)=CC2=C1C1=CC(O)=CC(OC3OC(C(O)C(O)C3O)C(O)=O)=C1C(=O)O2
Metabolite (M5) CC1=CC(O)=CC2=C1C1=CC(OC3OC(C(O)C(O)C3O)C(O)=O)=CC(O)=C1C(=O)O2
Metabolite (M6) CC1=CC(OC2OC(C(O)C(O)C2O)C(O)=O)=CC2=C1C1=CC(O)=CC(O)=C1C(=O)O2

O-Sulfation
Metabolite (M7) CC1=CC(OS(O)(=O)=O)=CC2=C1C1=CC(O)=CC(O)=C1C(=O)O2
Metabolite (M8) CC1=CC(O)=CC2=C1C1=CC(OS(O)(=O)=O)=CC(O)=C1C(=O)O2
Metabolite (M9) CC1=CC(O)=CC2=C1C1=CC(O)=CC(OS(O)(=O)=O)=C1C(=O)O2

Methylation
Metabolite (M10) COC1=CC(O)=C2C(=O)OC3=CC(O)=CC(C)=C3C2=C1
Metabolite (M11) COC1=CC(C)=C2C(OC(=O)C3=C(O)C=C(O)C=C23)=C1
Metabolite (M12) COC1=CC(O)=CC2=C1C(=O)OC1=CC(O)=CC(C)=C21

Table 2. Lipinski’s molecular descriptors for alternariol and its MetaTox predicted metabolites from
SwissADME.

Parent Compound/Metabolite MW (g/mol)
(≤500)

HBA
(≤10)

HBD
(≤5)

cLogP
(<5)

MR
(40–130) n-ROTB TPSA (Å2)

Alternariol (AOH) 258.23 5 3 71.03 0 90.9
Aromatic Hydroxylation
Metabolite (M1) 274.23 6 4 1.71 73.05 0 111.1
Metabolite (M2) 1.72
Metabolite (M3) 1.46
O-Glucuronidation
Metabolite (M4) 434.35 11 * 6 * 0.06 103.79 3 187.1
Metabolite (M5) 0.31
Metabolite (M6) 0.31
O-Sulfation
Metabolite (M7) 338.29 8 3 1.58 81.22 3 142.6
Metabolite (M8) 1.57
Metabolite (M9) 1.38
Methylation
Metabolite (M10) 272.25 5 2 2.55 75.49 1 79.9
Metabolite (M11) 2.55
Metabolite (M12) 2.55

MW—molecular weight; HBD—Hydrogen bond donor; HBA = Hydrogen bond acceptor; cLogP—lipophilicity;
MR—molar refractivity; n-ROTB: number of rotatable bounds; TPSA = Topological polar surface area; * Denotes
violation of Lipinski’s rule of five.

The probability of ADMET for AOH and predicted metabolites was evaluated using
pkCSM software. As shown in Table 3, permeability coefficients across monolayers of
Caco-2 (human colon carcinoma cell line) used for the prediction of the absorption of
orally administered drugs show that, with the exception of metabolites resulting from the
reaction of O-glucuronidation (M4–M6), all other mycotoxins have coefficients between
0.388 and 1.057; only AOH and M10 have coefficients of Caco-2 permeability superior to 1.
Correlated with the results concerning drug likeness for the M4–M6 metabolites, intestinal
absorption has very low values (between 14.9–18.04%). The intestinal absorption mildly
increases for the metabolites resulting from the o-sulfation reaction (45–48.6%) and from
aromatic hydroxylation (73.6–81.8%), while reaching a very high percentage of absorption
for AOH (95.4%) and the metabolites resulting from the methylation reaction (95.6–97.08%).
The skin permeability (Kp) expressed as permeation coefficients (logKp) refers to the rate
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of drug penetrating across the stratum corneum, and the predicted values were similar
for all compounds with a value of (−2.7). P-glycoprotein plays a significant role in drug
absorption and distribution by limiting the cellular uptake of drugs from blood circulation
into the brain and from the intestinal lumen into epithelial cells [29]. The volume of
distribution (VDss) is an in vivo pharmacokinetic parameter that provides an indication of
the probability of drug distribution in the body [30]. AOH and metabolites were predicted
to be substrates for P-glycoprotein, while they could not act as inhibitors for P-glycoprotein
I or II. AOH metabolites resulting from aromatic hydroxylation (M1–M3) or methylation
(M10–M11) have high VDss values, suggesting their significant concentration in tissues
due to, for example, high lipid solubility or tissue binding. On the other side, low VDss
values were predicted for metabolites resulting from o-glucuronidation and o-sulfation,
indicating rather high plasma protein binding or high water solubility [31].

Unbound fractions, also known as “free” forms, are responsible for toxic effects because
they can act on tissue target sites. Unbound fraction values varied between 0.083 and 0.22,
with the lowest values for the metabolites of aromatic hydroxylation (0.083–0.112) and the
highest for M4–M6 (0.193–0.22) and M9 (0.22). The results presented in Table 2 indicate a
rather low probability that the analyzed mycotoxins penetrate the brain–blood barrier or
central nervous system. Metabolism prediction through pkCSM showed no probability that
AOH and predicted metabolites could be substrates for CYP2D6 and CYP3A4. Metabolites
from o-glucuronidation were not predicted as inhibitors of cytochromes CYP1A2, CYP2C19,
and CYP2C9. None of the analyzed compounds inhibit the cytochromes CYP2D6 and
CYP3A4. AOH, metabolites from aromatic hydroxylation and methylation, as well as M7
and M8, inhibit CYP1A2, while M1, M2, M11, and M12 may inhibit CYP2C9 (Table 2).
Concerning the excretion, total drug clearance went from 0.65 to 0.84 log mL/min/kg,
while none of the metabolites were predicted as renal OCT2 substrates (Table 2).

2.3. Prediction of Toxicity

Pharmacokinetic servers PASS online and pKCMS were used in order to predict AOH
and metabolite toxicity. Only metabolites M3 and M11 were predicted to have potential
genotoxicity as a result of the AMES toxicity index, representing the compound’s ability to
induce reverse mutations at the selected loci of several bacterial strains (Table 4).

Analysis of the tolerated dose, equivalent to the highest mycotoxin dose that does not
cause unacceptable side effects, was predicted to have a higher value for the metabo-
lites resulting from aromatic hydroxylation (from 0.83 to 0.94) and o-sulfation (from
0.91–0.97). Metabolites resulting from methylation (M10–M12) have the highest oral acute
toxicity in rats, calculated as LD50 (lethal dose 50), while the metabolites resulting from
o-glucuronidations (M4–M6) seem to be more involved in chronic toxicity in rats after
oral exposure, expressed as LOAEL (lowest observed adverse effect level). Additionally,
M4–M6 metabolites were predicted to be the most toxic in minnows, while the toxicity
in Tetrahymena piriformis looks to be similar for all the analyzed compounds, with values
ranging from 0.285 to 0.349.

The toxicological endpoints were predicted using PASS on-line software, which pre-
dicts more than 4000 types of biological activity, including toxic effects, mechanisms of
action, interaction with transporters and metabolic enzymes, and influence on gene ex-
pression [32]. The results for AOH and the metabolites are shown in Figure 2. As shown
on the heatmap, AOH toxicity seems to be lower than that of its metabolites, with the
exception of the metabolites resulting from the methylation reactions (M10–M12). The
metabolite products of aromatic hydroxylation have similar toxicological endpoints to the
parent compound, while the metabolites resulting from glucuronidation and sulfation show
a wide and different toxicity profile (Figure 2).
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Table 3. ADME prediction for AOH and metabolites.

Model Name/Parameters AOH
Aromatic Hydroxilation O-Glucuronidation O-Sulfation Methylation

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Absorption
Water solubility (log mol/L) −2.982 −3.059 −3.151 −3.072 −2.892 −2.894 −2.894 −3.158 −3.118 −2.938 −3.5 −3.293 −3.388
Caco2 permeability
(log Paap in 10−6 cm/s) 1.025 0.838 0.815 0.818 −0.745 −0.699 −0.885 0.388 0.635 0.717 1.057 0.952 0.9

Intestinal absorption (human) % 95.473 73.662 81.84 76.718 18.049 18.043 14.941 45.397 48.67 47.87 95.627 95.804 97.087
Skin Permeability (log Kp) −2.745 −2.735 −2.735 −2.735 −2.735 −2.735 −2.735 −2.735 −2.735 −2.735 −2.739 −2.737 −2.747
P-glycoprotein substrate Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
P-glycoprotein I inhibitor No No No No No No No No No No No No No
P-glycoprotein II inhibitor No No No No No No No No No No No No No
Distribution
VDss (human) (log L/kg) −0.032 0.064 0.144 0.215 −0.891 −0.928 −1.032 −0.557 −0.306 −0.402 −0.009 −0.061 0.208
Fraction unbound (human) (Fu) 0.14 0.083 0.11 0.112 0.22 0.202 0.193 0.163 0.176 0.223 0.125 0.164 0.164
BBB permeability (log BB) −0.965 −1.32 −1.218 −1.325 −1.736 −1.647 −1.834 −1.556 −1.397 −1.48 −0.107 −0.225 −0.16
CNS permeability (log PS) −2.247 −2.557 −2.499 −2.498 −4.452 −4.438 −4.551 −3.76 −3.565 −3.5 −2.236 −2.24 −2.218
Metabolism
CYP2D6 substrate No No No No No No No No No No No No No
CYP3A4 substrate No No No No No No No No No No No No No
CYP1A2 inhibitor Yes Yes Yes Yes No No No Yes Yes No Yes Yes Yes
CYP2C19 inhibitor No No No No No No No No No No Yes Yes Yes
CYP2C9 inhibitor Yes Yes No No No No No No No No No Yes Yes
CYP2D6 inhibitor No No No No No No No No No No No No No
CYP3A4 inhibitor No No No No No No No No No No No No No
Excretion
Total Clearance
(log mL/min/kg) 0.723 0.658 0.676 0.717 0.77 0.785 0.815 0.841 0.848 0.831 0.841 0.82 0.79

Renal OCT2 substrate No No No No No No No No No No No No No
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Table 4. Numeric and categorical units for toxicity for AOH and predicted metabolites.

Toxicity AOH

Reaction/Metabolites

Aromatic Hydroxilation O-Glucuronidation O-Sulfation Methylation

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

AMES toxicity Yes Yes No Yes No No No No No No No Yes No
Max. tolerated dose
(human) 0.697 0.94 0.832 0.888 0.681 0.693 0.654 0.976 0.945 0.918 0.489 0.765 0.472

Oral Rat Acute
Toxicity (LD50) 2.82 2.611 2.515 2.586 2.438 2.441 2.466 2.582 2.63 2.509 2.918 3.001 3.036

Oral Rat Chronic
Toxicity (LOAEL) 1.51 2.747 2.675 2.625 4.409 4.101 3.945 1.917 2.169 2.158 1.285 0.98 0.944

T. pyriformis toxicity 0.335 0.301 0.305 0.297 0.285 0.285 0.285 0.285 0.285 0.285 0.339 0.349 0.348
Minnow toxicity 1.512 1.235 1.54 2.128 3.918 3.476 4.205 0.414 1.586 1.927 0.332 −0.352 0.319

Figure 2. Heatmap of predicted toxic effects of AOH and its metabolites.

With the exception of M9, all the mycotoxins induce vascular toxicity. Mycotoxins
resulting from glucuronidation and sulfation were predicted to have carcinogenic, teratogen,
and embryotoxic potential, while only M4–M6 were able to interact with inflammation,
have a nephrotoxic effect, and have the potential to be an endocrine disruptor.

The prediction effects of parent mycotoxins and predicted metabolites on different
isoforms of Phase I enzymes (cytochrome P450) involved in the xenobiotic metabolization
are presented in Figure 3.

Effects were predicted for each compound considering the following possibilities:
inducer, inhibitor, or substrate. All analyzed compounds were predicted to act mainly
as substrates (Figure 3A). The Venn diagram shows the number of effects predicted for
the parent compound and for each class of metabolites, as well as the common effects
(Figure 3B). AOH was predicted to have the most interactions with cytochromes P450 (16),
followed by metabolites from aromatic hydroxylation (15).
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Figure 3. Prediction effects of AOH and predicted metabolites on different isoforms of Phase I
enzymes (A). Venn diagram showing the number of effects predicted for the parent compound and
for each class of metabolites (B).

The lowest effect was predicted for the metabolites resulting from o-glucuronidation
(3 predictions) and o-sulfation (4 predictions). All the analyzed compounds were predicted
as CYP2A11 substrates with a probability between 73.9% and 86.3%, but this was the
only effect in common. AOH, metabolites M1–M3 and M10–M12, had high probability
to be substrates for Cyp1A1, Cyp1A2, and Cyp2C12 (with a probability > 92%), or for
Cyp1A6, Cyp2B6, Cyp2C, and Cyp2C9 (with a probability > 70%). AOH, as well as the
metabolites resulting from aromatic hydroxylation and methylation, had a high probability
prediction to be inhibitors for ubiquinol-cytochrome-c reductase (>80%). The prediction
effects of parent mycotoxins and predicted metabolites on different isoforms of Phase II
enzymes (Uridine 5′-diphospho-glucuronosyltransferase-UGT, glutathione S-transferase-
GST, sulphotransferase-SULT) involved in xenobiotic metabolization are presented in
Figure 4.

Similar to the effects predicted for cytochrome P450, all analyzed compounds were
predicted to act mainly as substrates (Figure 4A). The Venn diagram shows the number of
effects predicted for all the analyzed compounds (Figure 4B). Similar to the cytochrome P450
prediction, AOH and metabolites from aromatic hydroxylation had the most interactions
with the enzymes of Phase II involved in toxin metabolization (7 for AOH and 5 for
M1–M3). There was no common prediction for all the analyzed compounds. The lowest
effect was predicted for the metabolites resulting from o-sulfation (4 predictions). AOH and
metabolites from aromatic hydroxylation and methylation had the highest probability of
acting as substrates for UGT1A6 (probability > 91%). Metabolites from o-glucuronidation
were predicted to act as substrates for UGT1A7 (probability > 93%), while metabolites
from o-sulfation act as substrates for GST and SULT (probability > 94%). Furthermore,
PASS online software was used to predict the involvement of the analyzed compounds in
oxidative stress (Figure 5).
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Figure 4. Prediction effects of AOH and predicted metabolites on different isoforms of Phase II
enzymes (A). Venn diagram showing the number of effects predicted for the parent compound and
for each class of metabolites (B).

Figure 5. Prediction effects of AOH and predicted metabolites on different isoforms of Phase II
enzymes (A). Venn diagram showing the number of effects predicted for the parent compound and
for each class of metabolites (B).
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Metabolites resulting from aromatic hydroxylation had the highest predicted probabil-
ity involvement in the reactions associated with the oxidative stress (12 predicted reactions),
followed by AOH (10 predicted reactions), as presented in the Venn diagram (Figure 5B).
The lowest involvement in oxidative stress was predicted for the metabolites resulting
from the reaction of o-sulfation with only two predicted reactions. All the analyzed com-
pounds were predicted to inhibit the expression of HIF1A (>73%). With the exception of
metabolites M7–M9, all the compounds were predicted to enhance TP53 expression and
inhibit lipid peroxidase (>71%). Only AOH and metabolites M1–M3 may enhance the
expression of heme-oxygenase 1 (HMOX1) (probability > 73%). AOH and metabolites from
aromatic hydroxylation and methylation were predicted to inhibit some enzymes involved
in the oxidative stress response, such as histidine kinase, nitrate reductase, peroxidase, and
aldehyde oxidase (probability > 71%). Metabolites M1–M3 and M10–M12 were predicted
to inhibit Jak2 expression (probability > 72%). As already described in Figure 5, only the
metabolites resulting from the o-sulfation reaction were predicted to act as substrates for
GST.

3. Discussion

According to the last scientific report of the EFSA Panel on Contaminants in the Food
Chain, the estimated chronic dietary exposure to Alternaria toxins exceeds the threshold of
toxicological concern [9].

Taking into consideration this aspect, together with insufficient relevant metabolism
and toxicity data on Alternaria toxins that does not allow a proper health risk assessment
for animal and public health, EFSA has indicated a need for additional compound-specific
toxicity data [9].

The present study aimed to predict Phase I and II metabolites of alternariol as well
as develop a detailed ADME/Tox profile for AOH and predicted metabolites using an
in-silico workflow based on MetaTox, SwissADME, pKCMS, and PASS online software
of computational toxicology in order to provide additional toxicological data for AOH
toxicity.

MetaTox software was used to predict the metabolites of AOH that resulted from Phase
I and II reactions in order to describe the metabolomic profile of AOH [33], for which twelve
metabolites were predicted (Figure 1). AOH was predicted to generate three metabolites
for the Phase I reaction (M1–M3) from aromatic hydroxylation. For the Phase II reaction,
nine metabolites were predicted to result from the reaction of o-glucuronidation (M4–M6),
o-sulfation (M7–M9), and methylation (M10–M12). The existence of modified forms of
AOH have been reported in publications over the last few years [34]. For example, AOH
sulfate conjugates can be produced by the Alternaria alternata fungus, whereas plant tissue
can convert alternariol and alternariol-9-O-methyl ether into glucosylated metabolites [35].

The formation of glucuronides and sulfates of AOH and AME was reported as metabo-
lites of AOH and alternariol monomethyl ether in hepatic and extrahepatic microsomes
of rats, pigs, and humans, as well as in cultured human Caco-2 cells [36,37]. However,
these sporadic data cannot provide a metabolomic profile like that predicted by using the
MetaTox software, which uses an integrated assessment of the biotransformation reaction
probabilities and their sites by utilizing the algorithm of PASS [33]. Additionally, the effects
of these metabolites are unknown, and our study reports for the first time the prediction of
physicochemical properties, pharmacokinetic predictions, drug likeness, and toxic effects
related to the metabolomics profile of AOH.

With the exception of metabolites M4–M6, AOH and the predicted metabolites M1–M3
and M7–M12 have a moderate or high probability of being absorbed in the gut. These
results are in agreement with the assessment of drug likeness via SwissADME, showing
that the metabolites that resulted from the reaction of O-glucuronidation (M4–M6) violate
the Lipinski rule of five for oral availability (Table 2).

Previous studies using cultured Caco-2 cells as a widely accepted in vitro system to
evaluate human intestinal absorption and metabolism of drugs have shown that AOH
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appeared to be faster absorbed than AME from the gastrointestinal tract and may reach the
portal blood both as aglycone and glucuronide and sulfate conjugate [37]. Another recent
study has also shown that phase II metabolites of AOH and AME isolated from plants are
absorbed and further metabolized by Caco-2 cells, which implicates their possible in vivo
absorption in the animal gut [38]. However, it was predicted that none of these compounds
can penetrate the blood–brain barrier or CNS (Table 3).

There is strong evidence concerning the genotoxic effects of AOH, which was reported
to be mutagenic in in vitro tests as it can induce DNA strand break and act as a topoiso-
merases poison [39]. Additionally, Alternaria toxins were described as having other toxic
effects, such as cytotoxic, mutagenic, carcinogenic, and endocrine disruptors [4]. In addition
to these toxic effects, the computational model predicted other toxicological endpoints,
such as vascular toxicity, hematotoxicity, diarrhea, and nephrotoxicity, for which in vivo
evidence does not exist. As shown in the heatmap, several toxic effects (Figure 2) are
common for the analyzed compounds, suggesting they can have a potential contribution to
the overall toxicity of Alternaria toxins, as drugs with common modes of action may act
jointly to produce higher combination effects than those of each single drug (Scher, 2012).
For this reason, the combinatory effects of the parent toxin and its modified forms should
be considered in the health risk assessment study of mycotoxins [40].

Cytochrome P450 (CYP450) are a family of enzymes with a key role in the metabolism
of drugs and other xenobiotics, including mycotoxins [41,42]. Cyp450 enzymes can convert
drugs/xenobiotics into less toxic compounds in order to prevent their toxicity or, on the
contrary, generate reactive products (metabolites) that can cause toxicity [43].

AOH have been reported to enhance the expression of CYP1A cytochrome in human
cells of different tissue origin, especially in esophageal cells [44,45]. Another recent in vitro
study has shown that AOH is a potent inhibitor of CYP1A2, CYP2C9, but not of CYP2C19,
2D6, and 3A4 [46]. The computational model predicted that AOH had high probability
to be substrate for Cyp1A1, Cyp1A2 but also for Cyp2C12, Cyp1A6, Cyp2B6, Cyp2C,
and Cyp2C9 (Figure 3). These effects were also predicted for the metabolites M–M3 and
M10–M12, while all the analyzed compounds may be a substrate for CYP2A11.

Phase II drug-metabolizing enzymes involved in conjugation are mainly transferases
with important roles in the conjugation of xenobiotics or endogenous compounds and
the transformation of the parent compound into inactive metabolites, which can be easily
excreted by urine [47]. Previous studies have shown that glucuronidation realized by UGT
represents a major metabolic pathway for AOH transformation in hepatic and extrahepatic
tissues, and that at least nine human UGTs (1A1, 1A3, 1A6, 1A7, 1A9, 1A10, 2B7, and 2B15)
were able to conjugate AOH [36]. Similarly, our data have shown that AOH was predicted
to act as a substrate for five UGTs (1A1, 1A3, 1A6, 1A8, and 12A9). As shown in Figure 4,
metabolites from aromatic hydroxylation, methylation, o-glucuronidation, and o-sulfation
were also predicted as substrates for UGT1As, while only metabolites from o-sulfation
were predicted as substrates for UGT2Bs.

Other phase II enzymes are sulfotransferases catalyzing the sulfation of xenobiotics
or endogenous compounds [48]. AOH-sulfates that resulted from the sulfation reaction
were detected in plants [14,49,50] and as compounds resulting from AOH metabolism in
a CaCo2 cell model [37], or in the urine and feces of rats [51]. With the exception of the
metabolites that resulted from methylation, all the other compounds were predicted to be
substrates for sulfotransferase (Figure 4).

Glutathione S-transferases are Phase II detoxification enzymes that catalyze the glu-
tathione conjugation, playing an important role in the cellular detoxification system and
protecting cells from oxidative stress [52]. Previous studies have shown that alternariol
induces oxidative stress, DNA damage, and cell cycle arrest in cells of different origins [16]
but the mechanisms involved are not clearly understood. AOH and 4-OH-AOH were
shown to increase reactive oxygen species (ROS) synthesis [16], leading to an increase in
lipid peroxidation (LPO) [53].
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The analysis of the interaction of AOH with different markers of oxidative stress
(Figure 6) has shown a high probability of similar interactions, at least between AOH
and the metabolites of aromatic hydroxylation M1–M3 (9 common predictions), between
M1–M3 and the metabolites of methylation M10–M12 (9 common predictions), or between
AOH and M10–M12 (7 common predictions). Inhibition of transcription factor hypoxia
inducible factor-1α (HIF1A) expression, which mediates adaptive responses to oxidative
stress [54], was predicted as a common effect for all analyzed compounds, suggesting the
important role of the HIF1A-1α pathway in controlling oxidative stress.

Figure 6. Workflow used for the in-silico approach for metabolomic and toxicity prediction for
alternariol.

4. Conclusions

In silico approaches represent a useful tool for estimating the toxicity of mycotoxins
in order to predict toxicity, provide some preliminary information concerning the toxic
effect of the tested compound(s), and offer guidance for in vitro and in vivo toxicity tests.
As predicted by MetaTox software, 12 metabolites were identified as corresponding to the
metabolomic profile of alternariol. Our study reports for the first time the prediction of
physicochemical properties, pharmacokinetic predictions, drug likeness, and toxic effects
related to the metabolomic profile of AOH. The ADME profile for AOH and predicted
metabolites indicated a moderate or high intestinal absorption probability for AOH and
all metabolites, except for the metabolites that resulted from O-glucuronidation; however,
a low probability of penetration of the blood–brain barrier was demonstrated. As shown
in our data, the metabolites that resulted from the aromatic hydroxylation reaction have
similar toxicological endpoints to the parent compound, while the metabolites that resulted
from glucuronidation and sulfation show a wide and different toxicity profile.

Besides the cytotoxic, mutagenic, carcinogenic, and endocrine disruptor effects, the
computational model predicted other toxicological endpoints, such as vascular toxicity,
haemato-toxicity, diarrhea, and nephrotoxicity. AOH and its metabolites have been pre-
dicted to act as substrates for different isoforms of phase I and II drug-metabolizing
enzymes and to interact with the response to oxidative stress. Among all analyzed com-
pounds, AOH and the metabolites that resulted from aromatic hydroxylation were pre-
dicted to have the most interactions with the enzymes of Phase I and Phase II. Oxidative
stress was predicted to play an important role in AOH and its metabolites toxicity and
inhibition of transcription factor hypoxia inducible factor-1α (HIF1A) expression, which
mediates adaptive responses to oxidative stress and was predicted as a common effect for
all analyzed compounds, suggesting the important role of the HIF1A-1α pathway in the
oxidative stress induced by AOH and its metabolites.
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All these data concerning toxicity prediction may indicate, besides the individual
toxicity of AOH and its metabolites, a possible increasing effect on overall AOH toxicity
as the compounds with common modes of action may act jointly to produce higher com-
bination effects than those of each single drug. However, these in silico approaches have
some limitations, and all the predicted results should be confirmed in the future by in vitro
and in vivo toxicity tests that may validate the metabolic transformation of AOH in the
predicted metabolites as well as their ADME/Tox profile.

5. Materials and Methods
5.1. Prediction of Alternariol Metabolites

MetaTox is a free web application (http://www.way2drug.com/mg, accessed on
22 August 2022) that integrates metabolism pathway generation with the prediction of
acute toxicity. MetaTox uses the Marvin JS chemical editor to input and visualize the
molecular structure [33].

For metabolite prediction, the SMILE (simplified molecular-input line-entry system)
canonical structure for AOH was submitted to the online server MetaTox in order to predict
the xenobiotic metabolism and the possible sites of metabolism from biotransformation
reactions of phase I and II. MetaTox predicts the metabolomic profile resulting from nine
classes of reactions (aliphatic and aromatic hydroxylation, N- and O-glucuronidation,
N-, S-, and C-oxidation, and N- and O-dealkylation) catalyzed by human enzymes of
Phase I and II of drug metabolism (cytochromes P450s and UDP glucuronysil trans-
ferases) [33]. The calculation of probability for the generated metabolites is based on
analyses of “structure-biotransformation reactions” and “structure-modified atoms” re-
lationships using a Bayesian approach. A cut-off value of 0.9, “no-limit” for metabolite-
likeness, and a layer count value of 1 were chosen as the parameters for the prediction of
the metabolites for the AOH structure.

5.2. Prediction of Physicochemical Properties, Pharmacokinetic Predictions and Drug Likeness

Physically relevant properties and pharmaceutically-relevant descriptors of the al-
ternariol and metabolites were then predicted using Swiss ADME (http://www.swissadme.
ch, accessed on 23 September 2022) and pKCMS (https://biosig.lab.uq.edu.au/pkcsm,
accessed on 26 September 2022) free online software. The physicochemical properties (num-
ber of heavy atoms, number of aromatic heavy atoms, number of rotatable bonds, number
of hydrogen bond donors/number of hydrogen bond acceptors, topological polar surface
area), lipophilicity (cLog Po/w), and water solubility were predicted using SwissADME, a
free web tool to evaluate pharmacokinetics, drug-likeness, and the medicinal chemistry
friendliness of small molecules [23]. Drug likeness was performed via SwissADME in order
to evaluate the molecular properties of AOH and the predicted metabolites in the human
body based on Lipinski’s rule of five.

Pharmacokinetic properties related to absorption (water solubility, CaCo2 permeability,
intestinal absorption, skin permeability, P-glycoprotein substrate), distribution (blood–brain
barrier (BBB) and central nervous system (CNS) permeability, volume distribution (VD),
fraction unbound (Fu)) metabolism (substrate or inhibitors for P450 cytochromes), and
excretion (total clearance and renal OCT2 substrate), which are essential parameters for the
prediction of the drugs ADME [55], were predicted using pKCMS, a software that predicts
small-molecule pharmacokinetic and toxicity properties using graph-based signatures [24].

5.3. Prediction of Toxicity

The toxicological endpoints (Genotoxic, Toxic vascular, Hematemesis, Hematotoxic,
Carcinogenic, Teratogen, Embryotoxic, Endocrine disruptor, Inflammation, Mutagenic,
Hypercholesterolemic, Nephrotoxic, Reproductive dysfunction, Diarrhea) were predicted
using PASS Prediction of Activity Spectra for Substances (PASS) (http://www.way2drug.
com/passonline, accessed on 6 February 2023). PASS is an online free software that al-
lows the evaluation of the biological activity profile of an organic compound based on its

http://www.way2drug.com/mg
http://www.swissadme.ch
http://www.swissadme.ch
https://biosig.lab.uq.edu.au/pkcsm
http://www.way2drug.com/passonline
http://www.way2drug.com/passonline
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chemical structure. PASS can provide simultaneous predictions of different types of bio-
logical activity with two probabilities: the probability “to be active” (Pa) or the probability
“to be inactive” (Pi), expressed as a percentage of the probability. SMILE specifications
of AOH and predicted metabolites M1–M12 were submitted to PASS online software in
order to predict, in addition to their toxicological endpoints, the interaction with different
isoforms of Phase I and Phase II enzymes involved in the xenobiotic metabolization or their
involvement in the reactions related to oxidative stress. Toxicity profiles against different
organisms: Salmonella (AMES toxicity), Tetrahymena pyriformis (T. pyriformis toxicity), min-
now (Minnow toxicity), rats (oral acute toxicity—LD50, oral chronic toxicity—LOAEL), and
humans (maximum tolerated dose) were predicted using pKCMS software. The overall
procedures followed the in silico approach. The metabolomic and toxicity predictions for
alternariol are presented in Figure 6.
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