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Abstract: Microcystin-LR (MC-LR) is an extremely poisonous cyanotoxin that poses a threat to
ecosystems and human health. MC-LR has been reported as an enterotoxin. The objective of this
study was to determine the effect and the mechanism of subchronic MC-LR toxicity on preexisting
diet-induced colorectal damage. C57BL/6J mice were given either a regular diet or a high-fat diet
(HFD) for 8 weeks. After 8 weeks of feeding, animals were supplied with vehicle or 120 µg/L
MC-LR via drinking water for another 8 weeks, and their colorectal were stained with H&E to detect
microstructural alterations. Compared with the CT group, the HFD and MC-LR + HFD-treatment
group induced a significant weight gain in the mice. Histopathological findings showed that the
HFD- and MC-LR + HFD-treatment groups caused epithelial barrier disruption and infiltration of
inflammatory cells. The HFD- and MC-LR + HFD-treatment groups raised the levels of inflammation
mediator factors and decreased the expression of tight junction-related factors compared to the
CT group. The expression levels of p-Raf/Raf and p-ERK/ERK in the HFD- and MC-LR + HFD-
treatment groups were significantly increased compared with the CT group. Additionally, treated
with MC-LR + HFD, the colorectal injury was further aggravated compared with the HFD-treatment
group. These findings suggest that by stimulating the Raf/ERK signaling pathway, MC-LR may
cause colorectal inflammation and barrier disruption. This study suggests that MC-LR treatment may
exacerbate the colorectal toxicity caused by an HFD. These findings offer unique insights into the
consequences and harmful mechanisms of MC-LR and provide strategies for preventing and treating
intestinal disorders.

Keywords: microcystin-LR; colorectal injury; subchronic toxicity; high-fat diet; inflammation responses

Key Contribution: Our data indicate for the first time that MC-LR exposure increases colorectal
damage in the HFD-treatment group. This research reveals for the first time that MC-LR could
accelerate the development of severe colorectal disease in obese mice by triggering an inflammatory
response and decreasing the expression of tight junction-related factors. In obese mice, we first found
that MC-LR treatment significantly increased Raf/ERK signaling pathway activation, promoting
colorectal inflammatory response and barrier damage.

1. Introduction

Under the combined effects of global water eutrophication and climatic warming,
cyanobacterial blooms have sparked considerable public concern, and the cyanobacterial
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toxins emitted by cyanobacterial cells pose a grave danger to animal and human health [1–3].
Microcystins (MCs) are secondary metabolites produced by cyanobacteria like Microcystis
and Anabaena during epidemics of algal blooms and are among the most widely dispersed
cyanobacterial toxins in freshwater [4,5]. So far, more than 270 varieties of MCs have been
documented [6]. Microcystin-LR (MC-LR), microcystin-RR (MC-RR), and microcystin-YR
(MC-YR) are the most extensively dispersed variants in nature, with MC-LR being the
most widely distributed and the most dangerous [7]. Many organs, including the liver,
intestines, kidneys, nerves, immunological system, and reproductive system, are harmed
by MC-LR when it enters the body via consumption of water or freshwater products [8–13].
In 2021, a study reported the abrupt death of 330 African elephants due to algal toxins
(concentrations of up to 1.2 × 105 µg/L) in continental African waters, prompting fear and
alarm on a global scale [14]. MC-LR contamination poses a grave hazard to the safety of
drinking water and human health. The World Health Organization (WHO) has defined the
tolerated daily intake (TDI) for MC-LR at 0.04 µg/(kg·d bw), and the safety threshold of
MC-LR in drinking water for residents is 1 µg/L [15].

The liver is the primary target organ for MC-LR, but the harm to other organs should
not be overlooked [10]. In addition to liver damage, several studies indicate that MC-LR
can also cause damage to the gastrointestinal tract of animals and humans [6,11,16]. A
cross-sectional epidemiological investigation revealed that direct exposure with MC-LR can
cause intestinal symptoms such as nausea, vomiting, abdominal discomfort, and diarrhea
and suggested that MC-LR concentration may be positively linked with the incidence
of colorectal cancer [17]. According to the findings of our earlier investigation, MC-LR
exposure can also induce inflammatory responses in colorectal and jejunal tissues [6,16].
Obesity, diabetes, and hypertension have been connected with intestinal damage (includ-
ing inflammatory bowel disease) [18,19]. It is believed that exposure to environmental
contaminants contributes to both intestinal disease and an increase in the prevalence of
obesity-induced nonalcoholic fatty liver disease (NAFLD). Previous research has demon-
strated that MC-LR exposure exacerbates the NAFLD and nephrotoxicity generated by
a high-fat, high-cholesterol (HFHC) diet [20,21]. Most of the current research on MC-LR,
including studies to calculate current MC-LR TDI values, has been undertaken on healthy
animals [22]. However, there is a growing desire to identify people at risk who may be more
sensitive to MC-LR-induced enterotoxicity. Given the tight relationship between obesity
and intestinal disorders, we expected that MC-LR would also worsen obesity-induced
intestinal toxicity.

Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated
protein kinases (MAPK) family of mitogen-activated protein kinases [23]. Current studies
suggest that the ERK pathway significantly promotes intestinal epithelial cell differentiation
and proliferation and inhibits intestinal epithelial cell apoptosis [24]. Song et al. showed
that, p-ERK/ERK and proinflammatory factors (IL-1β, IL-6, TNF-α, and MPO) expression
was increased in patients with ulcerative colitis (UC), and inhibition of ERK expression
significantly inhibited the occurrence of dextran sulphate sodium (DSS)-induced inflam-
matory responses in wild-type (WT) mice [25]. Wei et al. showed that ERK can induce
Ras/Raf cascade activation and activate the Wnt/β-catenin pathway, affecting intestinal
epithelial cell proliferation and migration [26]. Cai et al. showed that Keratinocyte growth
factor (KGF) can regulate E-cadherin expression in intestinal epithelial cells through acti-
vation of the ERK signaling pathway and affect apoptosis [27]. However, no studies have
yet explored the role and mechanism of ERK-related signaling pathways in MC-LR and
HFD-induced intestinal injury.

Therefore, it was proposed that the present investigation investigate for the first time
whether subchronic MC-LR exposure could increase pre-existing diet-induced intestinal
injury in mice and its related mechanisms by establishing a model of cotreatment with
MC-LR (120 g/L via drinking water for 8 weeks) and a high-fat diet. This research may
provide insights into, and new possibilities for clarifying, the intestinal toxicity of MC-LR
and its relationship with high-fat diet-induced damage.
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2. Results
2.1. Impact of MC-LR Treatment on the General Condition and Body Weight of Obese Mice

We use the same animal model as that from our previous study and the results are
consistent with this study [28]. For the duration of the exposure, the body weights of
the mice were measured every 2 weeks. During the 16-week experiment, neither mouse
deaths nor abnormal behavior was found. As shown in Table 1, the weight of the high-
fat diet (HFD)-treatment group increased significantly more than the control group (CT)
after 16 weeks. However, the MC-LR + HFD-treatment group showed no effect on the
HFD-induced increase in weight gain.

Table 1. Effects of MC-LR on body weight in HFD-induced obese mice (χ ± SD, n = 5).

Group Body Weight (g)

Control 33.96 ± 1.374
HFD 50.58 ± 2.312 ***

HFD + MC-LR 51.52 ± 2.782 ***
Note: *** p < 0.001 compared with CT group.

2.2. Impact of MC-LR Treatment on the Histopathological Changes in the Colorectal Tissue of
Obese Mice

Using Hematoxylin-Eosin (HE)-stained tissue sections from each mouse, we detected
the pathological alterations of the colorectal tissue (Figure 1). Compared to the CT group,
the HFD-treatment group exhibited abnormal intestinal crypt architecture and epithelial
organization in the crypt, as well as inflammatory cell infiltration. In addition, MC-LR
treatment exacerbated the colorectal damage induced by HFD treatment. In obese mice,
MC-LR considerably exacerbated the inflammatory response in the colorectum.
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Figure 1. Analysis of the histopathology of colorectal tissues from mice in multiple treatment groups.
(A) CT-treatment group; (B) HFD-treatment group; and (C) MC-LR + HFD-treatment group. The red
arrow represents lymphocyte infiltration, the yellow arrow represents tissue mucosal shedding, and the
blue arrow represents a disordered crypt architecture. Bar = 100 µm means original magnification × 100.

2.3. Impact of MC-LR Treatment on the Expression of Inflammatory Mediators Factors in the
Colorectal Tissue of Obese Mice

The expression levels of inflammatory markers IL-6, IL-1β, TNF-α, and IL-10 were
evaluated by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent
assay (ELISA) to determine if MC-LR exacerbates colorectal inflammation in obese mice
caused by an HFD. The results are illustrated in Figure 2. The expression of inflammatory
factors (IL-6, IL-1, TNF-, and IL-10) was elevated in the HFD -and MC-LR + HFD-treatment
groups compared to the CT group. In addition, these proinflammatory variables were
all significantly elevated in the MC-LR + HFD-treatment group compared to the HFD-
treatment group.
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Figure 2. Impact of MC-LR on the expression levels of inflammatory factors in the colorectal of HFD-
induced obese mice. (A) The mRNA levels of IL-6; (B) The mRNA levels of IL-1β; (C) The mRNA
levels of TNF-α; (D) The mRNA levels of IL-10; (E) The protein concentration of IL-6; (F) The protein
concentration of IL-1β; (G) The protein concentration of TNF-α; and (H) The protein concentration of
IL-10. Results are presented as the mean ± SD; n = 5. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CT group;
# p < 0.05, ## p < 0.01 vs. with HFD-treatment group.

2.4. Impact of MC-LR Treatment on the Expression of Tight Junction-Related Factors in the
Colorectal Tissue of Obese Mice

To evaluate if MC-LR exacerbates colorectal barrier disruption, the mRNA levels of
tight junction-related factors ZO-1, Occludin, and Claudin1 were measured by qRT-PCR.
Figure 3A–C illustrates the outcomes. The relative levels of mRNA for ZO-1, Occludin, and
Claudin1 were considerably lower in the HFD-treatment group compared to the CT group,
a trend that was worsened by MC-LR treatment.
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Figure 3. Impact of MC-LR on tight junction-related factors expression levels in the colorectum of
HFD-induced obese mice. (A) The mRNA levels of ZO-1; (B) The mRNA levels of Occludin; (C) The
mRNA levels of Claudin1; (D) Relative protein levels are shown normalized to β-actin; (E) The
protein levels of ZO-1; (F) The protein levels of Occludin; and (G) The protein levels of Claudin1.
Results are presented as the mean ± SD; n = 5. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CT group;
# p < 0.05 vs. HFD-treatment group.
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In addition, western blotting (WB) was used to examine changes in the protein levels of
these tight junction-related factors. Figure 3D–G demonstrates the outcomes. In comparison
to the CT group, all tight junction-related factors were significantly downregulated in the
HFD- and MC-LR + HFD-treatment groups. In addition, these tight junction-related
factors were all significantly decreased in the MC-LR + HFD-treatment compared to the
HFD-treatment group.

2.5. Impact of MC-LR Treatment on the Expression of Raf/ERK Signaling Pathway-Related
Proteins in the Colorectal of Obese Mice

To further investigate the biochemical pathway by which MC-LR exacerbates colorectal
damage in obese mice fed an HFD, the levels of p-Raf, Raf, p-ERK, and ERK were measured
by WB. As shown in Figure 4, the expression of p-Raf/Raf and p-ERK/ERK were considerably
higher in the HFD- and MC-LR + HFD-treatment groups compared to the CT group; the ex-
pression levels of these proteins were also significantly higher in the MC-LR + HFD-treatment
group compared to the HFD-treatment group. By activating the Raf/ERK signaling pathway,
MC-LR exacerbates colorectal damage in obese mice fed an HFD.
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Figure 4. Impact of MC-LR on Raf/ERK pathway in the colorectum of HFD-induced obese mice.
(A) WB analysis of proteins (p-Raf, Raf, p-ERK, and ERK). (B) Relative quantitation of p-ERK/ERK
protein level normalized to β-actin. (C) Relative quantitation of p-Raf/Raf protein level normalized
to β-actin. Results are presented as the mean ± SD; n = 5. ** p < 0.01 vs. CT group; # p < 0.05 vs.
HFD-treatment group.

3. Discussion
3.1. MC-LR Promoted Colorectal Damage in Obese Mice

Throughout the experiment, the body weights of the mice were observed. The primary
study demonstrated that the weight of mice fed an HFD increased significantly more than
that of mice on a standard diet. However, after treatment with MC-LR, there was no
notable change in weight as compared to the HFD-treatment group. Similarly, Arman et al.
reported the body weight effects of the MC-LR and HFHC diets [20]. Our observations
are congruent with the results. MC-LR had no influence on either of the diet groups’
body weights.

The histopathological findings revealed an increase in overall colorectum pathology,
inflammatory cell infiltration, and intestinal barrier damage in the HFD-treatment group
following MC-LR exposure, indicating an increased susceptibility to MC-LR-stimulated
colorectal damage in the context of a poor diet. Ferreira et al. discovered that after 15 days
of exposure of white chub to MC-LR-containing water, the muscular layer of the intestine
was injured, with considerable fibrous necrosis and severe necrosis of epithelial cells [29].
Chen et al. exposed zebrafish to 20 µg/L MC-LR for 30 days and observed a partial loss
of intestinal villi, a change in villi length, and severe necrotizing enterocolitis [30]. Cao
et al. stained mice with MC-LR drinking water for 6 months and discovered that the
morphology of the mice’s jejunal tissue was dramatically altered, as was the arrangement
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of intestinal epithelial cells, and lymphocyte infiltration was seen [16]. Mice with colorectal
tissues were able to develop considerably enhanced lymphocyte infiltration, altered crypt
alignment, and intestinal barrier degradation after exposure to low concentrations of
MC-LR for 12 months [6]. Using various staining techniques, it was discovered that
MC-LR may produce acute and chronic colitis in different animal species. Su et al. also
discovered that MC-LR extended blood stool duration, exacerbated colonic mucosa ulcer,
and reduced colon length in mice with DSS-induced colitis [31]. For MC-LR-induced organ
damage in a poor dietary environment, only the study by Arman et al. and Chu et al.
found that MC-LR exposure causes more severe HFHC/HFD-induced NAFLD and kidney
damage [20,21,28]. Our data indicate for the first time that MC-LR exposure increases
colorectal damage in the HFD-treatment group. MC-LR may cause colorectal damage by
triggering an inflammatory response.

3.2. MC-LR Promoted Colorectal Inflammatory Response and Barrier Disruption in Obese Mice

Consistent with our previous findings, the elevated expression of inflammation-related
factors (IL-6, IL-1β, and TNF-α) in this study was caused by MC-LR [6]. Rocha et al. demon-
strated that MC-LR induced the release of IL-1β and INF-α from peritoneal macrophages,
indicating that MC-LR may activate certain biological pathways via IL-1β as well as INF,
thereby affecting the electrophysiological secretion of the intestine and its physiological
functions [32]. After 6 months of MC-LR drinking-water staining in mice, Cao et al. found
increased expression of proinflammatory factors IL-1β, IL-8, and TNF-α mRNA in the
jejunum, thereby exacerbating the inflammatory response in the jejunum [16]. Chen et al.
exposed zebrafish to MC-LR-containing water for 30 days and revealed that the levels of
inflammatory factors IFN-1, IL-1β, IL-8, and TNF-α were significantly elevated in their
intestines, and that MC-LR increased proinflammatory factor gene expression-induced
tissue damage and inflammatory responses in zebrafish [30]. Su et al. demonstrated that
MC-LR significantly increased the expression of proinflammatory transcripts (TNF-, IL-1,
CD40, and MCP-1) and profibrosis markers PAI-1 and MCP-1 in colon tissues of mice
with colorectal inflammation induced by DSS, compared to DSS ingestion alone [31,33].
In conclusion, the imbalance between proinflammatory and anti-inflammatory factors is
a crucial factor in MC-LR-induced intestinal inflammation. IL-6 not only promotes the
chemotaxis of neutrophils to inflammatory lesions, but also activates the downstream
RAS/MAPK pathway after specific binding to receptors in enterocytes, inducing apop-
tosis and accumulation of T cells, resulting in an increase in inflammatory factors and
dysfunction in the intestinal mucosa [34]. IL-1β directly stimulates neutrophils, causing
them to produce inflammatory proteins and inflammatory mediators to participate in the
inflammatory process, which mediates neutrophil chemotaxis by stimulating monocytes
and macrophages to secrete proinflammatory factors, including IL-6, IL-8, and TNF-α [35].
TNF-α binds to its receptors TNFR1 and TNFR2 and activates diverse signaling pathways to
activate proinflammatory-related transcription factors and nuclear factor NF-κB, as well as
to stimulate more TNF-α production by macrophages and dendritic cells via proinflamma-
tory factors IL-1 and IL-6. TNF-α promotes the release of adhesion factors, such as ICAM-1
and VCAM-1, that leads to the accumulation of granulocytes and the amplification of the
initial inflammatory response [36]. This work has demonstrated that MC-LR can exacerbate
HFD-induced colorectal damage in obese mice by triggering an inflammatory response.

Moreover, the levels of tight junction-related factors (ZO-1, Occludin, and Claudin1)
were significantly reduced in our study, indicating that the intestinal barrier was disrupted.
There are currently few studies on intestinal barrier damage caused by MC-LR treatment.
An in vitro study revealed that MCs can affect intestinal barrier function by decreasing
the expression of cytoskeletal proteins closely linked to Occludin and ZO-1 in IECs and
by dose-dependently impairing the integrity of the intestinal barrier [37]. Zhuang et al.
also discovered that chronic MC-LR contamination of drinking water in mice for 6 months
decreased the expression of mRNA for intestinal tight junction Claudin, Occludion, and
ZO-1 [38]. The mRNA levels of intestinal epithelial tight junction-related genes (Claudin-5,
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Occludin, and ZO-1) were significantly reduced in zebrafish reared for 21 days with MC-LR
(35 µg/L) [39]. Several of the aforementioned studies support our findings that MC-LR
exposure can cause intestinal barrier damage and increased intestinal permeability. Tight
junctions are a crucial component of the intestinal barrier, which is composed of numerous
tight junction proteins (Occludin protein family, Claudin protein family, cytoplasmic pro-
teins of ZO-1, ZO-2, ZO-3, cingulin, etc.) [40]. In the absence of harmful factors, intestinal
tight junctions function as a selective barrier to maintain barrier function and intestinal
homeostasis. When the tight junctions are damaged or destroyed, the intestinal barrier is
compromised, and intestinal permeability increases, harmful factors can enter the body and
cause IBD, celiac disease, diabetes, and other conditions [41]. A population-based study
revealed that patients with IBD had significantly decreased expression of intestinal epithe-
lial tight junction-related proteins, increased intestinal permeability, severe impairment of
barrier function, and a correlation between the severity of the inflammatory response to the
disease and disruption of the tight junctions in the mucosa [42]. Experiments on animals
demonstrated that DSS caused intestinal tight junction structure disruption, intestinal bar-
rier damage, and elevated permeability in mice with colitis [43]. Sarkar et al. discovered a
significant decrease in intestinal tight junction protein expression in nonalcoholic fatty liver
mice stained with subchronic MC-LR [44]. In this investigation, we discovered that obese
mice exposed to MC-LR had impaired tight junction proteins, intestinal barrier impairment,
and increased intestinal permeability. Hence, the results of this research reveal for the first
time that MC-LR could accelerate the development of severe colorectal disease in obese
mice by decreasing the expression of tight junction-related factors.

3.3. MC-LR Promoted Colorectal Inflammatory Response and Barrier Disruption by Activating
Raf/ERK Signaling Pathway in Obese Mice

In this research, exposure to MC-LR elevated p-Raf/Raf and p-ERK/ERK protein
expression in the HFD-treatment group. It has been proven that MC-LR activates the
Raf/ERK signaling pathway to promote colorectal damage in obese mice. The Raf/ERK
signal-grade pathway is a widely activated MAPK pathway that can transmit extracellular
signals into the nucleus, induce changes in the expression profile of heteroglyphic proteins,
and regulate diverse cellular processes including cell proliferation, growth, differentiation,
transformation, and apoptosis [23]. By managing the imbalance of several factors, the
Raf/ERK signaling pathway can affect inflammation and possibly cancer [45,46]. Chen et al.
found that chronic low-dose MC-LR exposure upregulated type 3 deiodinase expression
and ultimately interfered with thyroid–hormone synthesis and metabolism by activating
the p38/MAPK and MEK/ERK signaling pathways in mice exposed to the compound
orally for 6 months [47]. Sun et al. demonstrated that in normal hepatocytes HL7702,
MC-LR increased the phosphorylated expression of ERK, which increased the expression of
E-cadherin and p-paxillin proteins and altered their colocalization, thereby decreasing the
adhesion of hepatocytes, and that ERK protein inhibitors reversed this phenomenon [48].
Dong et al. also discovered that Ntrk1 promotes thylakoid cell proliferation and proin-
flammatory factor expression in MsPGN rats by activating the p38/ERK MAPK signaling
pathway, thereby initiating inflammatory responses [49]. However, there is no research
on the function of Raf/ERK signaling pathways in MC-LR-induced obese mice. In obese
mice, we first found that MC-LR treatment significantly increased Raf/ERK signaling
pathway activation, promoting colorectal inflammatory response and barrier damage. We
propose that these pathways contribute to the aggravation of colorectal injury by MC-LR in
obese mice.

4. Conclusions

This is the first study to show that exposure to MC-LR in the context of an HFD
may dysregulate inflammatory mediators, damaging the intestinal barrier. The Raf/ERK
signaling pathway was activated, inducing increased expression of inflammatory factors
and suppressing tight junction factor expression, leading to a colorectal inflammatory
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response and barrier damage. Our research may yield unique insights for preventing
obesity-related MC-LR environmental risk factors. However, additional research is required
to determine whether obesity increases the likelihood of MC-LR-induced colorectal toxicity.

5. Materials and Methods
5.1. Chemicals and Reagents

MC-LR with a purity of 95% was purchased from Alexis Corporation (Lausen, Switzer-
land). RIPA buffer, bicinchoninic acid (BCA) protein assay kit was purchased from Beyotime
(Shanghai, China). The polyvinylidene fluoride (PVDF) membrane was purchased from
Merck Millipore Ltd., (Billerica, MA, USA). The phosphatase inhibitor cocktail and pro-
tease inhibitor cocktail were purchased from CWBIO (Beijing, China). Trizol Reagent was
purchased from Invitrogen Life Technologies (Carlsbad, CA, USA). The HiScript® II Q RT
SuperMix for qRT-PCR and ChamQ Universal SYBR qRT-PCR Master Mix were purchased
from Vazyme (Nanjing, China). The ERK antibody, p-ERK antibody, Raf antibody, p-Raf
antibody, ZO-1 antibody, Occludin antibody, Claudin1 antibody, β-actin antibody, HRP-
conjugated Affinipure Goat Anti-Rabbit IgG (H + L), and HRP-conjugated Affinipure Goat
Anti-Mouse IgG (H + L) were purchased from Proteintech (Wuhan, China).

5.2. Animals and Diet

Six- to eight-week-old male C57BL/6J mice were purchased from the Hunan SJA
Laboratory Animal Co., Ltd. (Changsha, China) and maintained on a standard laboratory
condition (22–24◦C, 40–70% relative humidity, and a 12:12 h light-dark cycle). The control
group (n = 5) consisted of mice fed a control diet (D12450J, Research Diets Inc., New
Brunswick, NJ, USA), whereas the other mice (n = 20) were fed an HFD (D12492, Research
Diets Inc., New Brunswick, NJ, USA) for 8 weeks to establish obesity models. The body
weights of 7 mice did not exceed 20% of the CT group’s average weight. Thirteen obese mice
whose body weight exceeded 20% of the average weight of the CT group were obtained
after 8 weeks. Ten obese mice were further divided into 2 groups, including the HFD group
(n = 5) and the MC-LR + HFD group (n = 5). All 3 groups of mice were fed with a control
diet, an HFD and the HFD with 120 µg/L MC-LR in the drinking water, respectively, for
another 8 weeks. No mice died during the process. Their weight was determined every
2 weeks. The Central South University Animal Care and Use Committee approved all
animal experiments (Approval Number: XYGW-2018-41).

5.3. Histological Analysis

Immediate isolation and evaluation of colorectal tissue samples were conducted.
Cold phosphate-buffered solution (PBS, pH7.2) was used to remove the bloodstains, and
4% paraformaldehyde (PFA) was used to preserve them overnight at room temperature.
These tissues had been paraffin-embedded. After dewaxing, 4 m-thick slices of tissue were
stained with HE. The sections were then observed and photographed using an optical
microscope (Motic, BA210).

5.4. WB

The BCA technique was used to determine protein concentration. Using SDS-PAGE,
proteins were separated and electroblotted upon a PVDF membrane. Protein Free Rapid
Blocking Buffer was used to block the transferred membrane. Antibodies were treated with
membranes overnight at 4◦C. Sixty min were spent incubating the transplanted membrane
with goat anti-mouse IgG (H + L) HRP conjugate or goat anti-rabbit IgG (H + L) HRP
conjugate. Protein bands were detected using Luminata Forte Western HRP substrate
and quantified using a Bio-Rad chemiluminescence imaging system (Bio-Rad, Hercules,
CA USA). ImageJ was utilized to quantify the band’s intensity (Rawak Software, Inc.,
Stuttgart, Germany).



Toxins 2023, 15, 262 9 of 11

5.5. qRT-PCR

RNA was isolated from colorectal tissues using the Trizol Reagent. RNA was reverse-
transcribed using the HiScript® II Q RT SuperMix for qRT-PCR. On a qTOWER3 Real-Time
PCR System, qRT-PCR was conducted with ChamQ Universal SYBR qRT-PCR Master
Mix (Analytikjena, Germany). β-actin was utilized to normalize mRNA expression. The
relative amounts of mRNA were assessed using the 2−∆∆Ct method. Each experiment was
conducted in triplicate. Primer Premier 6.0 was used to design the primers, which are listed
in Table 2.

Table 2. Primer sequences for qRT-PCR.

Genes Forward Primer (5′–3′) Reverse Primer (5′–3′)

IL-6 CCACGGCCTTCCCTACTTC TTGGGAGTGGTATCCTCTGTGA
TNF-α CCCACGTCGTAGCAAACCA ACAAGGTACAACCCATCGGC
IL-1β GCACTACAGGCTCCGAGATGAA GTCGTTGCTTGGTTCTCCTTGT
IL-10 AGAGCTGCGGACTGCCTTCA ACCTGCTCCACTGCCTTGCT
ZO-1 GCGATTCAGCAGCAACAGAACC AGGACCGTGTAATGGCAGACTC

Occludin GCGGCTATGGAGGCTATGGCTA AGGAAGCGATGAAGCAGAAGGC
Claudin1 GGACAACATCGTGACCGCTCAG TCCAGGCACCTCATGCACTTCA
β-Actin TCAAGATCATTGCTCCTCCTGAG ACATCTGCTGGAAGGTGGACA

5.6. ELISA

Using the ELISA double-antibody sandwich approach (Neobioscience, Shenzhen,
China), the levels of the inflammatory cytokines IL-1β, IL-6, TNF-α, and IL-10 were deter-
mined. The assay procedure strictly followed the kit’s instructions. Using an automatic
enzyme microplate (BioTek, Winooski, VT, USA), the absorbance at 450 nm was determined.

5.7. Statistical Analysis

Each experiment was performed a least 3 times per modality. The data wereprovided
as the mean ± SD, and comparisons were considered statistically significant when p < 0.05.
A 1-way ANOVA was conducted using SPSS version 22.0 (SPSS Inc., Chicago, IL, USA) to
assess the statistical differences between the treatment groups.
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