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Abstract: Different mycotoxins in feed lead to combined exposure, increasing adverse effects on
animal health. Trichothecene mycotoxins have been associated with inducing oxidative stress, which
is neutralized by the glutathione system within the antioxidant defense, depending on the dose
and duration of exposure. T-2 toxin, deoxynivalenol (DON), and fumonisin B1 (FB1) are commonly
found in feed commodities simultaneously. In the present study, the intracellular biochemical and
gene expression changes were investigated in the case of multi-mycotoxin exposure, focusing on
certain elements of the glutathione redox system. In a short-term feeding trial, an in vivo study
was performed with low (EU-proposed) doses: T-2/HT-2 toxin: 0.25 mg; DON/2-AcDON/15-
AcDON.: 5 mg; FB1: 20 mg/kg feed, and high doses (twice the low dose) in laying hens. The
multi-mycotoxin exposure affected the glutathione system; GSH concentration and GPx activity was
higher in the liver in the low-dose group on day 1 compared to the control. Furthermore, the gene
expression of antioxidant enzymes increased significantly on day 1 in both exposure levels compared
to the control. The results suggest that when EU-limiting doses are applied, individual mycotoxins
may have a synergistic effect in the induction of oxidative stress.

Keywords: T-2 toxin; deoxynivalenol; fumonisin B1; oxidative stress; glutathione redox system; lipid
peroxidation; laying hen

Key Contribution: Under the influence of common exposure to T-2 toxin, deoxynivalenol, and
fumonisin B1, the glutathione redox system and its encoding genes are activated by oxidative stress
used in doses around the EU-limiting values in laying hen liver.

1. Introduction

The co-occurrence of mycotoxins in poultry feeds is a primary problem worldwide;
thus, the evaluation of their combined effects is essential. Corn is an important component
of poultry feed commonly contaminated with Fusarium molds, thus potentially exposing
laying hens to trichothecene mycotoxins, T-2 toxin, HT-2 toxin, nivalenol, deoxynivalenol
(DON), and other fusariotoxins, such as fumonisins [1]. Many mycotoxins are known in
our environment, which can be carcinogenic, hepatotoxic, and nephrotoxic in humans
and animals [2]. Trichothecene mycotoxins and fumonisins can induce subchronic and
subclinical symptoms in farm animals, such as growth retardation, feed refusal, impaired
production traits, increased mortality, and increased sensitivity to infectious diseases due to
improper immune responses and less effective vaccination [3]. However, clinical symptoms
can manifest in feed refusal, vomiting, diarrhea, lethargy, reduced immune response, and
low fertility [3,4].
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T-2 toxin and its toxic metabolite HT-2 toxin are mycotoxins produced by Fusarium
species in arable fields, which can cause significant damage in monogastric farm animals,
even in temperate climates. In poultry, the adverse effects usually manifest in lower body
weight gain, the deterioration of feed intake, lower egg production, the reduction of protein
synthesis, and a weakening of the immune and antioxidant defense system [5].

DON and its active metabolites 3-acetyl DON (3-AcDON) and 15-acetyl DON (15-
AcDON) are also trichothecene fusariotoxins, which can accumulate in high amounts
primarily in cereals (e.g., wheat, barley, rye, and oats). Compared to other farm animal
species, poultry is less sensitive to DON [6], but it can frequently be found in poultry
feed, inducing long-term effects [7]. Chronic exposure causes the effect of reduced feed
intake, decreased egg production, and increased lipid peroxidation. Furthermore, due to
its mitigating effect, it affects the immune system, including the synthesis of immunoglobu-
lins [8]. In addition, their neurotoxic [9], dermatotoxic [10], and emetic [11] effects were
also demonstrated.

Fumonisin B1 (FB1) is the main representative form of fumonisins, which is known
for damaging the immune system and causing immunosuppression in farm animals and
humans [12]. Poultry is relatively resistant to FB1, but in broiler chickens and more
markedly in turkeys, it can cause poor performance and increased relative organ weights
and hepatitis [13]. Furthermore, FB1 is a structural analog of sphinganine, thus inducing a
disturbance in the biosynthesis of sphingolipids, indirectly provoking apoptosis [14].

Trichothecenes, and other frequent mycotoxins, such as fumonisins and aflatoxins,
are well known for increasing reactive oxygen species (ROS) formation by inflammatory
processes and activating the xenobiotic-transforming enzyme system (e.g., the cytochrome
P450 family). In addition, inflammatory processes can induce immune reactions, con-
sequently increasing ROS formation [15–17]. In broiler chickens, there are a lot of data
on trichothecene mycotoxin-induced oxidative damage, such as lipid peroxidation after
subchronic exposure [18,19]. Based on the hierarchical model of oxidative stress, depending
on its degree, mild oxidative stress activates the biological antioxidant system, including
the glutathione redox system, and the expression of its encoding genes [20].

The co-occurrence of mycotoxins can cause different toxicities, enhancing or inhibiting
each other’s effect. The interaction of mycotoxins can be additive, in which case the
effect can be calculated as the sum of the effect of the tested toxins individually; it can be
synergistic when the effect is higher than the individual ones, and antagonistic when the
effect of the combination is lower than the individual [21]. Short- (subacute) and long-
term (subchronic) studies have recently investigated interactions between mycotoxins. In
previous research with broiler chicken [22], T-2 toxin and DON were applied together at the
EU-limiting dose in a subchronic study. The results revealed that the antioxidant system
was activated, which caused a lower rate of lipid peroxidation in broiler chickens. In another
study with rats, [23] reduced glutathione (GSH) content and glutathione peroxidase (GPx)
activity was increased by the combined effect of FB1, DON, and zearalenone (ZEA), even
at a low dose of acute exposure [23], which may indicate an antagonistic effect. However,
limited data are available on the toxic effect between individual trichothecene mycotoxins
in the case of co-occurrence, including their action on lipid peroxidation processes and the
amount or activity of the antioxidant defense, including the glutathione redox system.

The present research aimed to investigate the combined effect of short-term (72 h) ex-
posure of the three common Fusarium mycotoxins, T-2 toxin and its equally toxic metabolite,
HT-2 toxin, DON, and its toxic metabolites, 3-AcDON and 15-AcDON, and FB1, on laying
hens. The individual EU-limiting doses of the mycotoxins were used in the low-dose group,
which can frequently occur under natural conditions, and twice this amount in the high-
dose group. During our measurements, some biochemical parameters of the glutathione
redox system, lipid peroxidation, and expression of genes encoding the glutathione redox
system were determined.
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2. Results
2.1. Results of the Lipid Peroxidation Parameters

No mortality was observed in the experiment. The parameters of the initial phase
of lipid peroxidation, conjugated diene (CD), and conjugated triene (CT) levels showed
no significant differences at the different sampling times (Table 1). However, the marker
of the termination phase of lipid peroxidation, the amount of thiobarbituric acid-reactive
substances (TBARS) expressed as malondialdehyde (MDA) concentration, was significantly
(p < 0.05) higher as an effect of low-dose exposure than the control. However, compared
to the high-dose group, a significant difference was only observed on the first day of the
mycotoxin exposure due to the high individual variance in all treatment groups (Figure 1).

Table 1. Combined effect of short-term T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1
exposure on lipid peroxidation parameters in the liver of laying hens (mean ± SD; n = 6).

Conjugated Dienes (OD 232 nm)

Day 0 Day 1 Day 2 Day 3

Control
0.61 ± 0.03

0.60 ± 0.07 0.60 ± 0.05 0.65 ± 0.07
Low mix 0.60 ± 0.05 0.63 ± 0.13 0.57 ± 0.04
High mix 0.60 ± 0.07 0.61 ± 0.09 0.59 ± 0.05

Conjugated trienes (OD 268 nm)

Day 0 Day 1 Day 2 Day 3

Control
0.23 ± 0.03

0.22 ± 0.02 0.22 ± 0.02 0.23 ± 0.02
Low mix 0.21 ± 0.02 0.23 ± 0.05 0.20 ± 0.02
High mix 0.22 ± 0.02 0.22 ± 0.03 0.22 ± 0.02
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Figure 1. Effect of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and fumonisin B1 co-exposure on
the amount (nmol/g) of malondialdehyde of liver homogenates collected on the day 1, 2, and 3 of
the trial (mean ± SD.; n = 6).a, b: different superscripts mean significant differences (p < 0.05). Low
mix: T-2/HT-2 toxin: 0.25 mg; DON/3-AcDON/15-AcDON: 5 mg; FB1: 20 mg/kg feed. High mix:
T-2/HT-2 toxin: 0.5 mg; DON/3-AcDON/15-AcDON: 10 mg; FB1: 40 mg/kg feed.

2.2. Results of the Glutathione Redox System Parameters

The amount of reduced glutathione (GSH) and the activity of glutathione peroxidase
(GPx) was significantly (p < 0.05) higher in the low-dose group than in the control and the
high-dose group only on day 1 (Figure 2).

2.3. Relative Expression of GPX4, GSS, and GSR Genes

The overexpression of the GPX4, GSS, and GSR genes was found on day 1 in both the
low and high mix dose groups compared to the control, and the difference between the
means was statistically significant (p < 0.01). GPX4 expression showed a further increase
(p < 0.05) in the high mix group on day 2 compared to the control and low mix groups, while
there was a significant (p < 0.01) increase in the low mix group and a decrease (p < 0.0001) in
the high mix group than in the control by the end of the experiment (day 3). GSS expression
was significantly elevated in the low and high mix groups (p < 0.05) compared to the control
on day 1 and significantly (p < 0.001) raised on day 3 in the low mix group compared to the
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control and high mix groups. GSR expression was significantly (p < 0.01) higher on day 1
in the low mix and high mix groups compared to the control. By day 3, the relative gene
expression only lifted significantly (p < 0.01) in the low mix group, while in the control and
high mix groups, it did not (Figure 3).
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Figure 2. Evaluation of the antioxidant capacity: (a) GSH content and (b) GPx activity in the liver
homogenates (mean ± S.D.; n = 6). a, b: means with different letters in the same column differ
significantly (p < 0.05). Low mix: T-2/HT-2 toxin: 0.25 mg; DON/3-AcDON/15-AcDON: 5 mg;
FB1: 20 mg/kg feed. High mix: T-2/HT-2 toxin: 0.5 mg; DON/3-AcDON/15-AcDON: 10 mg;
FB1: 40 mg/kg feed.
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Figure 3. Relative gene expression of detoxification enzymes—(a) GPX4, (b) GSS, and (c) GSR—in
the liver of laying hens (mean ± SD.; n = 6; equal amounts of cDNA per animal). RQ: relative
quantification (RQ = 2-∆∆Ct).a, b, c: means with different letters in the same column differ significantly
(p < 0.05). Low mix: T-2/HT-2 toxin: 0.25 mg; DON/3-AcDON/15-AcDON: 5 mg; FB1: 20 mg/kg
feed. High mix: T-2/HT-2 toxin: 0.5 mg; DON/3-AcDON/15-AcDON: 10 mg; FB1: 40 mg/kg feed.

3. Discussion

The biochemical results of multi-mycotoxin exposure revealed that the lipid peroxida-
tion was in the terminal phase, as supported by the higher amount of TBARS expressed as
MDA concentration in the low mix group treated with the EU-limiting dose of T-2/HT-2
toxin, DON/3-AcON/15-AcDON, and FB1 on day 1 of the experiment. After that, this
lipid peroxidation parameter decreased to the control level, which suggested an early
activation of the antioxidant defense, effectively inhibiting further lipid peroxidation. This
result suggests early ROS formation and lipid peroxidation as an effect of low, but not
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high, doses of these mycotoxins. This dose-dependent difference can be explained by the
phenomenon that lower amounts of mycotoxins absorb and reach the liver more rapidly
than higher doses. Therefore, the early ROS formation induced the peroxidation of lipids.
In addition, the ROS formation and lipid peroxide activated the antioxidant glutathione
redox system, which was supported by the increased amount of GSH and activity of the
GPx in the low mix groups compared to the high mix group control in the same period. The
not-dose-related changes of the glutathione redox parameters support our hypothesis that
there is a dose-dependent difference in the rate of absorption of mycotoxins manifested in
the liver. Furthermore, these changes were observed in the laying hens fed with not the
high, but the low mycotoxin-contaminated feed (EU-limiting dose applied), suggesting
that there may be a synergistic effect between individual mycotoxins in terms of the ac-
tivation of the antioxidant (glutathione) system. This is supported by the results of our
previous research with these mycotoxins applied individually, where at the high (twice
the EU-limiting) dose of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON and FB1 did not
increase the amount (GSH) or activity (GPx) of the glutathione redox system [24]. The
relative expression of the GPX4, GSS, and GSR genes showed a significant increase on day 1
in both the low and high mix group compared to the control. This result suggested that the
Fusarium multi-mycotoxin exposure induced redox changes in the cells by ROS formation,
which activated the expression of antioxidant genes. However, the overexpression of these
genes did not manifest at GSH and GPx levels in the case of the high-dose mix. This result
suggested a time shift between the overexpression of genes and their effect on the synthesis
of GSH and GPx. This result supported our hypothesis that a low dose of mycotoxins
absorbs and reaches the liver earlier than a high dose, probably due to the oversaturation
of membrane channels and the effect of a high dose manifested only at the gene expression
level on day 1. After that, the xenobiotic detoxification was likely activated, which partly
recovered the redox state of cells on day 2 of the experiment, supported by the insignifi-
cant (GSS) and even lower expression (GSR). However, GPX4 overexpression was found
even on day 2 at the high dose, suggesting that cell redox changes remain due to higher
mycotoxin exposure. However, it does reach the critical level for activating GSH and GPx
synthesis. The overexpression of genes of the antioxidant enzymes increased by day 3 due
to low-dose mycotoxin exposure, which may be caused by the metabolism of mycotoxins,
resulting in further ROS formation. These results are different from the previous results,
where the relative gene expression of GPX4, GSS, and GSR did not change or decrease
on day 1 as an effect of the high-dose exposure to the same individual mycotoxins [24].
Therefore, it can be assumed that during the 3-day multi-mycotoxin exposure, there was a
synergistic effect among the Fusarium mycotoxins on activating the antioxidant enzymes
at the gene expression level. The individual in vivo effects of these mycotoxins on the
induction of oxidative stress were described earlier in broiler chickens. However, the
doses applied were higher than the EU-proposed limits. The results of previous studies
suggested that T-2 toxin or DON exposure in vivo increased the ROS formation in the
long-term and short-term experiments [25], which activated the antioxidant defense at both
the gene and protein expression levels. In addition, subacute exposure to FB1 increased
the hepatic TBARS levels, inducing oxidative stress in the liver by inhibiting the ceramide
synthase [26]. However, there are some studies about combined exposure with EU-limiting
doses. The combined low-dose subchronic exposure of T-2 toxin and DON increased the
amount or activity of the glutathione redox system and the expression of related genes.
However, at the same time, there was no significantly higher rate of lipid peroxidation [22],
which suggested a proper antioxidant defense. Furthermore, the common contamination
of FB1 and DON of broiler feed at concentrations of the EU-recommended levels caused
higher ROS levels than FB1 applied alone [27], suggesting a synergistic effect. These results
suggested synergistic toxicity interactions, including changes in the redox state of cells
and the activation of the antioxidant defense as an effect of multi-mycotoxin exposure. In
addition, the most changes in the antioxidant markers were found when using the EU-limit
values, presumably due to the development of oxidative stress even at low concentrations
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of mycotoxins, possibly due to their more rapid absorption from the intestine. Therefore, it
is important to continue studying mycotoxin mixtures even at low concentrations and the
related mechanism to better understand mycotoxin exposure-related cellular events and
mycotoxin-induced diseases.

4. Conclusions

In conclusion, the 3-day Fusarium multi-mycotoxin exposure led to ROS formation,
resulting in lipid peroxidation and, as a response, activating the antioxidant system. How-
ever, this effect manifested at the gene expression level, but did not affect the biochemical
parameters. Furthermore, the combined effect revealed that the low dose had a more
marked early effect than the high dose on lipid peroxidation and the glutathione redox
system in the liver of laying hens, which was manifested in the relative expression of
glutathione redox system-related genes at low and high doses.

5. Materials and Methods
5.1. Experimental design

In total, 60 Tetra SL laying hens (49 weeks of age, 90% average daily egg production)
were used as an in vivo model. Three treatment groups (control, low, and high mixture
groups) with 18 animals per group were formed, and six animals were used as an absolute
control on day 0 of the experiment. Feed and drinking water were provided ad libitum.
The nutrient content of the laying hens’ diet was 89.20% dry matter, 16.10% crude protein,
2.50% ether extract, 5.50% crude fiber, 0.79% lysine, 0.38% methionine, 0.71% methion-
ine + cysteine, 4.12% calcium, 0.48% phosphorus (available), 0.17% sodium, 11.97 MJ/kg M.
The animals were kept on deep litter with a natural light regimen (12 L/12 D). After 12 h
of feed deprivation, a 3-day feeding trial was started with low- (T-2/HT-toxin: 0.25 mg;
DON/3-AcDON/15-AcDON: 5 mg; FB1: 20 mg/kg feed) and high-dose (T-2 /HT-2toxin:
0.5 mg; DON/3-AcDON/15-AcDON: 10 mg; FB1: 40 mg/kg feed) multi-mycotoxin ex-
posure. The applied EU-limiting mycotoxin contamination level of the feed [28] in the
low-dose group can show casual contamination in a temperate climate [29]. In contrast,
the high dose induced measurable changes in a short-term experiment. At 24, 48, and
72 h after the start of the mycotoxin exposure, post mortem liver samples were randomly
collected from six animals per group, washed with isotonic saline, and stored at −70 ◦C
until analysis.

5.2. Mycotoxin production

Broiler chicken feed was experimentally contaminated with T-2 toxin, DON, and
FB1. T-2 toxin was produced by Fusarium sporotrichioides (NRRL 3299), DON by Fusarium
graminearum (NRRL 5883), and FB1 by Fusarium verticillioides (MRC 826) strains on corn
substrate according to the method of Fodor et al. [30]. The fungal strains were verified
for the production of the mentioned mycotoxins, but the final culture was not examined
for other mycotoxins. The experimental mycotoxins and their metabolites (T-2/HT-2
toxin [31], DON, 3-AcDON, 15-AcDON [32], and FB1 [33]) were measured in triplicate by
HPLC equipped with a fluorescence detector after immunoaffinity cleanup. It was made
with a double extraction procedure with water and methanol and by Myco6in1+®multi-
mycotoxin immunoaffinity column (Vicam, Milford), as proposed by the manufacturer.
The concentration of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 was lower
than LOQ in the control feed. Table 2 shows the measured mycotoxin content of the feeds
used in the experiment.
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Table 2. Mycotoxin feed content used in the experiment (mg/kg feed).

Group T-2/HT-2 DON/3-AcDON/15-AcDON FB1

Control <0.02 <0.02 <0.02
Low mix 0.22/0.04 4.25 21.51
High mix 0.62/0.08 11.02 39.05

5.3. Biochemical and Gene Expression Analyses

Initial phase markers of lipid peroxidation, CD, and CT content were determined
according to the AOAC method [34] by measuring the absorption at 232 nm and 268 nm,
respectively. TBARS, as final products of polyunsaturated fatty acid peroxidation, were
measured in a 1:9 homogenate (in physiological saline) of liver samples using the method
of Botsoglou et al. [35] and expressed as malondialdehyde, which served as a standard
(1,1,3,3-tetraethoxypropane, Fluka, Buchs, Switzerland). The amount of total non-protein
sulfhydryl groups expressed as GSH [36], and the activity of GPx [37], were determined in
the 10.000 g supernatant fraction of 1:9 homogenate of the liver samples. GSH content and
GPx activity were calculated to the protein content of the supernatant fraction using the
Folin–Ciocalteu phenol reagent [38].

The gene expression measurements were performed by quantitative real-time PCR
using the duplex qPCR method. From the liver, 6–10 mg samples were taken from the
distal part of the right lobe, and the total RNA was purified with NucleoZOL reagent
(Macherey-Nagel, Düren, Germany), according to the manufacturer’s instructions. DNase I
(Thermo Fisher Scientific, San Jose, CA, USA) treatment was used to remove the genomic
DNA from the purified RNA samples. The concentration, integrity, and quality of the total
RNA were verified by agarose gel electrophoresis and NanoPhotometer (Implen, Munich,
Germany). The purity of the RNA was accepted with the absorption OD 260/280 index
ratio above 2.0. cDNA was produced with reverse transcriptase (Thermo Fisher Scientific,
San Jose, CA, USA) and random nanomer primer from 1 µg of total RNA, according to
the recommended protocol. In the real-time PCR measurement, pooled samples from
equal amounts of cDNA per six individual animal specimens for each sampling point per
treatment with five technical replicates were used, as proposed by Kendziorski et al. [39].
According to previous studies, the target genes were GPX4, GSS, and GSR. The endogenous
housekeeping control gene was GAPDH, which has no interaction with oxidative stress or
mycotoxins. Primers and probes were made using Primer Express 3.0.1 (Thermo Fisher
Scientific, San Jose, CA, USA) software (Table 3). The real-time PCR measurements were
carried out in duplexes (endogenous and target gene) using MGB-NFQ TaqMan probes
(Thermo Fisher Scientific, San Jose, CA, USA) labeled with fluorescent dyes, VIC, and FAM
signals (Table 4) for the simultaneous analysis of two gene products.

Table 3. Primers of target and endogenous control genes.

Gene Forward (5′-3′) Reverse (5′-3′) GenBank Accession No.

GAPDH TGACCTGCCGTCTGGAGAAA TGTGTATCCTAGGATGCCCTTCAG NM_204305.1
GPX4 AGTGCCATCAAGTGGAACTTCAC TTCAAGGCAGGCCGTCAT NM_001346448.1
GSS GTACTCACTGGATGTGGGTGAAGA CGGCTCGATCTTGTCCATCAG XM_425692.6
GSR CCACCAGAAAGGGGATCTACG ACAGAGATGGCTTCATCTTCAGTG XM_015276627.2

Table 4. MGB-NFQ dual-labeled probes of genes.

Gene MGM Dual-Labeled Probe Fluorescent Dye

GAPDH CCAGCCAAGTATGATGAT VIC
GPX4 CAGCCCAATGGAG FAM
GSS AGGAGGGAACAACCTG FAM
GSR CTGGCACTTCGGCTC FAM
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The relative expression level of the target genes was measured with Step One Plus™
Real-Time PCR systems (Thermo Fisher Scientific, San Jose, CA, USA) using the compar-
ative Ct method, as described previously [24]. The VIC and FAM signals were detected
at 72 ◦C at the end of the extension period. The ∆Ct, ∆∆Ct, and relative quantification
(RQ = 2-∆∆Ct) values were calculated according to Livak and Schmittgen [40].

5.4. Statistical Analysis

GraphPad Prism 6.07 software (GraphPad Software, San Diego, CA, USA) was used
for the statistical analysis. Data are expressed as mean ± standard deviation (SD). The
normality and the homogeneity of variance were verified with the Kolmogorov–Smirnov
test and Bartlett test, respectively. The data passing both tests were analyzed by one-way
ANOVA and Tukey’s post hoc test (p < 0.05).

5.5. Ethical Issues

The guidelines set by the European Communities Council Directive (86/609 EEC)
were followed during the experiment. The Food Chain Safety, Land Use, Plant and Soil
Protection and Forestry Directorate of the Pest County Governmental Office (PE/EA/1964-
7/2017) approved the experimental protocol with the lowest number of animals possible
for an accurate statistical analysis.
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