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Abstract: Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are
common contaminants found in a wide variety of food matrices, thus representing a threat to public
health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several
hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of
data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of
the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as
Quantitative Structure–Activity Relationship (QSAR) models, can be used to rapidly assess chemical
hazards by predicting different toxicological endpoints. In this work, for the first time, a compre-
hensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then,
specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity
were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted
that the developed QSAR models are compliant with the OECD regulatory criteria, and they can
be used for regulatory purposes. Finally, all data were integrated into a web server that allows the
exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool
is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity,
genotoxicity, and carcinogenicity of non-regulated mycotoxins.

Keywords: mycotoxins; QSAR; mutagenicity; genotoxicity; carcinogenicity

Key Contribution: For the first time; a database containing almost 4400 mycotoxins classified
in 170 different categories attending to their chemical structure has been constructed. Diverse
QSAR models have been developed for the prediction of mycotoxin mutagenicity, genotoxicity,
and carcinogenicity. The developed models have shown good performance and can be applied for
regulatory purposes.

1. Introduction

Mycotoxins are common contaminants present in several human food products and
animal feed. They are produced during the secondary metabolism of different filamentous
fungi (molds), being the most common mycotoxin-producing fungal species Aspergillus,
Fusarium, Penicillium, Claviceps, and Alternaria [1]. These genera are responsible for the
production of an important variety of mycotoxins, which also include the main mycotoxins
reported, such as aflatoxins, trichothecenes, fumonisins, ochratoxins, patulin, and zear-
alenone [2]. Some differences can be observed between strains: while Fusarium species
usually infect growing crops in the field, Aspergillus and Penicillium species frequently
grow on foods and feeds during the storage stage [3]. As a result, there is a wide range of
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foodstuffs susceptible to contamination by mycotoxins, including cereals, nuts, pasta, fruits,
coffee, and by-products of animal origin [4]. Thus, mycotoxins can enter the food chain
directly from plant-based food components contaminated with mycotoxins or due to the
consumption of animal-derived products from animals fed contaminated feedstuffs, due to
the carry-over of mycotoxins to animal-derived products such as milk, meat, and eggs [3].
Even when excellent agronomic, storage, and processing techniques are used, mycotoxin
contamination of food and feed is still an unavoidable and unpredictable hazard, creating a
challenging risk for food safety. Therefore, mycotoxin occurrence in foodstuffs is an actual
problem; indeed, mycotoxins are the main hazard reported in European border rejection
notifications by the Rapid Alert System for Food and Feed (RASFF) [3].

Moreover, it is worth highlighting that the pattern of mycotoxin production by several
fungi in different geographical distribution is being affected by climate change, generating
increasing concern [5]. For instance, the rises in temperature and rainfall in some geo-
graphical regions may result in more favorable environmental conditions for Fusarium,
as in Europe. On the other hand, longer and more frequent droughts may encourage
Aspergillus flavus to produce aflatoxins under both pre-harvest and post-harvest settings. In
addition, recent investigations have demonstrated that the growth of mycotoxin-producing
fungi can be stimulated even by a slight elevation in CO2 levels [6,7]. Thus, the chang-
ing climatic conditions we are facing nowadays could change mycotoxin production and
distribution worldwide.

Consumption of mycotoxin-contaminated food or feed can induce acute or chronic
toxicity in humans and animals, with chronic effects being the most prevalent, due to
prolonged exposure to lower concentrations. As a result, regulations concerning mycotoxins
have been implemented in many countries to safeguard consumers from the harmful effects
of these compounds [3,8]. Nevertheless, as regulations are primarily based on known toxic
effects, maximal allowed limits, or tolerable daily intakes (TDI) were determined only for a
few mycotoxins, as there are many mycotoxins for which no experimental data exist [9].

Therefore, additional risk assessment surveys on non-regulated mycotoxins are ur-
gently required. However, the performance of traditional in vivo assays on thousands of
different compounds would be extremely expensive and unethical. In this context, the ap-
plication of alternative methods, such as in silico strategies could be extraordinarily useful.
Indeed, several guidance documents have been drafted to improve standardization, har-
monization, and uptake of in silico methods by regulatory authorities including the EFSA
(European Food Safety Authority) and the ECHA (European Chemicals Agency) [10,11].
In this sense, the Commission Regulation No. 1907/2006 called REACH (Registration,
Evaluation and Authorisation of Chemicals) (http://ecb.jrc.it/reach/reachlegislation/)
(accessed on 23 January 2023) foresees the use of in silico methods such as (Quantitative)
Structure–Activity Relationship ([Q]SAR) models when the same level of information can
be obtained by means other than in vivo testing [10–12]. More concretely, information
relating to the genotoxic potential of chemicals by using in silico prediction approaches
has become an important source, as recommended by the REACH regulation as well
as the ICH M7 guideline for the assessment and control of DNA reactive or mutagenic
impurities [12–15].

Among the toxic effects that can be caused by mycotoxins, the induction of genetic
alterations is an important matter of concern [14,16–18], as several mycotoxins and some
of their metabolites have been described as genotoxic compounds, including aflatoxins,
ochratoxins, citrinin, and HT-2 and T-2 toxins [19]. However, scarce information has been
reported regarding the capability of other mycotoxins to cause these adverse effects.

A genotoxic compound can induce mutations (mutagenicity) and/or cause the genera-
tion of tumors (carcinogenicity). To characterize these properties, an in silico toxicology (IST)
protocol template [20] as well as a protocol for genetic toxicology (the GIST protocol) [14]
have been designed and developed by an international consortium comprising several in-
dustry, academia, and government agencies. Therefore, in the present study, in vitro tests
recommended for the mutagenicity and genotoxicity endpoints by the GIST have been
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taken into account to search experimental data for QSAR model building. To define the
mutagenicity, the in vitro bacterial reverse mutation assay (commonly referred to as the
Ames test) provides robust and high-quality data, which have been previously used to
develop QSAR models with a good performance in predicting mutagenic activity. On the
other hand, for genotoxicity assessment, data on in vitro micronucleus (MN) assay have
been widely used, while carcinogenicity is evaluated by detecting tumor generation in
in vivo models.

The aim of the present study was the development of specific QSAR models to predict
genotoxicity, mutagenicity, and carcinogenicity of a wide range of mycotoxins. To this
end, we build, for the first time, a comprehensive database including almost 4400 different
mycotoxins, clustered in different categories according to their chemical structure. We
then overlapped this list with different databases of genotoxicity, mutagenicity, and car-
cinogenicity to obtain experimental data based on the Ames test for mutagenicity, in vitro
and in vivo MN assay for genotoxicity, and data from in vivo models for carcinogenicity.
These data were then applied for the building and validation of scientifically valid and
robust QSAR models that predicted the endpoints on a test set of mycotoxins with a high
accuracy, sensitivity, and selectivity. Finally, the mycotoxins database together with the
predicted toxicity values was integrated in a new, open access web server that can be
explored interactively.

2. Results
2.1. Mycotoxin Database and Clustering

Our search resulted in a data set of 4360 mycotoxins identified by their name, iso-
meric SMILES (Simplified Molecular Input Line Entry System) and PubChem CID. In
addition, we grouped the mycotoxins according to their chemical structure in 170 different
families. To our knowledge, this is the first time that such a comprehensive database
of mycotoxins has been published, as previous works only made reference to several
hundred mycotoxins [21–25]. To provide an easy access to the database, we have cre-
ated a web application, MicotoXilico, that allows easy exploration of the data (https:
//chemopredictionsuite.com/MicotoXilico, accessed on 20 May 2023).

In order to better visualize the structural diversity of the mycotoxins, a clustering
based on k-nearest neighbor approach from structural fingerprints was performed (https:
//tmap.gdb.tools/ accessed on 20 May 2023). The resulting graphs can be explored
interactively at the MicotoXilico web. In Figure 1, a clustering plot indicating the major
categories of mycotoxins is depicted. In the graph, the number of linkages between
compounds is proportional to their chemical similarity, meaning that similar mycotoxins
will be connected through short pathways.

As we see, myctoxins have a very high structural variability, representing almost the
full range of natural products. They include alkaloids, terpenoids, peptids, fatty acids,
lactones, nucleotids, phenols, and anthraquinones, among others. Until now, even if there
were some known categories such as zerealones, ergot alkaloids, or trichothecenes, there
exists no general systematic classification of mycotoxins. In our classification, we have main-
tained the groups based on specific structural motives, including between 5 and 50 different
compounds. An overview of the categories and the number of compound in each category
can be found in the Appendix A (Table A1). In some cases, when there was a very high
similarity between structures, we have created unified groups, such enniatins and beau-
vericins, emodins and rubrofusarins, asperlins and asperlactones, fusarins and fusariens, or
usnic acids and ustins. In other cases, the structural similarity was not big enough to unify
categories, but it was still remarkable, for instance, between sphingofungins and fumon-
isins, alternariolides and enniatins, roquefortines and ergot alkaloids, or brefeldins and
zearealones. These similarities can be appreciated in the graphical clustering visualization.

https://chemopredictionsuite.com/MicotoXilico
https://chemopredictionsuite.com/MicotoXilico
https://tmap.gdb.tools/
https://tmap.gdb.tools/
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Figure 1. TMAP clustering graph of the database containing 4360 mycotoxins. The most important
categories are labelled in different colors. For an interactive exploration of all categories, please visit
MicotoXilico (https://chemopredictionsuite.com/MicotoXilico, accessed on 20 May 2023).

Some of the larger, more traditional categories have a higher structural variability
because they include several subgroups of compounds. For instance, cytochalasan alcaloids
can be subclassified into chaetoglobosins, daldinins, and chalasins. In particular, tri-
chothecenes, the most abundant category, with more than 350 compounds, has a high num-
ber of subcategories, as can be explored in the web server (https://chemopredictionsuite.
com/MicotoXilico, accessed on 20 May 2023).

Some compounds could not be associated with a specific structural category, and
they have therefore been classified into more general groups comprising alkaloids, ter-
penoids, amino acid derivatives, peptides, clyclic peptides, nucleotides, anthraquinones,
benzoquinones, naphthalenes, phenols, phtalates, furans, lactones, thiazolidines, and fatty
acid-like compounds. Furthermore, 79 compounds could not been associated with any
category and were labelled as “not classified”.

2.2. QSAR Models Building

Once we had generated a comprehensive database of mycotoxins, we wanted to
optimize several machine learning models to predict the genotoxicity, mutagenicity, and
carcinogenicity of these compounds. The tests chosen for the characterization of each type of
toxicity follow the recommended endpoint protocols of the OECD [26]. For data searching,
we overlapped our ensemble of mycotoxins with different databases of mutagenicity,
genotoxicity, and carcinogenicity to obtain experimental data based on the Ames test for
mutagenicity, in vitro and in vivo MN assay for genotoxicity, and data from in vivo models

https://chemopredictionsuite.com/MicotoXilico
https://chemopredictionsuite.com/MicotoXilico
https://chemopredictionsuite.com/MicotoXilico
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for carcinogenicity. As expected, experimental data could only be found for a relatively
low number of compounds (350–100 compounds, depending on the endpoint).

These data were then used for the building and validation of robust QSAR models
to predict the four endpoints. For model building, we followed the protocols described in
the materials and methods section that meet the requirement of the five principles of the
OECD for QSAR model building in a regulatory context [27].

A summary of the characteristics of the final classification models can be found in
Figure 2, including the number of compounds in the training and test set, the descriptor
selection method, the number of descriptors, the compound/descriptor ratio, and the
model algorithm. In the Appendix A, a list with the molecular descriptors selected for
each model can be found (Tables A2–A6). It is worth mentioning that the descriptors were
selected from a panel of more than 4000, including 2D and 3D descriptors, in order to
obtain the best chemical description of the complex mycotoxin structure.

For mutagenicity, models based only on mycotoxin data could be build, as data for up
to 365 compounds could be retrieved, with a balanced proportion between mutagenic and
non-mutagenic compounds. Two mutagenicity QSAR models (model A and model B) were
generated applying two different data selection criteria (for details, see Section 5.3). In both
cases, all the parameters included in the metrics were higher than 0.8, thus showing a good
performance. Both models were able to correctly predict the mutagenicity of almost 90% of
compounds in the internal cross validation.

For genotoxicity, data retrieval was much more complicated, as very few data from
non-genotoxic mycotoxins could be detected. Therefore, we decided to build mixed models
including mycotoxins and other organic compounds (for details, see Section 5.4). Regarding
the in vitro genotoxicity QSAR model, information on the in vitro MN assay from 455
compounds was considered (Figure 2). For a more comprehensive analysis of genotoxicity,
we decided to also include an in vivo genotoxicity model. In this case, the ProtoPRED
model (https://protopred.protoqsar.com/, accessed on 20 May 2023) based on the in vivo
MN assay was applied, built from a training set that included mycotoxins. Regarding the
performance of these models, most parameters were higher than 0.8 (Figure 3d). Only the
specificity was moderate, as some non-genotoxic compounds were predicted as genotoxic
in the internal validation. This result could relate to the fact that only a few data from
non-genotoxic mycotoxins could be found.

For carcinogenicity, again we applied the in vivo carcinogenicity QSAR model from
ProtoPRED (https://protopred.protoqsar.com/, accessed on 20 May 2023), containing
mycotoxins in the training set, as not enough carcinogenicity data were retrieved to build a
specific model. The metrics obtained for the carcinogenicity QSAR model showed a good
performance on the training set, with all parameters being higher than 0.9. Parameters on
the test set showed lower values, especially for precision and sensitivity, but are still close
to 0.7, the value recommended for QSAR models by ECHA [28].

When we compare the metrics of the training and test sets in Figure 2, we can see
that there are almost no differences for the mutagenicity models, small differences in
the in vitro genotoxicity model, and a higher difference in the carcinogenicity and the
in vivo genotoxicity. This result is coherent with the fact that the mutagenicity models were
built only with mycotoxins, while in the other models, only part of the training set were
mycotoxins, meaning that we have more structural differences between the training and
test set.

https://protopred.protoqsar.com/
https://protopred.protoqsar.com/
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Figure 2. Metrics for QSAR models of (a) mutagenicity model A, (b) mutagenicity model B, (c) in vitro
genotoxicity, (d) in vivo genotoxicity, and (e) carcinogenicity. ACC: accuracy; PREC: precision; SENS:
sensitivity; AUC: area under the curve; SPEC: specificity; LGBM: Light Gradient Boosting Machine
Classifier; LR: logistic regression; RFE: recursive feature elimination; SVC: Support Vector Machine
Classifier (SVC).
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Figure 3. Matrix confusion for the external validation of (a) the mutagenicity QSAR model A applied
to 24 mycotoxins, (b) the in vitro genotoxicity QSAR model applied to 15 mycotoxins, (c) the in vivo
genotoxicity QSAR model applied to 72 mycotoxins, and (d) the carcinogenicity QSAR model applied
to 75 mycotoxins. SPEC: specificity; SENS: sensitivity; ACC: accuracy; pred NEG: predicted negatives;
pred POS: predicted positives.

2.3. QSAR Model Application to an External Validation Set

After model building and internal validation, we decided to further confirm the
performance of the models by performing an external validation with an independent set
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of mycotoxins with known experimental data. This allows us to evaluate if the model is
truly predictive or if the model has been overfit to the data used for model building.

Since only the mutagenicity model A is considered valid from a regulatory point of
view, we decided to subject only this model to external validation. The list containing
the different mycotoxins used for the external validation for each model can be found in
Tables A7–A10 of the Appendix A. Figure 3 shows the resulting confusion matrix for all
model validations, proving that the experimental data were in general well predicted.

For mutagenicity (Figure 3a), the confusion matrix showed that the model was capa-
ble of correctly classifying more than 0.8 of the compounds (0.83 accuracy). The in vitro
genotoxicity QSAR model showed the highest accuracy (0.93) within all developed models.
All genotoxic compounds were predicted as positive (1.00 of sensitivity), while only one
compound out of 7 non-genotoxic mycotoxins was predicted as genotoxic (0.86 of speci-
ficity) (Figure 3b), thus improving the specificity of the internal validation of the in vitro
model. For the in vivo genotoxicity model, however, although obtaining good values for
accuracy (0.81) and sensitivity (0.88), the specificity was again low (0.46), proving that this
model was not accurate for the prediction of non-genotoxic compounds.

The carcinogenicity model was applied to a validation set of 75 mycotoxins, showing
an accuracy of 0.81. The 89% of non-carcinogenic mycotoxins were predicted as inactive
compounds, while 77% of carcinogenic mycotoxins were predicted as active compounds
(Figure 3d).

Thus, even if the models were built with a small data set of experimental data from
mycotoxins, they seem to have a good predictive power on the external validation set
of mycotoxins.

In order to see how well our models were adapted to mycotoxins, in comparison with
other, more general toxicological QSAR models, we also performed a prediction with the
validation data set applying three other reference QSAR tools: VEGA [29], Leadscope, and
Case Ultra (the last two being integrated into QSARToolbox) [30]. We predicted the same
four endpoints, obtained from the same or a very similar protocol. The metrics of these
predictions can be found on Table A11.

We can observe that, in general, our models provide a better prediction for the selected
test mycotoxins. Only for mutagenicity do we obtain a better prediction with Case Ultra;
however, six compounds could not be predicted by this model because they were outside
the applicability domain. Also, for the other models, the prediction of several mycotoxins
could not be performed because they were not in the applicability domain. We have also
found that, in some cases, VEGA could not correctly read and normalize structures with
aromatic rings, probably due to the aromaticity model that the software uses. These results
show that our models are better adapted to complex structures with several aromatic rings,
which are typical mycotoxin structures.

2.4. Mutagenicity, Genotoxicity, and Carcinogenicity Prediction of the General
Mycotoxin Database

After model building, we wanted to perform a prediction of the genotoxicity, muta-
genicity, and carcinogenicity of the whole mycotoxin database described in Section 2.1. A
general overview of the results is presented in Figure 4, and detailed predictions can
be explored in the MicotoXilico web application (https://chemopredictionsuite.com/
MicotoXilico, accessed on 20 May 2023).

https://chemopredictionsuite.com/MicotoXilico
https://chemopredictionsuite.com/MicotoXilico
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Figure 4. Global overview of genotoxicity, mutagenicity, and carcinogenicity predictions of the
whole database of mycotoxins. Clustering was performed with the TMAP package. Blue = non-
toxic; red = toxic. For more details, please visit MicotoXilico (https://chemopredictionsuite.com/
MicotoXilico accessed on 20 May 2023).

From the figure, we can appreciate that a very high percentage of mycotoxins are
predicted to be genotoxic, mutagenic, and/or carcinogenic. This result is not surprising, as
the definition of mycotoxin already assumes that we are dealing with toxic compounds.
In particular, genotoxicity seems to be a property of most mycotoxins, as 80–90% of these
compounds are predicted as genotoxic. However, further studies are required to confirm
these results, as the models were built with only a few data from non-genotoxic mycotoxins,
and the genotoxicity models only have a moderate specificity.

We also used the Benigni and Bossa rules for mutagenicity [31], implemented in Pro-
toICH software (https://protopred.protoqsar.com/, accessed on 20 May 2023) to identify
the presence of structural mutagenicity alerts in our database. The number of molecules
detected as positive based on structural alerts were significantly less in comparison with the
molecules detected as positive based on QSAR models (https://chemopredictionsuite.com/
MicotoXilico, accessed on 20 May 2023). On the contrary, when we performed the same
comparison with a set of over 6000 general organic compounds, most of the compounds
predicted as mutagenic had a mutagenicity alert (data not shown).

In order to compare the toxicity between mycotoxin categories, we represented the per-
centage of genotoxic, mutagenic, and carcinogenic compounds for the 30 major mycotoxin
categories in a heatmap (Figure 5).

https://chemopredictionsuite.com/MicotoXilico
https://chemopredictionsuite.com/MicotoXilico
https://protopred.protoqsar.com/
https://chemopredictionsuite.com/MicotoXilico
https://chemopredictionsuite.com/MicotoXilico
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As we can see, there are several categories that are specially concerning, as they
have a very high toxicity prediction in mutagenicity, genotoxicity, and carcinogenicity
(Figure 5), such as aflatoxins, chromanes, fusidic acids, griseofulvins, nitropropionic acids,
sterigmatocystins, and verticillins. Some categories have non-positive predictions in some
of the toxicity endpoints (taxols and lovastatins), but there is no type of compound that is
negative in all three toxicities.

In many categories, the mutagenicity alerts correspond to a very high mutagenicity
prediction (<80%), such as in aflatoxins, emodins, napththazarins, and sterigmatocystins.
However, it is worth highlighting that several categories without alerts showed a high
predicted mutagenicity index, such as alternarenes, chromanes, enniatins and beauvericins,
fusidic acids, nitropropionic acids, and verticillins.

3. Discussion

In this work, we explored the application of in silico QSAR models to obtain toxicity
data of mycotoxin, which are urgently needed for public health regulations. In order to
obtain a general overview of the type and number of mycotoxins that exist, we performed a
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comprehensive search, generating for the first time a database containing almost 4400 com-
pounds. Our research revealed that the number and diversity of the identified mycotoxins
is much higher than generally assumed: most publications only indicate the existence of
several hundreds of mycotoxins, while we found more than 4000 known mycotoxins. It
is worth mentioning the high structural diversity of these compounds, which generally
have relatively high molecular weights and many structures including sugar, aromatic, or
peptide rings.

The constructed database allowed us to perform a search of mutagenicity (Ames test),
genotoxicity (in vivo and in vitro MN assay), and carcinogenicity (in vivo models) data by
overlapping with different experimental databases. The search confirmed a low availability
of experimental data, covering only a small percentage of the total existing mycotoxins.
Nevertheless, we could obtain and validate robust QSAR models that predicted the four
endpoints on an external validation set of mycotoxins with a relatively high accuracy,
sensitivity, and specificity. These good results could be achieved by taking into account
the specific characteristics of mycotoxins during the model building process, creating
an appropriate applicability domain by the inclusion of mycotoxin and mycotoxin-like
structure in the training set, and using a broad panel of 2D and 3D chemical descriptors.
This was further confirmed by a comparison of the prediction of the mycotoxin’s validation
set with three other, more general, QSAR reference tools (Table A11), which provided a
worse prediction and only included part of the molecules in their applicability domain. In
the case of the genotoxicity, the specificity of the predictions was moderate to low, probably
due the fact that only a few data from non-genotoxic mycotoxins were retrieved and
incorporated in the models. Thus, further experiments are required to confirm the existence
of non-genotoxic categories of mycotoxins. However, following the caution principle, a
model with lower specificity (predicting false positives) is preferred over a model with
lower sensitivity (predicting false negatives).

When applying the prediction models to the database constructed containing almost
4400 mycotoxins, we obtained a very high proportion of mutagenic, carcinogenic, and
especially genotoxic compounds. This result is not unexpected, as mycotoxins are defined
per se as toxic compounds, and compounds of many categories proved to induce acute
toxicity. However, differences between categories can be observed, mainly due to differ-
ences in the chemical structure. Concerning genotoxicity, all major categories included
compounds with a positive genotoxicity prediction. Among them, some categories are well
known to be genotoxic, such as aflatoxins, ochratoxins, or sterigmatocystins. Indeed, 97%
of mycotoxins from the ochratoxin family have been predicted as genotoxic compounds.
This result agrees with the scientific opinion published by the EFSA in 2020 [32] indicating
the genotoxicity of ochratoxin A and thus eliminating the previously established TDI and
establishing instead an MOE (Margin Of Exposure), as no threshold can be allowed for
genotoxic compounds. In the case of sterigmatocystin, a mycotoxin structurally related
to aflatoxin B1, it has been demonstrated to induce tumors in diverse animal species, and
thus, it is a known carcinogen mycotoxin [33], which agrees with the prediction performed
with our QSAR models.

However, some categories showing a high percentage of genotoxic potential, are not well
studied. For instance, griseofulvins were predicted as genotoxic by both in vitro and in vivo
QSAR models. In the literature, animal studies have shown evidence that they are able to
cause a variety of acute and chronic toxic effects, including liver and thyroid cancer in rodents,
abnormal germ cell maturation, teratogenicity, and embryotoxicity in various species [34].

Regarding enniatins and beauvericins, commonly named as emerging Fusarium myco-
toxins, the EFSA concluded in 2014 that a risk assessment was not possible given the lack of
relevant toxicity data [35]. On one hand, in vitro genotoxicity data available suggested a po-
tential genotoxic effect for beauvericin, while in vitro genotoxicity data for enniatins were
negative. These results agree with those predicted by the in vitro QSAR model developed
in our study (Figure 6). On the other hand, there are no in vivo genotoxicity data for either
beauvericin or enniatins and no studies on carcinogenicity of beauvericin and enniatins
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have been identified, and thus, the use of in silico predictions for these endpoints can
provide valuable information. Thus, according to predictions on enniatins and beauvericin,
79% and 71% of compounds from this category were predicted as genotoxic (in vivo model)
and carcinogenic, respectively. In addition, 71% of enniatins and beauvericin were also
predicted as mutagenic, thus suggesting a careful assessment of the emerging Fusarium
mycotoxins toxicity.
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Compounds from several categories have been classified as carcinogenic by the
IARC [36], such as aflatoxins, trichothecenes, or fumonisins. Other classes, such as actino-
mycins, cyclosporings, and lovastatins, have still not been classified, but they are labelled as
potentially carcinogenic by the ECHA. Furthermore, in several categories, carcinogenicity
predictions proved to have an impact on the DNA of cells. For instance, aphidicolin is
an inhibitor of eucaryotic nuclear DNA. Brevianamide produced a slightly teratogenic
effect in chick embryos [37]. Emodin is suspected to create DNA strand breaks and/or
non-covalently binding to DNA and inhibiting the catalytic activity of topoisomerase II
(Toxin and Toxin Target Database (T3DB)); nevertheless, a genotoxic effect could be con-
firmed [38]. Mycophenolic acid inhibits the de novo pathway of guanosine nucleotide
synthesis without incorporation into DNA (Toxin and Toxin Target Database (T3DB)).

Alternariols and alternarenes are Alternaria mycotoxins that can be found in cereals
around the world, but little relevance is still given to this fact. Currently, the toxicity of
several altenariols is being investigated, including alternariol, alternariol monomethyl
ether, altertoxins, altenuene, tenuazonic acid, and tentoxin. Among them, tenuazonic
acid, alternariol, alternariol monomethyl ether, altenuene, and altertoxin I are the most
important mycotoxins that can be found as contaminants in fruits and vegetables [39]. In
2011, the EFSA carried out a risk assessment on Alternaria toxins, as they were reported
to induce genotoxicity, cytotoxicity, and reproductive and developmental toxicity, among
other adverse effects [40]. Regarding their genotoxic effects, it was reported that alternariol,
alternariol monomethyl ether, and altertoxins could induce gene locus mutation, DNA
damage or synthesis disorder, chromosome aberration, and other effects in in vitro studies.
In fact, according to the in vitro genotoxicity model developed, 100% of mycotoxins from
the alternariols category was predicted as genotoxic compounds. In addition, alternariols
have been related to the high incidence of esophageal cancer in Linxian, China [39], which
can be related to our findings, as 62% of compounds belonging to this family were predicted
as carcinogenic mycotoxins. Thus, special attention should be paid to this mycotoxin
category. In this sense, maximum levels have been recently recommended by the EU in the
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Commission Recommendation 2022/553 [41] for alternariol, alternariol monomethyl ether,
and tenuazonic acid.

A high percentage of trichothecenes have been predicted as genotoxic by the in vitro
model (97%) and the in vivo model (76%). The main trichothecene reported to occur
in food commodities is deoxynivalenol. Although deoxynivalenol is not genotoxic by
itself, it has recently been shown that this toxin exacerbates the genotoxicity induced
by model or bacterial genotoxins. In addition, other trichothecenes, namely, T-2 toxin,
diacetoxyscirpenol, nivalenol, fusarenon-X, and the newly discovered NX toxin, were
also reported as compounds able to exacerbate the DNA damage inflicted by various
genotoxins [42]. In addition, in the study reported by Yang et al. [43], deoxynivalenol
was able to cause damage to the membrane, the chromosomes, and the DNA at all times
of culture in human peripheral blood lymphocytes, thus concluding that deoxynivalenol
potentially triggers genotoxicity in human lymphocytes. In other study performed on
Sprague Dawley rats, deoxynivalenol increased the percentage of chromosomal aberration,
DNA fragmentation, and comet score [44].

Citrinin, a mycotoxin classified in the chromanes category, has been reported to be
genotoxic at high concentrations in cultured human lymphocytes, as it caused a significant
concentration-dependent increase in MN frequency in human lymphocytes [45], a result
according to our genotoxicity predictions for the chromanes category, where almost 90% of
compounds were predicted as genotoxic by both the in vitro and the in vivo models.

The same occurs with zearalenones, which have been predicted as genotoxic by both
genotoxicity models, according to some data reported showing that zearalenone and some
of its metabolites increased the percentage of chromosome aberrations in mouse bone-
marrow cells and in HeLa cells [46] and can increase the frequencies of polychromatic
erythrocytes micronucleated and chromosomal aberrations in bone marrow cells from
Balb/c female mice [47].

Regarding fumonisins, 87% of mycotoxins belonging to this family were predicted
as genotoxic by the in vitro model. The most predominant, fumonisins, fumonisin B1,
fumonisin B2, and fumonisin B3, are carcinogenic and genotoxic secondary metabolites
found in corn-based foods worldwide and are produced by Fusarium verticillioides and
F. proliferatum [48]. Fumonisin B1 is defined by IARC as a possible human carcinogen in
Group 2B, and it shows genotoxic activity via oxidative stress, DNA damage, cell cycle
arrest, apoptosis, inhibition of mitochondrial respiration, and deregulation of calcium
homeostasis [49]. Some studies revealed that exposure to fumonisin B1 caused a significant
increase in micronucleus frequency in a concentration- and time-dependent manner in
rabbit kidney cells [50], and in HepG2 cells, fumonisin B1 has shown clastogenic effects [51].

Studies on the genotoxic activity of ergot alkaloids, also predicted as genotoxic by our
models, are very limited. In the scientific report delivered by EFSA in 2012 [52], it was stated
that genotoxicity studies on ergot alkaloids were insufficient, and more concretely, some
studies evaluating the genotoxic and mutagenic effects of ergotamine revealed different
results. In the literature, it has been reported that ergotamine is able to induce chromosomal
abnormalities in human lymphocytes and leukocytes [53] but does not show mutagenic
effects in mouse lymphoma cells [54]. Other authors have demonstrated that ergotamine
and ergometry can induce sister chromatid exchange in ovarian cells [55]. Due to the scarce
and different data obtained, further studies are necessary to evaluate the genotoxic and
mutagenic potential of ergot alkaloids.

Furthermore, our results reveal that several mycotoxin categories are predicted as
mutagenic but have no mutagenicity alert following ICH-M7 criteria. This did not happen
when we performed the same comparison with a general database of organic compounds,
where almost all molecules predicted as mutagenic had an alert. For some of these cate-
gories, no mutagenicity has been detected previously (alternarenes, enniatins and beau-
vericins, fusidic acids, and verticillins), while for others, some experimental evidence exists
already (chromanes, nitropropionic acids, among others) [56,57]. This suggests that the
structure of the mycotoxins could have been underestimated in the expert analysis of the
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mutagenicity, and that ICH-M7 criteria do not take into account specific mutagenic struc-
tural motives present in mycotoxins. Regulatory agencies should take this into account and
request a revised version of these criteria to obtain a better coverage of mycotoxins, which
are a danger for public health, and thus prioritize mycotoxins based on their mutagenic,
genotoxic, and carcinogenic potential, as already suggested in other studies [58–60].

4. Conclusions

The web server developed in this work represents a valuable resource for scientists,
industry, and regulatory agencies, including a comprehensive database of over 4000 myco-
toxins divided into categories that can be easily explored by an interactive visualization.
To our knowledge, this is the first database containing such a high number of mycotoxins.
Furthermore, the user can directly access a prediction of the mutagenicity, genotoxicity,
and carcinogenicity of the whole ensemble of mycotoxins, without the need to perform a
prediction workflow. The data are based on mycotoxin specific and robust QSAR models,
that were built up according to OECD principles and are adapted to REACH criteria, which
means that they can be used for regulatory purposes. Thus, the developed models are a
valuable tool for screening toxicity of non-regulated mycotoxins. Future perspectives of our
work include the experimental validation of our models by analyzing selected mycotoxins
from categories with no data in the training set, which have to be synthesized or purified,
as most of them are not commercially available. Furthermore, the new QSAR models will
be included in our ProtoPRED platform.

5. Materials and Methods

To achieve the development of adequate and robust QSAR models, several elements
are required. First of all, a data set providing experimental values of a biological activity or
property for a group of already tested chemicals is necessary; in this case, the biological
properties evaluated were mutagenicity, genotoxicity, and carcinogenicity; thus, experimen-
tal results derived from the mutagenic assay Ames test and the in vitro and in vivo MN test,
and in vivo long-term carcinogenicity assay on rodents have been collected, as described in
Section 5.1. Secondly, statistical methods (often called chemometric methods) are employed
to find and validate the relationship between the calculated descriptors and the toxicity
properties of the mycotoxins. The exact workflow is summarized in Figure 6 and described
in the following sections.

5.1. Mycotoxin Data Set Construction and Chemical Data Curation

For the construction of a general data set of mycotoxins, an initial list of mycotoxins
was collected from the literature [22,61–66] and specific mycotoxin databases (https://
zenodo.org/record/2648816#.ZClfI3ZBy5d; https://sciex.com/products/spectral-library/
mycotoxin-libraries) (accessed on 2 March 2022).

This list was further completed by searching in PubChem for compounds of the same
family, and their metabolites, resulting in a list of 4360 compounds. Only compounds that
were directly produced by fungi and their metabolites were included. For each compound,
the isomeric SMILES together with the CAS number and the PubChem CID code was
retrieved. The resulting database was further curated by normalizing the smiles and
removing counterions, salts, and mixtures. Finally, each compound was assigned to a
specific family or category to their chemical structure, obtaining 170 different categories
(Table A1).

5.2. Mycotoxin Clustering and Chemical Space Distribution

To study the chemical space of the generated mycotoxins data set, a fingerprinting
system was generated using the LSH Forest algorithm from TMAP (https://tmap.gdb.tools/,
accessed on 20 May 2023) for dimensionality reduction. Each point in the TMAP represents
a fingerprint of a unique chemical transformation generated using the fully trained model.
The points were colored by categories or their outcome in the toxicity predictions. The Faerun

https://zenodo.org/record/2648816#.ZClfI3ZBy5d
https://zenodo.org/record/2648816#.ZClfI3ZBy5d
https://sciex.com/products/spectral-library/mycotoxin-libraries
https://sciex.com/products/spectral-library/mycotoxin-libraries
https://tmap.gdb.tools/
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package (https://pypi.org/project/faerun/, accessed on 20 May 2023) was used to create an
interactive visualization tool for the clustering scheme.

5.3. Mycotoxin Mutagenicity QSAR Model

For QSAR mutagenicity model development, the endpoint Bacterial Reverse Mutation
Test (Ames test) (OECD test guideline 471) was selected (Figure 7), considered the first
outcome to assess the possible mutagenicity of a substance [67,68]. We scanned several high-
quality databases (Carcinogenic Potency Database CEBS, CCRIS Mutagenicity assay, Vega,
QSAR Toolbox, EFSA OpenFoodTox, ECVAM, etc.) as well as the scientific literature [68]
for data of the compounds of our previously generated mycotoxin database. For each
compound, CAS number, isomeric SMILES, and experimental data expressed as active (1)
or inactive (0) were compiled in a table.
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As a result, raw data of 356 mycotoxins were recovered, which were further refined as
follows: For a first model A, data of 120 compounds (75 mutagens and 45 no mutagens)
were selected that strictly fulfil the OECD guideline TG471: assayed with at least five
Salmonella strains (TA1535, TA1537 or TA97 or TA 97a, TA98, TA100, and TA102) with
and without microsomal activation by S9 fraction, since often the interaction with genetic
material occurs after metabolic activation. For a second model B, data were selected less
strictly, to cover a greater part of the chemical space, including data from at least two
strains with or without metabolic activation. The data set of model B was composed of 287
compounds, with a ratio of mutagens to non-mutagens of 108/179. A third data set of 24
compounds, fulfilling the OECD guideline, was saved for external validation (Section 5.6).

For the development of the QSAR models, around 4000 different chemical descriptors
from 15 different categories were calculated for each compound with an in-house python
script. Then, descriptors were selected by recursive feature elimination (RFE) to 7 for model
A and 13 for model B (Tables A2 and A3). In the next step, the data set was divided into
a training set for model building, and a test set, in a proportion of 75–25%, respectively.
Mutagenic and non-mutagenic compounds were distributed homogeneously in both sets.
For model building, several algorithms were tested on the training set, obtaining the best
metrics for Logistic Regression.

5.4. Mycotoxin Genotoxicity QSAR Models

For in vitro genotoxicity QSAR modelling, the in vitro MN assay was chosen, a robust
and quantitative assay of chromosome damage with the capacity to detect not only clas-
togenic and aneugenic events but also some epigenetic effects and recommended by the
OECD for genotoxicity evaluation in test guideline 487 (Figure 7).

Databases (Genetic Toxicology Data Bank in PubChem and eChemPortal) and the
scientific literature [69–71] were scanned for data for the in vitro MN assay, fulfilling the
OECD guideline, retrieving data for 91 compounds, of which 15 were saved for external val-
idation (Section 5.6). To enable model building, the data set was further completed with 379

https://pypi.org/project/faerun/
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compounds that were not mycotoxins but close in the chemical space, generating a final data
set of 455 compounds. The ratio of genotoxic to non-genotoxic compounds was 264/191,
respectively. For model building, the same procedure as in Section 5.3 was employed, also
obtaining model based on 25 descriptors (Table A4) based on Logistic Regression.

For in vivo genotoxicity QSAR modelling, the in vivo MN assay on mammalian ery-
throcyte was chosen (OECD test guideline 474), which identifies substances that cause
micronuclei in erythroblasts sampled from bone marrow and/or peripheral blood cells
of animals, usually rodents. As not enough data for mycotoxins could be retrieved
(72 mycotoxins from the ISSMIC public database), the QSAR model from ProtoPRED
(https://protopred.protoqsar.com/, accessed on 20 May 2023) including mycotoxins in the
training set, was applied. The model was built with 13 descriptors (Table A5) and based
on the Support Vector Machine Classifier (SVC) algorithm. The model was then externally
validated with the external set of 72 mycotoxins obtaining good results. All mycotoxins
were included in the applicability domain of the model.

5.5. Mycotoxin Carcinogenicity QSAR Model

For carcinogenicity assessment, the long-term carcinogenicity study on rat was em-
ployed, fulfilling the OECD test guideline 451 (Figure 7). As there was not enough data
to build a specific model for mycotoxins (75 mycotoxins from different databases, such as
PubChem AID_1259411, Carcinogenic Potency Database CEBS and OpenFoodTox TX22525),
the QSAR model from ProtoPRED (https://protopred.protoqsar.com/ accessed on 20 May
2023) was applied, showing excellent results when applied to the 75 mycotoxins in the external
validation. All mycotoxins were included in the applicability domain of the model.

The data for developing the model was extracted from Carcinogenicity I (ISSCAN)
public database retrieved from QSAR Toolbox, which contains curated information on
chemical compounds tested with the long-term carcinogenicity bioassay on rodents (rat
and mouse). The main primary sources of data are the NTP, CPDB, CCRIS, and IARC
repositories. After curation and preprocessing, the database was formed by 652 experi-
mental results, with 251 of positive values (38.5%) and 401 negative values (61.5%). For
model building, the same procedure as in Section 5.3 was employed, also obtaining the
best metrics for Light Gradient Boosting Machine (LGBM) Classifier.

5.6. External Model Validation

The predictive potential of the QSAR models was evaluated with a completely inde-
pendent data set of mycotoxins, in terms of accuracy, precision, sensitivity, and specificity.
The metrics considered to evaluate the performance of the built classification models were
calculated according to the following formulas:

Accuracy = TP + TN/(TP + FN + FP + TN)

Precision = TP/(TP + FP)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

where TP = true positive; FP = false positive; TN = true negative; and FN = false negative.
Details about the compounds selected for each validation can be found in Tables A7–A10.

https://protopred.protoqsar.com/
https://protopred.protoqsar.com/
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Appendix A

Tables A1–A11.

Table A1. Number of compounds in each mycotoxin category.

Category Num of Cpds

trichothecenes 410

ergot alkaloids 158

cytochalasan alkaloids 147

actinomycins 141

resveratrols 121

aphidicolins 90

nucleotides 88

not classified 79

alkaloids 74

emodins 67

taxols 67

fumonisins 63

zearalenones 60

peptides 59

cyclosporins 58

lovastatins 58

aflatoxins 57

coumarins 55

nitropropionic acids 54

ophiobolins 54

terpenoids 51

penicillins 50

triterpenoids 46

https://chemopredictionsuite.com/MicotoXilico
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Table A1. Cont.

Category Num of Cpds

destruxins 41

brefeldins 38

phenols 37

fumitremorgins 36

brevianamides 36

naphthazarins 36

alternarenes 36

ETPs 34

anthraquinones 34

brassicicenes 34

ochratoxins 33

sterigmatocystins 33

mycophenolic acids 32

penitrems 32

griseofulvins 32

pyropenes 32

verticillins 31

fusidic acids 31

fatty acid like 29

cyclic peptides 29

decarestrictines 28

chromanes 27

naphthalenes 25

yanuthones 25

benzene derivatives 25

furans 25

alternariolides 24

viridins 24

alternariols 24

quinazolines 24

roquefortines 23

anthracyclines 22

territrems 22

radicicols 22

asterriquinones 22

altersolanols 21

pyrones 21

xanthones 21

apicidins 20
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Table A1. Cont.

Category Num of Cpds

enniatins 19

chinulins 19

rugulosins 19

tyrosols 19

beauvericins 19

wortmannins 19

austalides 19

pyrenocines 19

cyclopeptins 18

chaetomugilins 18

zaragozic acids 18

chrysophanols 18

alterporriols 18

rubrofusarins 17

gibberellins 17

andrastins 16

physcions 16

aspernolides 16

abscisic acids 15

koninginins 15

roridins 14

versicolorins 14

chetomins 14

malformins 14

radicinins 14

usnic acids&ustins 13

secalonic acids 13

aspewentins 13

gregatins 13

altertoxins 13

aspulvinones 13

phomopsins 12

rubellins 12

viridicatins 12

cotylenins 12

aureobasidins 12

communesins 12

altenuenes 12

austocystins 12
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Table A1. Cont.

Category Num of Cpds

austins 12

arugosins 12

fusaric acids 11

patulins 11

lactones 11

fusarins&fusarielins 11

zinniols 11

cladosporols 11

altenusins 11

emestrins 11

schweinfurthins 10

fumagillins 10

aurasperones 10

astellolides 10

penicillenols 10

tryptophols 10

kojic acids 10

averufins 10

culmorins 10

kipukasins 10

xalines 10

rubratoxins 9

brevicompanines 9

penostatins 9

ustiloxins 9

melleins 9

sphingofungins 8

asperlins&asperlactones 8

thiazolidines 8

benzoquinones 8

nigerapyrones 8

andibenins 8

cordycepins 8

asterriquinones 8

chartarlactams 8

vertinols 7

tenuazonic acids 7

xanthins 7

calphostins 7
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Table A1. Cont.

Category Num of Cpds

erythromycins 7

marcfortines 7

bikaverins 7

solanapyrones 7

quinolones 7

cephalosporins 7

stachybocins 7

chevalones 7

glaucins 7

fusarielins 6

phtalates 6

depudecins 6

meleagrins 6

myrothecines 6

AF toxins 6

aflavinines 6

cercosporins 5

chromanones 5

aspergillimides 5

tryprostatins 5

amino acid derivative 5

flavones 4

chlamydosporols 4

amphotericins 4

aspilactonols 4

emodins&rubrofusarins 4

orienticins 4

candidusins 4

asperpyrones 3

candidins 3

Table A2. Molecular descriptors selected by recursive feature elimination (RFE) for QSAR mutagenic-
ity model A.

Descriptor Definition

C-030 X–CH–X atom-centered fragments

ATSC7Z centered Moreau–Broto autocorrelation of lag 7 weighted by atomic number

ATSC8dv centered Moreau–Broto autocorrelation of lag 8 weighted by valence electrons

MATS1c Moran coefficient of lag 1 weighted by Gasteiger charge

GATS1c Geary coefficient of lag 1 weighted by Gasteiger charge

GATS3d Geary coefficient of lag 3 weighted by sigma electrons

X1solA average solvation connectivity index of order 1
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Table A3. Molecular descriptors selected by recursive feature elimination (RFE) for QSAR mutagenic-
ity model B.

Descriptor Definition

C-018 =CHX atom-centered fragments

C-019 =CRX atom-centered fragments

ATSC6dv centered Moreau–Broto autocorrelation of lag 6 weighted by valence electrons

ATSC8dv centered Moreau–Broto autocorrelation of lag 8 weighted by valence electrons

AATSC5p averaged and centered Moreau–Broto autocorrelation of lag 5 weighted by polarizability

MATS1c Moran coefficient of lag 1 weighted by Gasteiger charge

nR_3_False_False_False_True number of 3–membered rings non-aromatic hetero

R1s+ R maximal autocorrelation of lag 1/weighted by I-state GETAWAY descriptors

NPR2 normalized principal moment of order 2

De D total accessibility index, Sanderson electronegativity-weighted

Mor28v signal 28/weighted by van der Waals volume 3D-MoRSE descriptors

Mor02s signal 02/weighted by I-state 3D-MoRSE descriptors

Mor23s signal 23/weighted by I-state 3D-MoRSE descriptors

Table A4. Molecular descriptors selected by recursive feature elimination (RFE) for QSAR in vitro
genotoxicity model.

Descriptor Definition

H-047 atom-centered fragments. H attached to C1(sp3)/C0(sp2)

O-056 alcohol. Atom-centered fragments

O-061 O–atom-centered fragments

F-084 F attached to C1(sp2). Atom-centered fragments

AATS5dv averaged Moreau–Broto autocorrelation of lag 5 weighted by valence electrons. 2D

ATSC4v centered Moreau–Broto autocorrelation of lag 4 weighted by van der Waals volume 2D autocorrelations

AATSC1Z averaged and centered Moreau–Broto autocorrelation of lag 1 weighted by atomic number. 2D

AATSC5c averaged and centered Moreau–Broto autocorrelation of lag 5 weighted by Gasteiger charge. 2D

GATS2Z Geary coefficient of lag 2 weighted by atomic number. 2D

BELdv0 highest eigenvalue of Burden matrix weighted by valence electrons

L3i 3rd component size directional WHIM index/weighted by ionization potential WHIM descriptors

Mor09u signal 09/unweighted 3D-MoRSE descriptors

Mor22s signal 22/weighted by I-state 3D-MoRSE descriptors

JhetZ Balaban-type index from Z-weighted distance matrix (Barysz matrix)

D/Dr3 distance/detour ring index of order 3

JGI9 mean topological charge index of order 9 2D autocorrelations

B05[O-O] presence/absence of O-O at topological distance 5 2D Atom Pairs

B07[C-N] presence/absence of C-N at topological distance 7 2D Atom Pairs

B08[C-O] presence/absence of C-O at topological distance 8 2D Atom Pairs

B10[C-C] presence/absence of C-C at topological distance 10 2D Atom Pairs

nAllOx number of allylic oxidation sites excluding steroid dienone

nByciclic number of atoms that are in two rings.

PEOE_VSA4 MOE Charge VSA Descriptor 4 (−0.20 <= x < −0.15). 2D

SLogP_VSA4 MOE logP VSA Descriptor 4 (0.00 <= x < 0.10). 2D
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Table A5. Molecular descriptors selected by Recursive Feature Elimination (RFE) based on Support
Vector Machine (SVM) using linear kernel (C = 1), for QSAR in vivo genotoxicity model.

Descriptor Definition

C-016 ”=CHR.”

ATSC5i centered Moreau–Broto autocorrelation of lag 5 (log function) weighted by ionization potential.

AATSC0se averaged centered Moreau–Broto autocorrelation of lag 0 (log function) weighted by Sanderson
electronegativity.

AATSC5i averaged centered Moreau–Broto autocorrelation of lag 5 (log function) weighted by ionization potential.

MATS4p Moran autocorrelation of lag 4 (log function) weighted by polarizability.

GATS4i Geary autocorrelation of lag 4 (log function) weighted by ionization potential.

B02(C-C) presence/absence of C-C at topological distance 2.

B02(C-O) presence/absence of C-O at topological distance 2.

B04(C-O) presence/absence of C-O at topological distance 4.

B04(O-O) presence/absence of O-O at topological distance 4.

B08(C-N) presence/absence of C-N at topological distance 8.

B09(O-O) presence/absence of O-O at topological distance 9.

EState_VSA6 EState VSA descriptor 6.

Table A6. Molecular descriptors selected by Light Gradient Boosting Machine (LGBM) for QSAR
carcinogenicity model.

Descriptor Definition

AATSC1dv averaged centered Moreau–Broto autocorrelation of lag 1 (log function) weighted by valence electrons

SMR_VSA9 MOE MR VSA descriptor 9

SIC2 structural information content index (neighborhood symmetry of 2-order)

ATSC1pe centered Moreau–Broto autocorrelation of lag 1 (log function) weighted by pauling EN

C-032 X–CX–X

JGI7 mean topological charge index of order 7

BELc0 highest eigenvalue of Burden matrix weighted by charge

AATSC4se averaged centred Moreau–Broto autocorrelation of lag 4 (log function) weighted by Sanderson
electronegativity

GATS6se Geary autocorrelation of lag 6 (log function) weighted by Sanderson electronegativity

NssNH number of ssNH

D/Dr5 distance/detour ring index of order 5

GATS1s Geary autocorrelation of lag 1 (log function) weighted by I-state

RBF rotatable bond fraction

JGI5 mean topological charge index of order 5

PJI2 2D Petitjean shape index

GATS1d Geary autocorrelation of lag 1 (log function) weighted by sigma electrons

AATSC3d averaged centred Moreau–Broto autocorrelation of lag 3 (log function) weighted by sigma electrons
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Table A7. Validation set for mutagenicity data.

SMILES Name y

CC1=C[C@H]2[C@@H](CC3=CNC4=CC=CC2=C34)N(C1)C agroclavine 0

C[C@H]1CCCC(=O)CCC/C=C/C2=C(C(=CC(=C2)O)O)C(=O)O1 zearalenone 0

CC1=C[C@@H]2[C@](CC1)([C@]3([C@@H]([C@H]([C@H]([C@@]34CO4)O2)O)OC
(=O)C)C)COC(=O)C diacetoxyscirpenol 0

CC1=C[C@@H]2[C@]([C@@H](C1=O)O)([C@]3(C[C@H]([C@H]([C@@]34CO4)O2)O)C)CO deoxynivalenol 0

C[C@@H]1[C@H](O1)[C@H]2[C@H](C=CC(=O)O2)OC(=O)C asperlin 0

CC(C)[C@@]1(C(=O)N2[C@H](C(=O)N3CCC[C@H]3[C@@]2(O1)O)CC4=CC=CC=C4)NC
(=O)[C@@H]5C[C@H]6[C@@H](CC7=CNC8=CC=CC6=C78)N(C5)C dihydroergocristine 0

CCCC[C@@H](C)[C@H]([C@H](C[C@@H](C)C[C@@H](CCCC[C@H](C[C@@H]
([C@H](C)N)O)O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O fumonisin B1 0

CCCC[C@@H](C)[C@H]([C@H](C[C@@H](C)CCCCCC[C@H](C[C@@H]([C@H](C)N)O)O)OC
(=O)C[C@@H](CC(=O)O)C(=O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O fumonisin B2 0

CCCC[C@@H](C)[C@H]([C@H](C[C@@H](C)C[C@@H](CCCCCC[C@H]([C@H]
(C)N)O)O)OC(=O)CC(CC(=O)O)C(=O)O)OC(=O)CC(CC(=O)O)C(=O)O fumonisn B3 0

CC1=C[C@@H]2[C@]([C@@H](C1=O)O)([C@]3([C@@H]([C@H]([C@H]([C@@]34CO4)
O2)O)OC(=O)C)C)CO fusarenon-X 0

CC1=C[C@@H]2[C@](CC1)(C3([C@@H]([C@H]([C@H](C34CO4)O2)O)OC(=O)C)C)CO 4-Acetoxyscirpenol 0

CC1=C2COC(=O)C2=C(C(=C1OC)C/C=C(\C)/CCC(=O)O)O mycophenolic acid 0

COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4[C@@H]5CCO[C@@H]5OC4=C1 aflatoxin B2 1

C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C
(=O)C5=CC=CC=C5C4=O)O)(C(=O)C)O)N)O idarubicin 1

C[C@@H]1[C@@H](C(=O)N[C@@H](C(=O)N2CCC[C@H]2C(=O)N(CC(=O)N([C@H]
(C(=O)O1)C(C)C)C)C)C(C)C)NC(=O)C3=C4C(=C(C=C3)C)OC5=C(C(=O)C(=C(C5=N4)
C(=O)N[C@H]6[C@H](OC(=O)[C@@H](N(C(=O)CN(C(=O)[C@@H]7CCCN7C(=O)[C@H]
(NC6=O)C(C)C)C)C)C(C)C)C)N)C

actinomycin D 1

COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4[C@@H]5[C@@H]6[C@@H](O6)O[C@@H]5OC4=C1 2,3-Epoxyaflatoxin B1 1

COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5CCOC5OC4=C1 aflatoxin B2 alpha 1

COC1=C2C3=C([C@@H](CC3)O)C(=O)OC2=C4[C@@H]5C=CO[C@@H]5OC4=C1 aflatoxicol B 1

COC1=C2C(=C3[C@@H]4C=CO[C@@H]4OC3=C1)OC5=CC=CC(=C5C2=O)O sterigmatocystin 1

COC1=C2C3=C(C(=O)C[C@@H]3O)C(=O)OC2=C4[C@@H]5C=CO[C@@H]5OC4=C1 aflatoxin Q1 1

C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)
C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(/C(=N\NC(=O)C6=CC=CC=C6)/C)O)N)O zorubicin 1

C1=NC(=C2C(=N1)N(C=N2)[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O)NO inosine oxime 1

C[C@@H]1[C@@]2([C@@H](O2)[C@](O1)(C)/C=C(\C)/C=C(\C)/[C@H]3[C@](O3)(C)C4
=C(C(=C(C(=O)O4)C)OC)C)C verrucosidin 1

C1C[C@]2([C@@H]3[C@H](CC(=O)C4=C(C=CC(=C34)C5=C2C(=C(C=C5)O)C1=O)O)O)O altertoxin I 1
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Table A8. Validation set for in vitro genotoxicity data.

SMILES Name y

CC(C)C[C@H]1C(=O)O[C@@H](C(=O)N([C@H](C(=O)O[C@@H](C(=O)N([C@H]
(C(=O)O[C@@H](C(=O)N1C)C(C)C)CC(C)C)C)C(C)C)CC(C)C)C)C(C)C enniatin C 0

CC[C@H](C)[C@@H]1C(=O)N([C@H](C(=O)O[C@@H](C(=O)N([C@H](C(=O)O
[C@@H](C(=O)N([C@H](C(=O)O1)C(C)C)C)[C@@H](C)CC)C(C)C)C)C(C)C)C(C)C)C enniatin I 0

CC[C@H](C)[C@H]1C(=O)O[C@@H](C(=O)N([C@H](C(=O)O[C@@H](C(=O)N
([C@H](C(=O)O[C@@H](C(=O)N1C)C(C)C)C)C)C(C)C)C(C)C)C)C(C)C enniatin J3 0

CC[C@H](C)[C@@H]1C(=O)N([C@H](C(=O)O[C@@H](C(=O)N([C@H](C(=O)O[
C@@H](C(=O)N([C@H](C(=O)O1)C(C)C)C)C(C)C)C(C)C)C)C(C)C)C(C)C)C enniatin H 0

CC[C@H]1C(=O)O[C@@H](C(=O)N([C@H](C(=O)O[C@@H](C(=O)N([C@H]
(C(=O)O[C@@H](C(=O)N1C)C(C)C)C(C)C)C)C(C)C)C(C)C)C)C(C)C enniatin K1 0

CCC(C)[C@@H]1C(=O)N([C@H](C(=O)O[C@@H](C(=O)N([C@H](C(=O)O[C@@H]
(C(=O)N([C@H](C(=O)O1)C(C)C)C)C(C)C)C(C)C)C)C(C)C)C(C)C)C

cyclo[D-OVal-N(Me)Val-D-OVal-
N(Me)Val-D-OxiIle-N(Me)Val] 0

O=c1cc(CO)occ1O kojic acid 0

CC1=C[C@@H]2[C@]([C@@H](C1=O)O)([C@]3(C[C@H]([C@H]([C@@]34CO4)
O2)O)C)COC(=O)C 15-acetyldeoxynivalenol 1

COC1=CC2=C(C(=C1)OC)C(=O)C3=C(C4=C(C=C3C2=O)O[C@@H]5[C@H]4CCO5)O 6,8-O-Dimethylversicolorin 1

COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4[C@@H]5C=CO[C@@H]5OC4=C1 aflatoxin B1 1

C[C@@H]1CCC[C@H](/C=C/C(=O)O[C@]23[C@@H](/C=C/C1)[C@@H](C(=C)
[C@H]([C@H]2[C@@H](NC3=O)CC4=CC=CC=C4)C)O)O cytochalasin B 1

C1CO[C@H]2[C@@H]1C3=C(O2)C=C(C4=C3OC5=CC=CC(=C5C4=O)O)O demethyldihydrosterigmatocystin 1

CCCC[C@@H](C)[C@H]([C@H](C[C@@H](C)C[C@@H](CCCC[C@H](C[C@@H]([C@H]
(C)N)O)O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O fumonisin B1 1

C1=CO[C@H]2[C@@H]1C3=C(O2)C=C4C(=C3O)C(=O)C5=C(C4=O)C=C(C=C5O)O versicolorin A 1

C[C@H]1CCC[C@@H](CCC/C=C/C2=C(C(=CC(=C2)O)O)C(=O)O1)O alpha-zearalenol 1

Table A9. Validation set for in vivo genotoxicity data.

SMILES Name y

Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12 alternariol 0

CCCCCCCCCCCCCCC(C(CO)N)O C17-Sphinganine 0

C/C=C/C[C@@H](C)[C@@H](O)[C@H]1C(=O)N[C@@H](CC)C(=O)N(C)CC(=O)
N(C)[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H](CC(C)C)
C(=O)N[C@@H](C)C(=O)N[C@H](C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)
[C@@H](CC(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1C

cyclosporin A 0

CC1=C[C@H]2O[C@@H]3[C@H](O)C[C@@](C)([C@]34CO4)[C@@]2(CO)[C@H](O)C1=O deoxynivalenol 0

C=C1C[C@]23C[C@@]1(O)CC[C@H]2[C@@]12C=C[C@H](O)[C@@](C)(C(=O)O1)[C@H]
2[C@@H]3C(=O)O gibberellic acid 0

O=c1cc(CO)occ1O kojic acid 0

CN1C[C@@H](C=C2[C@H]1CC3=CNC4=CC=CC2=C34)C(=O)O lysergic acid 0

CCN(CC)C(=O)[C@H]1CN([C@@H]2CC3=CNC4=CC=CC(=C34)C2=C1)C lysergic acid diethylamine 0

CC(=O)OC[C@]12C[C@H](OC(=O)CC(C)C)C(C)=C[C@H]1O[C@@H]1[C@H](O)[C@@H]
(OC(C)=O)[C@@]2(C)[C@@]12CO2 T-2 toxin 0

CC(=O)OC[C@@]12C[C@@H](OC(=O)CC(C)C)C(C)=C[C@@H]1O[C@H]1[C@H](O)[C@@H]
(O)[C@]2(C)[C@@]12CO2 HT-2 toxin 0

CC(C)C[C@@H]1NC(=O)[C@H](C)N(C)C(=O)CNC(=O)/C(=C/c2ccccc2)N(C)C1=O tentoxin 0
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CC[C@H](C)[C@@H]1NC(=O)C(C(C)=O)=C1O tenuazonic acid 0

CCC(C)C1NC(=O)C(C(C)=O)=C1O tenuazonic acid 0

O=c1[nH]c(=O)n([C@H]2C[C@H](O)[C@@H](CO)O2)cc1Br 5-bromo-2′-deoxyuridine 1

Cc1c2oc3c(C)ccc(C(=O)NC4C(=O)NC(C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)C(C(C)C)C(=O)OC4C)c3nc-2c(C(=O)NC2C(=O)NC(C(C)C)C(=O)N3C
CCC3C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC2C)c(N)c1=O

A-2600 1

Cc1c2oc3c(C)ccc(C(=O)NC4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)
N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)NC2C(=O)N[C@H]
(C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O
[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)NC4C(=O)NC(C(C)C)C(=O)N5CCCC5C(=O)N(C)CC(=O)
N(C)C(C(C)C)C(=O)OC4C)c3nc-2c(C(=O)NC2C(=O)NC(C(C)C)C(=O)N3CCCC3C
(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@H]
(C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)
O[C@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@H]
(C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)
O[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@@H]
(C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)
O[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@H]2C(=O)N[C@H]
(C(C)C)C(=O)N3CCC[C@@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)
O[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)C(C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@H]
(C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]
2C)c(N)c1=O

actinomycin D 1

[3H]c1c([3H])c(C([3H])([3H])[3H])c2oc3c(C([3H])([3H])[3H])c(=O)c(N([3H])[3H])
c(C(=O)N([3H])[C@]4([3H])C(=O)N([3H])[C@]([3H])(C([3H])(C([3H])([3H])[3H])C([3H])
([3H])[3H])C(=O)N5C([3H])([3H])C([3H])([3H])C([3H])([3H])[C@]5([3H])C(=O)N(C([3H])
([3H])[3H])C([3H])([3H])C(=O)N(C([3H])([3H])[3H])[C@@]([3H])(C([3H])(C([3H])([3H])
[3H])C([3H])([3H])[3H])C(=O)O[C@]4([3H])C([3H])([3H])[3H])c-3nc2c1C(=O)N
([3H])[C@]1([3H])C(=O)N([3H])[C@]([3H])(C([3H])(C([3H])([3H])[3H])C([3H])([3H])
[3H])C(=O)N2C([3H])([3H])C([3H])([3H])C([3H])([3H])[C@]2([3H])C(=O)N(C([3H])
([3H])[3H])C([3H])([3H])C(=O)N(C([3H])([3H])[3H])[C@@]([3H])
(C([3H])(C([3H])([3H])[3H])C([3H])([3H])[3H])C(=O)O[C@]1([3H])C([3H])([3H])[3H]

actinomycin d-[3h(g)] 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)[C@@H]1C=CO[C@@H]1O2 aflatoxin B1 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)[C@@H]1CCO[C@@H]1O2 aflatoxin B2 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@H]1C=CO[C@H]1O2 aflatoxin G1 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@H]1C=CO[C@@H]1O2 aflatoxin G1 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@@H]1C=CO[C@@H]1O2 aflatoxin G1 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)C1C=COC1O2 aflatoxin G1 1
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COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@@H]1CCO[C@@H]1O2 aflatoxin G2 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)[C@]1(O)C=CO[C@@H]1O2 aflatoxin M1 1

COc1cc2c(c3oc(=O)c4c(c13)[C@@H](O)CC4=O)[C@@H]1C=CO[C@@H]1O2 aflatoxin Q1 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4O)[C@@H]1C=CO[C@@H]1O2 aflatoxicol 1

COc1cc2c(c3oc(=O)c4c(c13)CC[C@H]4O)[C@@H]1C=CO[C@H]1O2 aflatoxicol 1

COc1cc2c(c3oc(=O)c4c(c13)CC[C@@H]4O)[C@@H]1C=CO[C@@H]1O2 aflatoxicol 1

C[C@@H]1CCC[C@H](O)CCCCCc2cc(O)cc(O)c2C(=O)O1 alpha-Zearalanol 1

C[C@H]1CCCC(O)CCC/C=C/c2cc(O)cc(O)c2C(=O)O1 alpha-Zearalenol 1

COc1cc(O)c2c(=O)oc3cc(O)cc(C)c3c2c1 alternariol monomethyl
ether 1

CC(C)C1OC(=O)[C@H](Cc2ccccc2)N(C)C(=O)C(C(C)C)OC(=O)[C@H](Cc2ccccc2)
N(C)C(=O)C(C(C)C)OC(=O)[C@H](Cc2ccccc2)N(C)C1=O beauvericin 1

CC(C)[C@H]1OC(=O)[C@H](Cc2ccccc2)N(C)C(=O)[C@@H](C(C)C)OC(=O)[C@H]
(Cc2ccccc2)N(C)C(=O)[C@@H](C(C)C)OC(=O)[C@H](Cc2ccccc2)N(C)C1=O beauvericin 1

CC(C)[C@@H]1OC(=O)[C@@H](Cc2ccccc2)N(C)C(=O)[C@H](C(C)C)OC(=O)[C@@H]
(Cc2ccccc2)N(C)C(=O)[C@H](C(C)C)OC(=O)[C@@H](Cc2ccccc2)N(C)C1=O beauvericin 1

CC(C)C1OC(=O)C(Cc2ccccc2)N(C)C(=O)C(C(C)C)OC(=O)C(Cc2ccccc2)N(C)C(=O)
C(C(C)C)OC(=O)C(Cc2ccccc2)N(C)C1=O beauvericin 1

C[C@H]1CCC[C@@H](O)CCCCCc2cc(O)cc(O)c2C(=O)O1 beta-Zearalanol 1

C[C@H]1CCC[C@@H](O)CCC/C=C/c2cc(O)cc(O)c2C(=O)O1 beta-Zearalenol 1

CC1=C2C(=CO[C@H](C)[C@H]2C)C(=O)C(C(=O)O)=C1O citrinin 1

CC1=C2C(=CO[C@@H](C)[C@@H]2C)C(=O)C(C(=O)O)=C1O citrinin 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)
N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-
2c(C(=O)N[C@@H]2C(=O)N[C@H](C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)
[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

dactinomycin 1

COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)C[C@@](O)(C(=O)CO)C[C@@H]3O[C@H]
1C[C@H](N)[C@H](O)[C@H](C)O1 doxorubicin 1

Cc1cc(O)c2c(c1)C(=O)c1cc(O)cc(O)c1C2=O emodin 1

CC[C@H](C)[C@H]1C(=O)OC(C(C)C)C(=O)N(C)[C@@H]([C@H](C)CC)C(=O)O[C@H]
(C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)C(=O)O[C@H](C(C)C)C(=O)N1C enniatins A 1

CC[C@H](C)[C@H]1C(=O)O[C@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)C(=O)
O[C@H](C(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H](C(C)C)C(=O)N1C enniatin A1 1

CC(C)[C@H]1C(=O)O[C@H](C(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H](C(C)
C)C(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H](C(C)C)C(=O)N1C enniatin B 1

CC[C@H](C)[C@H]1C(=O)O[C@H](C(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H]
(C(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H](C(C)C)C(=O)N1C enniatin B1 1

O=c1[nH]c(=O)n([C@H]2C[C@H](O)[C@@H](CO)O2)cc1F floxuridine 1

CCCC[C@@H](C)[C@@H](OC(=O)C[C@@H](CC(=O)O)C(=O)O)[C@H](C[C@@H]
(C)CCCCCC[C@@H](O)C[C@H](O)[C@H](C)N)OC(=O)C[C@@H](CC(=O)O)C(=O)O fumonisin B2 1

CCCCC(C)C(OC(=O)CC(CC(=O)O)C(=O)O)C(CC(C)CC(O)CCCCCCC(O)C(C)N)
OC(=O)CC(CC(=O)O)C(=O)O fumonisin B3 1

CCCCC(C)C(OC(=O)CC(CC(=O)O)C(=O)O)C(CC(C)CC(O)CCCCC(O)CC(O)C(C)N)OC
(=O)CC(CC(=O)O)C(=O)O fumonisin B 1

CO[C@@]12[C@H](COC(N)=O)C3=C(C(=O)C(C)=C(N)C3=O)N1C[C@@H]1N[C@@H]12 mitomycin C 1
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O=c1cc(O)c1=O monilformin 1

C[C@@H]1CC2=C(C=C(C(=C2C(=O)O1)O)C(=O)N[C@@H](CC3=CC=CC=C3)C(=O)O)Cl ochratoxin A 1

O=C1C=C2C(=CCOC2O)O1 patulin 1

C=C(C)[C@@H]1NC(=O)[C@@H](NC)[C@@H](O)c2cc(Cl)c(O)c(c2)O[C@](C)(CC)[C@@H]
(C(=O)N2CC=C[C@H]2C(=O)N/C(C(=O)N/C(=C/C(=O)O)C(=O)O)=C(\C)CC)NC1=O phomopsin A 1

COC(=O)C12Oc3ccc(-
c4ccc5c(c4O)C(O)=C4C(=O)CC(C)C(O)C4(C(=O)OC)O5)c(O)c3C(O)=C1C(=O)CC(C)C2O secalonic acid D 1

COc1c(Cl)cc2c(c1OC)N(C)[C@@H]1N3C(=O)[C@@]
4(C)SS[C@@]3(C(=O)N4C)[C@H](O)[C@]21O sporidesmin 1

COc1cc2c(c3oc4cccc(O)c4c(=O)c13)[C@@H]1C=CO[C@@H]1O2 sterigmatocystin 1

CC1=CC2OC3[C@H](O)C[C@@](C)(C34CO4)[C@@]2(CO)[C@H](O)C1=O vomitoxin 1

C[C@H]1CCCC(=O)CCCCCc2cc(O)cc(O)c2C(=O)O1 zearalanone 1

C[C@H]1CCCC(=O)CCC/C=C/c2cc(O)cc(O)c2C(=O)O1 zearalenone 1

C[C@H]1CCCC(O)CCC/C=C/c2cc(O)cc(O)c2C(=O)O1 alpha-zearalenol 1

C[C@H]1CCC[C@H](O)CCC/C=C/c2cc(O)cc(O)c2C(=O)O1 alpha-zearalenol 1

C[C@H]1CCC[C@@H](O)CCC/C=C/c2cc(O)cc(O)c2C(=O)O1 beta-zearalenol 1

C[C@H]1CCC[C@H](O)CCCCCc2cc(O)cc(O)c2C(=O)O1 zeranol 1

Table A10. Validation set for carcinogenicity data.

SMILES Name y

CCCCOC(=O)c1ccc(O)cc1 butylparaben 0

O=C(NC(CO)C(O)c1ccc([N+](=O)[O−])cc1)C(Cl)Cl bhloramphenicol 0

O=C(N[C@H](CO)[C@H](O)c1ccc([N+](=O)[O−])cc1)C(Cl)Cl chloramphenicol 0

O=C(N[C@@H](CO)[C@@H](O)c1ccc([N+](=O)[O−])cc1)C(Cl)Cl chloramphenicol 0

O=C(N[C@@H](CO)[C@H](O)c1ccc([N+](=O)[O−])cc1)C(Cl)Cl chloramphenicol 0

O=C(N[C@H](CO)[C@@H](O)c1ccc([N+](=O)[O−])cc1)C(Cl)Cl chloramphenicol 0

O=C(N[C@H](CO)[C@H](O)[13c]1[13cH][13cH][13c]([N+](=O)[O−])[13cH][13cH]1)C(Cl)Cl chloramphenicol 0

[2H]c1c([2H])c([C@@]([2H])(O)[C@@H](CO)NC(=O)C(Cl)Cl)c([2H])c([2H])c1[N+](=O)[O−] chloramphenicol 0

O=[13C](N[13C@H]([13CH2]O)[13C@H](O)[13c]1ccc([N+](=O)[O−])cc1)[13CH](Cl)Cl chloramphenicol 0

[2H]C(Cl)(Cl)C(=O)N[C@]([2H])(C([2H])([2H])O)[C@]([2H])(O)c1ccc([N+](=O)[O−])cc1 chloramphenicol 0

[2H]c1c([2H])c(C([2H])(O)C(CO)NC(=O)C(Cl)Cl)c([2H])c([2H])c1[N+](=O)[O−] chloramphenicol 0

[3H]c1cc([C@@H](O)[C@@H](CO)NC(=O)C(Cl)Cl)cc([3H])c1[N+](=O)[O−] chloramphenicol 0

[2H]c1c([2H])c([C@@]([2H])(O)[C@H](CO)NC(=O)C(Cl)Cl)c([2H])c([2H])c1[N+](=O)[O−] chloramphenicol 0

O=[13C](N[13C@H]([13CH2]O)[13C@H](O)[13c]1[13cH][13cH][13c]([N+](=O)[O−])
[13cH][13cH]1)[13CH](Cl)Cl

chloramphenicol 0

[2H]OC[C@H]([C@H](O[2H])c1ccc([N+](=O)[O−])cc1)N([2H])C(=O)C(Cl)Cl chloramphenicol 0

C/C=C/C[C@@H](C)[C@@H](O)[C@H]1C(=O)N[C@@H](CC)C(=O)N(C)CC(=O)N(C)[C@@H]
(CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@H]
(C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1C

cyclosporin A 0
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CC1=C[C@H]2O[C@@H]3[C@H](O)C[C@@](C)([C@]34CO4)[C@@]2(CO)[C@H](O)C1=O deoxynivalenol 0

[2H]c1c(C([2H])([2H])[2H])cc(O)c2c1C(=O)c1cc(O)cc(O)c1C2=O emodin 0

CC(=O)O[C@@H]1[C@@H](O)[C@H]2O[C@@H]3C=C(C)C(=O)[C@@H](O)[C@]3(CO)[C@]
1(C)[C@]21CO1

fusarenon X 0

CC(C)COC(=O)c1ccc(O)cc1
isobutyl
4-hydroxybenzoate

0

CO[C@@H]1[C@@H](O[C@@H]2O[C@H](C)[C@@H](O[C@H]3C[C@@](C)(O)[C@@H]
(OC(=O)CC(C)C)[C@H](C)O3)[C@H](N(C)C)[C@H]2O)[C@@H](CC=O)C[C@@H](C)[C@@H](O)/C
=C/C=C/C[C@@H](C)OC(=O)C[C@H]1OC(C)=O

josamycin 0

COC(C(=O)O)c1ccccc1
methoxyphenylacetic
acid

0

CC1=C[C@H]2O[C@@H]3[C@H](O)[C@@H](O)[C@@](C)([C@]34CO4)[C@@]2(CO)[C@H](O)C1=O nivalenol 0

CN(C)[C@@H]1C(=O)C(C(N)=O)=C(O)[C@@]2(O)C(=O)C3=C(O)c4c(O)cccc4[C@@](C)(O)
[C@H]3[C@H](O)[C@@H]12.Cl

oxytetracycline 0

O=[13C]1[13CH]=[13C]2[13C](=[13CH][13CH2]O[13CH]2O)O1 patulin 0

CN(C)[C@@H]1C(=O)C(C(N)=O)=C(O)[C@@]2(O)C(=O)C3=C(O)c4c(O)cccc4[C@@](C)(O)
[C@H]3C[C@@H]12.Cl

tetracycline 0

Oc1cc(Cl)ccc1Oc1ccc(Cl)cc1Cl triclosan 0

CC1=C[C@@H]2[C@]([C@@H](C1=O)O)([C@]3(C[C@H]([C@H]([C@]34CO4)O2)O)C)CO vomitoxin 0

[2H]C([2H])([2H])Oc1cc2c(c3oc(=O)c4c(c13)CCC4=O)[C@@H]1CCO[C@@H]1O2 1217830-52-8 1

C[C@H]1Cc2c(Cl)cc(C(=O)N[C@@H](Cc3ccccc3)C(=O)O)c(O)c2C(=O)O1 3-epi-Ochratoxin A 1

C[C@H]1Cc2c(Cl)cc(C(=O)N[C@H](Cc3ccccc3)C(=O)O)c(O)c2C(=O)O1 3S14R-Ochratoxin A 1

O=c1[nH]c(=O)n([C@H]2C[C@H](O)[C@@H](CO)O2)cc1Br
5-BROMO-2′-
DEOXYURIDINE

1

Cc1c2oc3c(C)ccc(C(=O)NC4C(=O)NC(C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)
C(C(C)C)C(=O)OC4C)c3nc-2c(C(=O)NC2C(=O)NC(C(C)C)C(=O)N3CCCC3C(=O)N(C)CC(=O)
N(C)C(C(C)C)C(=O)OC2C)c(N)c1=O

A-2600 1

Cc1c2oc3c(C)ccc(C(=O)NC4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)
[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)NC2C(=O)N[C@H](C(C)C)C
(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)NC4C(=O)NC(C(C)C)C(=O)N5CCCC5C(=O)N(C)CC(=O)N(C)
C(C(C)C)C(=O)OC4C)c3nc-2c(C(=O)NC2C(=O)NC(C(C)C)C(=O)N3
CCCC3C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]
5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@H]4C)c3nc-
2c(C(=O)N[C@@H]2C(=O)N[C@H](C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H]
(C(C)C)C(=O)O[C@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@H](C(C)C)
C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@@H](C(C)C)
C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

actinomycin 1
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SMILES Name y

[3H]c1c([3H])c(C([3H])([3H])[3H])c2oc3c(C([3H])([3H])[3H])c(=O)c(N([3H])[3H])c(C(=O)N([3H])
[C@]4([3H])C(=O)N([3H])[C@]([3H])(C([3H])(C([3H])([3H])[3H])C([3H])([3H])[3H])C(=O)N5C([3H])
([3H])C([3H])([3H])C([3H])([3H])[C@]5([3H])C(=O)N(C([3H])([3H])[3H])C([3H])([3H])C(=O)N
(C([3H])([3H])[3H])[C@@]([3H])(C([3H])(C([3H])([3H])[3H])C([3H])([3H])[3H])C(=O)O[C@]
4([3H])C([3H])([3H])[3H])c-3nc2c1C(=O)N([3H])[C@]1([3H])C(=O)N([3H])[C@]([3H])(C([3H])
(C([3H])([3H])[3H])C([3H])([3H])[3H])C(=O)N2C([3H])([3H])C([3H])([3H])C([3H])([3H])[C@]2([3H])
C(=O)N(C([3H])([3H])[3H])C([3H])([3H])C(=O)N(C([3H])([3H])[3H])[C@@]([3H])(C([3H])(C([3H])
([3H])[3H])C([3H])([3H])[3H])C(=O)O[C@]1([3H])C([3H])([3H])[3H]

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)
CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@H]2C(=O)N[C@H](C(C)C)
C(=O)N3CCC[C@@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

actinomycin D 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)CC(=O)
N(C)C(C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@H](C(C)C)C(=O)N3CCC
[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

actinomycin D 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)C1C=COC1O2 aflatoxin BI 1

COc1cc2c(c3oc(=O)c4c(c13)CC[C@@H]4O)[C@@H]1C=CO[C@@H]1O2 aflatoxicol 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)[C@@H]1C=CO[C@@H]1O2 aflatoxin B1 1

[13CH3]O[13c]1[13cH][13c]2[13c]([13c]3o[13c](=O)[13c]4[13c]([13c]13)
[13CH2][13CH2][13C]4=O)[13C@@H]1[13CH]=[13CH]O[13C@@H]1O2

aflatoxin B1-13C17 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)[C@@H]1CCO[C@@H]1O2 aflatoxin B2 1

COc1cc2c(c3oc(=O)c4c(c13)CCC4=O)C1CCOC1O2 aflatoxin B2 alpha 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)C1C=COC1O2 aflatoxin G1 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@@H]1C=CO[C@@H]1O2 aflatoxin G1 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@H]1C=CO[C@@H]1O2 aflatoxin G1 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@H]1C=CO[C@H]1O2 aflatoxin G1 1

[13CH3]O[13c]1[13cH][13c]2[13c]([13c]3o[13c](=O)[13c]4[13c]([13c]13)
[13CH2][13CH2]O[13C]4=O)[13C@@H]1[13CH]=[13CH]O[13C@@H]1O2

aflatoxin G1-13C17 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)[C@@H]1CCO[C@@H]1O2 aflatoxin G2 1

[13CH3]O[13c]1[13cH][13c]2[13c]([13c]3o[13c](=O)[13c]4[13c]([13c]13)
[13CH2][13CH2]O[13C]4=O)[13C@@H]1[13CH2][13CH2]O[13C@@H]1O2

aflatoxin G2-13C17 1

CC1Cc2c(Cl)cc(C(=O)NC(Cc3ccccc3)C(=O)O)c(O)c2C(=O)O1 antibiotic 9663 1

COc1cc2c(c3oc4cccc(O)c4c(=O)c13)C1C=CO[C@@H]1O2 CHEMBL1532401 1

CC1=C2C(=CO[C@H](C)[C@H]2C)C(=O)C(C(=O)O)=C1O citrinin 1

CC[C@@H]1NC(=O)[C@@H]2[C@H](Cl)[C@H](Cl)CN2C(=O)[C@H](CO)NC(=O)
C[C@H](c2ccccc2)NC(=O)[C@H](CO)NC1=O

cyclochlorotine 1

Cc1c2oc3c(C)ccc(C(=O)N[C@@H]4C(=O)N[C@H](C(C)C)C(=O)N5CCC[C@H]5C(=O)N(C)CC(=O)
N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)c3nc-2c(C(=O)N[C@@H]2C(=O)N[C@H]
(C(C)C)C(=O)N3CCC[C@H]3C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]2C)c(N)c1=O

dactinomycin 1

COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)C[C@@](O)(C(C)=O)C[C@@H]3O[C@H]1C[C@H]
(N)[C@H](O)[C@H](C)O1

daunorubicin 1

COc1cc2c(c3oc(=O)c4c(c13)CCOC4=O)C1CCOC1O2 dihydroaflatoxin G1 1

COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)C[C@@](O)(C(=O)CO)C[C@@H]3O[C@H]1C[C@H]
(N)[C@H](O)[C@H](C)O1

doxorubicin 1

C=C1C[C@]23C[C@@]1(O)CC[C@H]2[C@@]12C=C[C@H](O)[C@@](C)(C(=O)O1)
[C@H]2[C@@H]3C(=O)O

gibberellic acid 1
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SMILES Name y

COC1=CC(=O)C[C@@H](C)[C@]12Oc1c(Cl)c(OC)cc(OC)c1C2=O griseofulvin 1

CC[C@H](C)C(=O)O[C@H]1C[C@H](C=C2[C@H]1[C@H]([C@H](C=C2)C)CC
[C@@H]3C[C@H](CC(=O)O3)O)C

lovastatin 1

Cc1cc(O)c2c(c1O)C(=O)C13C(=C2O)C(=O)C2C(O)C1C1C(O)C3C(=O)C3=C(O)c4c(O)cc(C)
c(O)c4C(=O)C321

luteoskyrin 1

Cc1cc(O)c2c(c1O)C(=O)[C@]13C(=C2O)C(=O)[C@@H]2[C@H](O)[C@H]1[C@@H]1[C@@H]
(O)[C@H]3C(=O)C3=C(O)c4c(O)cc(C)c(O)c4C(=O)[C@@]321

luteoskyrin 1

C=CCc1ccc(OC)c(OC)c1 methyl eugenol 1

CO[C@@]12[C@H](COC(N)=O)C3=C(C(=O)C(C)=C(N)C3=O)N1C[C@@H]1N[C@@H]12 mitomycin C 1

C[C@@H]1Cc2c(Cl)cc(C(=O)N[C@H](Cc3ccccc3)C(=O)O)c(O)c2C(=O)O1

N-[(3R)-5-chloro-8-
hydroxy-3-methyl-1-
oxo-3,4-dihydro-1H-2-
benzopyran-7-
carbonyl]-D-
phenylalanine

1

C[C@@H]1Cc2c(Cl)cc(C(=O)N[C@@H](Cc3ccccc3)C(=O)O)c(O)c2C(=O)O1 ochratoxin A 1

CC1Cc2c(Cl)cc(C(=O)N[C@H](Cc3ccccc3)C(=O)O)c(O)c2C(=O)O1 ochratoxin-A 1

CC/C(=C(\C(=O)N/C(=C/C(=O)O)/C(=O)O)/NC(=O)[C@@H]1C=CCN1C(=O)[C@@H]2[C@@]
(OC3=C(C(=CC(=C3)[C@@H]([C@@H](C(=O)N[C@H](C(=O)N2)C(=C)C)NC)O)Cl)O)(C)CC)/C

phomopsin A 1

COc1cc2c(c3oc4cccc(O)c4c(=O)c13)[C@@H]1C=CO[C@@H]1O2 sterigmatocystin 1

COc1cc2c(c3oc4cccc(O)c4c(=O)c13)C1C=COC1O2 sterigmatocystin 1

Table A11. Prediction metrics of the external validation set of mycotoxins with 4 different QSAR
prediction tools.

Model Accuracy Sensitivity Specificity Precision f1 TN FP FN TP Num of Cpds
Carcinogenicity ProtoPRED 0.80 0.74 0.89 0.92 0.82 25 3 12 35 75

Carcinogenicity QTB Case Ultra 0.71 0.75 0.65 0.77 0.76 15 8 9 27 59 *

Carcinogenicity QTB Leadscope 0.59 0.62 0.53 0.65 0.63 9 8 9 15 41 *

Carcinogenicity VEGA 0.70 0.56 0.81 0.67 0.61 21 5 8 10 31 **
In vitro genotoxicity mycotoxin
model

0.93 1.00 0.86 1.00 0.94 6 0 1 8 15

In vitro genotoxicity VEGA 0.54 1.00 0.00 0.54 0.70 0 6 0 7 13 **
In vivo genotoxicity
ProtoPRED

0.81 0.88 0.46 0.88 0.88 6 7 7 52 72

In vivo genotoxicity QTB Case
Ultra

0.62 0.60 0.67 0.75 0.67 2 1 2 3 8 *

In vivo genotoxicity QTB
Leadscope

0.65 0.64 0.67 0.82 0.72 4 2 5 9 20 *

In vivo genotoxicity VEGA 0.39 0.33 0.57 0.70 0.45 4 3 14 7 28 ***
Mutagenicity mycotoxin model 0.83 0.92 0.75 0.92 0.85 9 1 3 11 24
Mutagenicity QTB Case Ultra 0.94 0.90 1.00 1.00 0.95 8 0 1 9 18 *
Mutagenicity QTB Leadscope 0.88 0.86 0.90 0.86 0.86 9 1 1 6 17 *
Mutagenicity VEGA 0.67 0.83 0.50 0.62 0.71 6 6 2 10 24

QTB = QSARToolbox; FN = false negatives; TN = true positives; FP = false positives; TP = true positives. The
models described in this article are labelled in bold. * Several compounds could not be predicted because they
were not included in the applicability domain of the model. ** Some compounds could not be predicted because
the program did not accept the input structure. *** Some compounds could not be predicted because the program
did not accept the input structure or the prediction was unclear.
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