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Abstract: (1) Background: The detection of DNA double-strand breaks in vitro using the phos-
phorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro
genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX re-
sponse is either detected by flow cytometry or microscopy, the latter being more accessible. However,
authors sparsely publish details, data, and workflows from overall fluorescence intensity quantifica-
tion, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin,
two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection.
Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values
were measured using segmented nuclei from the DAPI channel and the results were expressed as the
area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as
the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The
outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin
was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The
overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising
alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement
of the bioimage analysis methods.

Keywords: genotoxicity; in vitro testing; high-throughput; bioimage analysis; ImageJ

Key Contribution: Open-source bioimage analysis workflow for high-throughput genotoxicity testing
is presented.

1. Introduction

The purpose of genotoxicity testing is to identify chemicals that can cause genetic al-
terations in cells [1]. In the last 50 years, a variety of in vitro and in vivo methods have been
developed for the routine testing of chemicals, including genotoxicity testing. They com-
prise standardised procedures that are described in national and international guidelines
(recently reviewed in [2,3]). There is substantial effort to fulfil the 3R concept (replacement,
reduction, and refinement), i.e., to reduce in vivo experiments and to use human-relevant
and reliable in vitro methods [4]. However, currently standardised in vitro methods for
genotoxicity testing using mammalian cells (HPRT and TK assays, micronucleus assay)
are tedious and not suitable for high-throughput testing. One of the promising markers of
DNA damage response for genotoxicity assessment seems to be the phosphorylation of the
histone variant H2AX [5].

H2AX represents the constitutively expressed and evolutionarily conserved variant of
the H2A protein family that is a component of the histone octamer in nucleosomes. The
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phosphorylation event at serine 139 in mammals, referred to as γH2AX, is connected to
double stranded breaks (DSBs) and is one of the first reactions. This will trigger a chromatin
condensation that appears to play a crucial role in the recruitment of damage signalling
or repair factors to the site of the damage. The γH2AX could be the response not only to
DSBs, but also to single-strand breaks, during replication stress, or to the fragmentation
during cell apoptosis [6–8].

In vitro measurement of the γH2AX is an increasingly popular method of measuring
genotoxicity in combination with other classical methods. The main advantages are the
specificity and sensitivity of the system [3,5,9] and the list of immunoassays suitable for
the γH2AX detection: Western blot, ELISA, flow cytometry, and immunofluorescence
microscopy, the last mentioned having the highest sensitivity [3,10].

Antibodies or commercial kits for γH2AX detection are available and suitable for flow
cytometry as well as for microscopic analysis and other novel immuno-based methods [11].
Flow cytometry only allows us to measure overall fluorescence, whereas γH2AX detection
by immunofluorescence microscopy is based either on the foci detection per cell (using
a confocal microscope) or on the quantification of the overall intensity from images of
lower magnification [10], the second mentioned approach being more suitable for high-
throughput analysis in a 96-well plate format. With immunofluorescence, high-content
screening (multiparametric analysis) is also possible [12]. Nuclei are routinely counter-
stained (by Hoechst 33342 or DAPI) and, in addition, cell viability (i.e., membrane integrity)
can be simultaneously monitored using appropriate DNA-binding dyes (e.g., Image-iT
DEAD Green™ or 7-AAD) or combined with other biomarkers such as 53BP1 (p53 bind-
ing protein 1) [13]. Nevertheless, the multiparametric analysis increases the total time
of analysis.

Taking into account that the wide-field microscope is more commonly a part of bio-
logical laboratory equipment compared to the flow cytometer, bioimage analysis of the
overall γH2AX signal appears to be an assay of choice for high-throughput genotoxicity
screening of substances. In addition, fixed plates can be stored in a freezer for a short time
and re-analysed or the original images can be databased and reanalysed, if necessary.

Various authors used γH2AX detection by immunofluorescence microscopy; however,
they either perform an automatic analysis on a specialised device with dedicated software
or they use a commercial software (Table 1). Studies using open-source software for
bioimage analysis are sparse and a detailed description of semiautomatic or automatic
image analysis workflow is usually not provided.

Table 1. Example of studies using immunomicroscopic γH2AX detection for genotoxicity evaluation.

Overall Intensity (OI)
or Foci Detection (FD) Device for Detection Software for Bioimage Analysis Ref.

FD AKLIDES Cell Damage system, Medipan [14]
FD AKLIDES Cell Damage system, Medipan [10]

OI Cellomics Arrayscan VTI platform 1, Thermo Scientific, TargetActivation Bioapplication
software V.6.6.1.4.

[9]

OI ArrayScan VTI HSC reader Reader 1, Thermo Scientific [15]
OI Cellomic Arrayscan VTI HCS Reader 1, Thermo Scientific [16]

FD confocal laser scanning microscope
(Zeiss LSM 510)

Foci 8.0 software (Schultz and Belyaev,
unpublished) [17]

FD confocal microscope (Nikon) NE Element software (Nikon) [18]
OI Olympus fluorescence microscope (BX51) ImageJ software (v.1.47) [19]

1 updated version of the device is called CellInsight.

Open-source bioimage analysis tools are highly preferred, as they enable reproducibil-
ity. Commercial platforms often focus on ease-of-use, but the details of the image processing
algorithms are hidden. On the contrary, the details are completely transparent in open-
source platforms [20]. Open source bioimage informatics tools (CellProfiler, Icy, ImageJ) for
the analysis of DNA damage and associated biomarkers were reviewed in [21]. ImageJ is
often a tool of choice, because of its long existence, wide adoption, and extensible plugin ar-
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chitecture, which means that anyone can access and modify the source code and everybody
has access to a wealth of resources, such as tutorials and plugins. It also allows users to
save the analysis steps as scripts, which can be rerun to obtain the same results on different
data, ensuring that the results are reproducible [20].

In this study, we present a detection of DSBs in adherent mammalian cells in 96-well for-
mat using a commercially available kit (HSC Damage Kit, Invitrogen, Waltham, MA, USA [22])
for better reproducibility, and the γH2AX response is evaluated using an inverted wide-
field fluorescence microscope. Valinomycin is used as a model genotoxic substance causing
γH2AX positive response and is recommended by the kit manufacturer [22]. Image acqui-
sition is automated (autofocus, motorised stage). The viability is evaluated from the area
of Hoechst 33342-stained nuclei (non-viable cells are washed during the procedure and
are not present) and the signal from γH2AX is measured as immunofluorescence intensity
in the Cy3 channel. The last component of the kit, Image-iT DEAD Green, is not used in
order to accelerate the image acquisition and to minimise the potential risk of leakage of
the signal to other channels. The image automatic analysis is performed in the open-source
software ImageJ.

2. Results

We obtained microscopic images of immuno-stained CHO-K1 and HeLa cells after
incubation (two time points) with valinomycin in two concentrations. The mean fluores-
cence values, MFV (γH2AX signal from Cy3 channel), were extracted using the segmented
nuclei from the DAPI channel and expressed as area-scaled relative fold change in fluores-
cence over the control (Equations (1) and (2)), alongside cytotoxicity changes (% control),
expressed as Relative Area (RA, Equation (3)). These data were used to evaluate whether a
compound induced a positive, negative, or equivocal response in the assay (scaling was
adopted from Smart et al. [23], Table 2). The results are summarised in Table 3 for the
wells after 4 h and in Table 4 for the wells after 24 h. Representative images are shown in
Figures 1 and 2. Boxplots are shown in Figures S1 and S2.

Table 2. Genotoxicity evaluation criteria for the γH2AX. Adopted from [23].

γH2AX Signal Increase RCC 1 Classification

>1.5× Above 25% Genotoxic
<1.5× 0–100% Non-genotoxic

>1.5× Below 25% Cytotoxicity-driven
genotoxicity = false positive

1.5× ≥25% Equivocal
1 RCC = relative cell counts.

Table 3. The values from bioimage analysis after 4 h exposition of CHO-K1 and HeLa cell lines to
valinomycin in two concentrations (30 and 15 µM) compared to unaffected control (ctrl). MFV = mean
fluorescence values; IQR = interquartile range; MoA = Mean fluorescence values over Area of the
nuclei; RA = Relative Area (analogue of RCC = relative cell count).

Cell Line Sample
MFV (γH2AX Response) Area (Nuclei) [µm2]

MoA Fold RA
Mean IQR Mean IQR

CHO-K1
Ctrl 1.641 1.520 2.130 1.058 0.770 1 100%

Val30 2.179 1.872 1.423 0.862 1.531 1.987 66.81%
Val15 2.151 1.439 1.614 0.814 1.333 1.730 75.78%

HeLa
Ctrl 0.132 0.166 3.249 1.334 0.041 1 100%

Val30 0.127 0.149 2.955 1.109 0.043 1.063 90.94%
Val15 0.119 0.147 3.040 1.167 0.039 0.966 93.56%
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Table 4. The values from bioimage analysis after 24 h exposition of CHO-K1 and HeLa cell lines to
valinomycin in two concentrations (30 and 15 µM) compared to unaffected control (ctrl). MFV = mean
fluorescence values; IQR = interquartile range; MoA = Mean fluorescence values over Area of the
nuclei; RA = Relative Area (analogue of RCC = relative cell count).

Cell Line Sample
MFV (γH2AX Response) Area (Nuclei) [µm2]

MoA Fold RA
Mean IQR Mean IQR

CHO-K1
Ctrl 1.518 1.509 2.186 0.973 0.694 1 100%

Val30 2.785 3.229 0.893 0.405 3.119 4.495 40.83%
Val15 2.605 2.670 1.173 0.572 2.221 3.199 53.66%

HeLa
Ctrl 0.064 0.082 2.919 1.276 0.022 1 100%

Val30 0.595 0.324 2.070 0.806 0.287 13.200 70.91%
Val15 0.358 0.275 2.227 0.893 0.161 7.376 76.30%
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(a)  (b) 

Figure 1. Processed images after 4 h. Red: Cy3 (signal from γH2AX), Blue: DAPI (nuclei), Yel-
low outlines: detected objects. Images were enhanced using ImageJ run (“Enhance Contrast”,
“saturated = 0.35”). Same contrast transform was applied on control and treatment, channel wise.
(a) HeLa, val15, well B8; (b) HeLa ctrl, well B6. (c) CHO-K1, val15, well B4; (d) CHO-K1 ctrl, well B2.
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Figure 2. Processed images after 24 h. Red: Cy3 (signal from γH2AX), Blue: DAPI (nuclei), Yel-
low outlines: detected objects. Images were enhanced using ImageJ run (“Enhance Contrast”,
“saturated = 0.35”). Same contrast transform was applied on control and treatment, channel wise.
(a) HeLa, val15, well C8; (b) HeLa, ctrl, well C6. (c) CHO-K1, val15, well C4; (d) CHO-K1 ctrl, well C2.

The fluorescence microscopy analysis validated a time-dependent increase in Cy3
nuclei brightness after treatment, which was accompanied by a decrease in the relative area
of cells based on the measured area of segmented nuclei. These changes were consistent
with an expected genotoxic and cytotoxic effect of the treatment on the cells, respectively.

All RA values (analogue of relative cell counts) were above the limit of 25% which
means that genotoxicity can be evaluated. Fold changes after 4 h treatment were below 1.5
in the case of HeLa cells and were above 1.5 in the case of CHO-K1 cells. Fold changes after
24 h treatment were above 1.5 in all cases, which indicates genotoxicity (Tables 2 and 3).
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3. Discussion

Here, we propose a method for high-throughput genotoxicity testing based on γH2AX
detection using immunofluorescence microscopy and automated bioimage analysis in
open-source software.

In this pilot study, we made several simplifications:

• We are aware of the fact that for the measurement of γH2AX response, cell lines
derived from normal tissues are considered to be more reliable than those from cancer
tissues [24]. Nevertheless, HeLa cell line was used as a model since it is recommended
in the manual of the kit’s manufacturer. The CHO-K1 cell line was used as the second
cell type because it is a cell line used for the HPRT mutation assay accepted by OECD
and EPA.

• As a model compound, we only used valinomycin because it was used by the manu-
facturer of the kit. There was, therefore, no need to use metabolic activation, because
valinomycin is genotoxic per se.

• To accelerate image acquisition and to minimize the potential risk of channel-to-
channel leakage, we presumed that dead cells were washed away during the prepa-
ration of the samples and, therefore, we did not use any additional dye to detect
dead cells.

• We used nuclei area, not number of nuclei, to evaluate cell mass.

The general limitations are listed in Appendix A.
The idea was to offer an alternative to γH2AX detection by flow cytometry [23]. Using

this method, Smart et al. measured median FL1 fluorescence values (γH2AX) and evaluated
the fold change in γH2AX signal and relative cell counts. Inspired by [25], we used similar
parameters, i.e., mean fluorescence intensity values, MFV (γH2AX signal from Cy3 channel)
in a region of interest (ROI), and area-scaled relative fold change in γH2AX fluorescence
over the negative control. Our workflow was similar to that of [9]; however, contrary to
that study, we provide a detailed description in an open-source software ImageJ.

Instead of relative cell counts, we expressed cytotoxicity as relative area (RA) of the
nuclei. As already mentioned, we did not directly quantify the number of nuclei in each
well (mainly due to problems with nuclei on the edges); nevertheless, we propose that
nuclei area is an easier and sufficient alternative to evaluate a cell mass in a well.

We tried to compare our values with those from the commercial platform listed in the
manufacturer’s protocol [22] of the commercial kit we used. The same model compound
(30µM valinomycin) and incubation time (24 h) were used; however, the cell lines were
different. We digitalised the graph from the protocol (values in Table 5). γH2AX response
is expressed as mean average intensity (γH2AX nuclear intensity); the analogous quantity
MFV presented by us. The mean intensity over cell numbers, fold, and relative cell
numbers were calculated similarly as MoA, fold, and RA (Equations (1)–(3)). These results
(cytotoxicity as well as the genotoxicity) are comparable with our results from CHO-K1 cell
line (Table 4).

Table 5. The values obtained from a chart from manufacturers protocol (evaluated using the Thermo
Scientific Cellomics ArrayScan VTI and Compartmental Analysis Bioapplication) after 24 h exposition
of A549 cell lines to 30 µM valinomycin compared to unaffected control (ctrl). γH2AX response is
expressed as mean average intensity (γH2AX nuclear intensity)—the analogue of MFV; relative cell
number is an analogue of RA = relative area.

Sample γH2AX Response Cell Number Mean over Cell Number Fold Relative Cell Number

Ctrl 90.4 184 0.491 1.0 100%
Val30 201.5 72.9 2.764 5.6 40%

We observed differences between the two cell lines used. Valinomycin was more
cytotoxic to the CHO-K1 cell line compared to the HeLa cell line. It is in agreement
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with the studies confirming the rodent cell lines being consistently more susceptible to
cytotoxicity [26]. The fold change after 4h incubation was higher in CHO-K1 cells probably
because they rank among p53-compromised cell types [26]. Despite the recommendations
of the kit manufacturer, the HepG2 cell line is often used, which not only offers the potential
for metabolic activation of pro-mutagens (production of liver enzymes), but also meets the
requirements for human non-tumour tissue lines [27]. The results obtained in this way can
better correspond to real conditions [28,29].

Compared to flow cytometry, we observed higher fold changes after 24 h, especially
in HeLa cells. The high score after 24 h can be false positive due to increased apoptosis,
because DNA degradation as a consequence of apoptosis is known to induce γH2AX [15,30],
especially after incubation with valinomycin [31]. Moreover, the high toxicity of valino-
mycin and its mechanism of action suggest that it is not a suitable positive control for such
genotoxicity tmeasurements [32].

The number of cells evaluated was lower in our case of microscopic analysis
(1000–3000 objects per well) compared to flow cytometry (104 nuclei [23]). This proba-
bly caused the higher deviations (or higher interquartile change in our case).

Overall, our results suggest that the microscopy-based validation of genotoxicity on
the cells is consistent with other methods [9,23]. The detection of overall fluorescence
intensity using microscopic bioimage analysis seems to be more sensitive than by using a
spectrophotometer, as in [33]. In this case, results may be inaccurate due to non-specific
antibody binding, or, in the case of foci, the signal may be so weak that it can easily be
confused with noise.

4. Conclusions

Overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to
be a promising alternative to flow cytometry in genotoxicity testing in vitro. Workflow, data,
and script sharing are crucial for further improvement of the bioimage analysis methods.
Our future work will be based on the implementation of more cell models, recruitment of
metabolic activation by S9 mix and more model compounds, and finally on the validation
of this workflow within laboratories.

5. Materials and Methods
5.1. Chemicals

Bovine serum albumin (BSA A7906; Merck, Germany); Dimethylsulfoxide (DMSO
D8418; Merck, Germany); Dulbecco’s Modified Eagle’s Medium—high glucose (DMEM
D0819; Merck, Germany); Foetal bovine serum (FBS F7524; Merck, Germany); HCS DNA
Damage Kit (H10292; Invitrogen, USA); L-Proline (P5607; Merck, Germany); Minimum
Essential Medium (MEM M0446; Merck, Germany); MEM Non-essential Amino Acid
Solution 100x (NEAA M7145; Merck, Germany); Paraformaldehyde 16% (043368.9M;
Thermo Scientific Chemicals, UK); Valinomycin (V0627; Merck, Germany).

5.2. Cell Lines and Culture Conditions

Human cervical adenocarcinoma cell line (HeLa, CCL-2) was obtained from American
Type Culture Collection (ATCC, Manassas, VA, USA), and Chinese hamster ovary cell line
(CHO-K1 85051005) was obtained from the European Collection of Authenticated Cell
Cultures (ECACC, Porton Down, UK). The HeLa cells were grown in MEM supplemented
with 10% FBS and NEAA. CHO-K1 cells were cultivated with DMEM supplemented with
L-proline (final concentration 35 mg/L). The cell incubation took place in a humidified
atmosphere of 5% CO2 at 37 ◦C.

5.3. Direct Measurement of DNA DSBs

The cells were seeded in a concentration of 0.5 × 105 cells/mL in the 96-well plate
(VWR, 10062-900). The cells were rinsed by phosphate buffered saline (PBS) after 24 h
incubation, and medium with reduced FBS content (5%) was added. Valinomycin was
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dissolved in DMSO and added to cells in two final concentrations (30 and 15 µM). Final
concentration of DMSO in medium was 1%. Medium with 1% DMSO was used as a
negative control. After 4 h/24 h incubation, the visualization was performed using the
following protocol of the HCS DNA Damage Kit, Invitrogen, Waltham, MA, USA [22]. The
cells were fixed by 4% paraformaldehyde solution for 15 min at room temperature. The
cells were rinsed once by PBS and the permeabilization was performed using Triton X-100
solution, by incubation for 15 min at room temperature. The wells were rinsed with PBS
once and the plate was blocked by 1% BSA blocking solution. After 1 h incubation at room
temperature, the blocking solution was removed and 100 µL of pH2AX mouse monoclonal
antibody solution (1:1000 in 1% BSA) was pipetted into each well and incubated for 1 h
at room temperature. After three rinses by PBS, the 100 µL of Alexa Fluor 555 goat anti-
mouse IgG (H+L; 1:2000) and Hoechst 33342 (1:6000) solution was added and the plate
was incubated for 1 h at room temperature and protected from light. After the incubation,
the wells were rinsed three times by PBS. The plate was stored with 100 µL of PBS in the
refrigerator (4 ◦C) until the image analysis was performed.

5.4. Measurement Settings

• Manufacturer and model of microscope: Olympus IX83 P2ZF;
• Objective lens magnification: 10×; NA = 0.3;
• Excitation filters (mounted in the light source);
• Violet: 395/25 nm; LED module 1, DAPI;
• Green: 555/28 nm; LED module 5, Cy3;
• Quad band filter set for DAPI/FITC/Cy3/Cy5;
• Quad band polychroic mirror (mounted in the filter turret);
• BP 411–454 nm;
• BP 495–536 nm;
• BP 577–617 nm;
• BP 655–810 nm;
• Emission filters (mounted in the fast emission filter wheel, in front of the camera);
• DAPI: BP 421–445 nm;
• Cy3: BP 581–619 nm;
• Illumination light source: Lumencor Spectra X Lamp;
• Camera manufacturer and model: Hamamatsu ORCA-Flash4.0;
• Pixel size: 650 nm × 650 nm;
• Software program(s) and version: OLYMPUS cellSens Dimension 3.2 (Build 23706);
• Image acquisition settings including exposure times, gain, and binning: exp 500 ms,

gain: 0, binning: 4 × 4;
• Experiment manager: ZDC + autofocus, two channels: DAPI and Cy3 (Figure 3);
• Well navigator: single frames, 4 × 4 per well (Figure 4).
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5.5. BioImage Analysis

A reproducible image analysis workflow is a collection of tools and resources that
enable anyone to replicate the process of handling and analysing images, with the goal of
obtaining the same results. This workflow package consists of three key components:

• A description of the workflow;
• The code of the workflow;
• The original image data.

5.5.1. Description of the Workflow

In this paper, we present a reproducible image analysis workflow [34,35] to allow
replication of the image handling and analysis process. The workflow is based on the idea
of Smart et al. [23]. The authors used flow cytometry and introduced useful genotoxicity
evaluation criteria for the γH2AX (Table 2). “Median FL1 (H2AX) fluorescence values
were extracted and expressed as relative fold change in H2AX fluorescence over control,
alongside cytotoxicity RCC changes (% control); these data were used to determine whether
a compound induced a positive, negative or equivocal response in the assay.” [23].

Our aim was to adopt these evaluation criteria in connection with automated im-
munofluorescence microscopy. We focus on the thresholding of DAPI stained nuclei in
channel 2 and brightness value analysis in the Cy3 channel. The main parameters of interest
for analysis are the area of each nuclei object and the mean brightness of each object from
the Cy3 channel, which are used for comparison across wells.

The workflow consists of three main steps: sorting of data, image analysis, and feature
analysis. The sorting step uses an ImageJ macro script that expects images to be named follow-
ing the convention “ChannelName_YYYYMMD_Well_PositionInWell_AcqRun.FileFormat”
and creates a set of subfolders for each well. The image analysis step is performed using
another ImageJ macro, which detects nuclei through automatic Otsu thresholding and com-
putes the area and brightness for each object. Finally, the feature analysis step is performed in
Python using a Jupyter Notebook, where specified wells are statistically compared, and fold
changes are calculated.
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5.5.2. The Code of the Workflow and the Original Image Data

The complete workflow package, including all scripts and notebooks, is publicly avail-
able through published data and GitHub, allowing for the easy replication and verification
of results.

ImageJ macro-overview
This protocol documents an image data flow utilised and inspired by CLIJx-Assistant [36].

1. We start our image data flow with image_1, a DAPI channel with nuclei.
2. Following this, we apply “Copy” on image_1 and obtain a new image out, image_2.
3. As the next step, we apply “Otsu” auto threshold on image_2 and obtain a new image

mask out, image_3. The threshold values are saved and used on all DAPI images from
the same well.

4. Afterward, we apply “Analyze Particles” on image_3, and single out a region of nuclei
as a Region of Interest (ROI) set. All ROIs touching edges are skipped.

5. In the next step, we open image_4, which is the Cy3 channel. We apply “Copy” on
image_4, and obtain a new image, image_5.

6. We apply background subtraction with s rolling ball of size 50 on image_5 to subtract
the local background value from intensity measurements, and obtain image_6.

7. Afterward, image_6 is selected for measuring features under ROIs from the previous step.
8. The process Log and measured features from Cy3 channel for the whole well and

summary are saved in the “Results” subfolder in the CSV table. A flattened image_4
with ROIs outlined is saved as a JPEG for later inspection.

The macro logs version of ImageJ and BioImage plugin version on each run was tested
in ImageJ version 1.53t99 [37]. The logs also contain information about image size, count of
objects, and threshold values.

While using the ImageJ Macro Markdown plugin, it is possible to extract a protocol
documenting the analysis of the selected well. The code for the version used in this
paper is available on Zenodo and on GitHub (links in a section “Data and software
availability statement”).

5.6. Calculations

MoA (Mean fluorescence value over Area) is calculated as

MoA =
MFV
area

(1)

Fold is calculated as

fold =
MoAsample

MoActrl
(2)

RA (relative area) is calculated as

RA =
Areasample

Areactrl
× 100 (3)

5.7. Data Analysis and Statistics

The measured features obtained from BioImage Analysis were examined for normal
distribution, and the findings are shown in Tables S1 and S2. The results indicate that none
of the measured data follow a normal distribution; non-parametric measures were therefore
employed. Mainly, the interquartile range (IQR) was utilised as a measure of dispersion
instead of the standard deviation (STD) typically used. As for the relative area and folds
(calculated as the brightness values of the treated sample over the control values), they
were presented without IQR since only a single statistically descriptive value was used.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/toxins15040263/s1, Table S1: p-values after 4 h treatment, Table S2: p-values

https://www.mdpi.com/article/10.3390/toxins15040263/s1
https://www.mdpi.com/article/10.3390/toxins15040263/s1
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after 24 h treatment. Figure S1. Mean brightness of detected ROI after 4 h. Error bars stand for
interquartile range; Figure S2. Mean brightness of detected ROI after 24 h. Error bars stand for
interquartile range.
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Appendix A

Limitations: Even though the authors did their best by using the best available
methods for data acquisition, data quality control, and data processing, there are several
limitations to the presented approach that must still be considered. The resolution of optical
microscopy is limited by the wavelength of light used, which means that small details may
be difficult to see. Additionally, the images produced can be still slightly distorted due to
factors such as aberrations, diffraction, and scattering. The depth of field and field of view
is also limited, which can make it challenging to see the entire specimen in focus. Image
processing techniques during acquisition can also introduce artifacts, distorting the image
and making it challenging to interpret. Most of the abovementioned factors are dependent
on the type of microscope used and its setting, which is included in this paper.

Appendix B

Data
Underlying data available from Zenodo: https://doi.org/10.5281/zenodo.7673198.
Naming Convention for images: ChannelName_YYYYMMD_Well_PossitionInWell_A

cqRun.FileFormat
Structure:

• Images;
• 4H—all images for all wells;
• 24H—all images for all wells.
• Results:
• Results_4H;
• Results_24H.

Available under Creative Commons Attribution 4.0 International.
Software
Code available from Zenodo: https://doi.org/10.5281/zenodo.7673497 and GitHub:

https://github.com/martinschatz-cz/genotoxicity-bia
Structure:

https://doi.org/10.5281/zenodo.7673198
https://doi.org/10.5281/zenodo.7673497
https://github.com/martinschatz-cz/genotoxicity-bia
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• ImageJ_scripts:
• enhance_ROI_outlines_flatten.ijm;
• Process_WFolder_macro_v1.ijm;
• sort_wells.ijm;
• vis_CA_allOpened.ijm.
• Python_scripts:
• SF_dataVis_and_statistics_mean_4h.ipynb;
• SF_dataVis_and_statistics_mean_24h.ipynb;
• README.md;
• Requirements.txt.

Available under Creative Commons Attribution 4.0 International.
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