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Abstract: Impaired polymorphonuclear leukocyte (PMNL) functions contribute to increased infec-
tions and cardiovascular diseases in chronic kidney disease (CKD). Uremic toxins reduce hydrogen
sulfide (H2S) levels and the anti-oxidant and anti-inflammatory effects of H2S. Its biosynthesis occurs
as a side process of transsulfuration and in the disposal of adenosylhomocysteine, a transmethylation
inhibitor and proposed uremic toxin. PMNL chemotaxis was measured by the under-agarose method,
phagocytosis, and oxidative burst by flow cytometry in whole blood and apoptosis by determining
DNA content by flow cytometry and morphological features by fluorescence microscopy. Sodium
hydrogen sulfide (NaHS), diallyl trisulphide (DATS) and diallyl disulphide (DADS), cysteine, and
GYY4137 were used as H2S-producing substances. Increased H2S concentrations did not affect chemo-
taxis and phagocytosis. NaHS primed PMNL oxidative burst activated by phorbol 12-myristate
13-acetate (PMA) or E. coli. Both DATS and cysteine significantly decreased E. coli-activated oxidative
burst but had no effect on PMA stimulation. While NaHS, DADS, and cysteine attenuated PMNL
apoptosis, GYY4137 decreased their viability. Experiments with signal transduction inhibitors suggest
that the intrinsic apoptosis pathway is mainly involved in GYY4137-induced PMNL apoptosis and
that GYY4137 and cysteine target signaling downstream of phosphoinositide 3-kinase.

Keywords: hydrogen sulfide; polymorphonuclear leukocytes; apoptosis; signal transduction;
immunology; inflammation; chronic kidney disease; uremic toxins

Key Contribution: H2S, a substance with reduced concentrations in uremia, affects several essential
PMNL functions related to inflammation such as oxidative burst and spontaneous apoptosis. Whether
the effect is attenuating or stimulating depends on the concentration and kinetics of exposure.

1. Introduction

Hydrogen sulfide (H2S) inhibits essential enzymes and exerts toxic effects at several
levels [1,2]. Therefore, H2S was previously only known as a dangerous gas. However,
recent studies have shown that H2S can also be produced endogenously, thus exhibiting
important physiological effects at lower concentrations [3]. For example, H2S is able to
reduce the production of pro-inflammatory cytokines, chemokines, and enzymes [4] and is
involved in the regulation of blood pressure [5]. By regulating the activity of endothelial
cells, vascular smooth muscle cells, and perivascular nerves, H2S leads to vasorelaxation [6].
Recently, it has also been shown that H2S mediates plaque stability [7]. H2S has both
neuro-modulating and neuro-protective functions by increasing the production of the
anti-oxidative glutathione in neurons exposed to oxidative stress [8,9].

Along with the more familiar carbon monoxide and nitric oxide, H2S belongs to the
family of gasotransmitters. Under physiological conditions, it is mostly dissociated (86%),
and only 14% exists as a gas. Gaseous H2S can easily diffuse through cell membranes due
to its lipophilicity [1].
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The plasma levels of H2S in patients with coronary heart disease, hypertension, and
smokers are lower compared to the healthy reference group [5]. Chronic kidney disease
(CKD) is also associated with significant reduction of H2S plasma levels [5]. Deficiency of
H2S and its anti-oxidant, anti-inflammatory, and cytoprotective properties may contribute
to the progression of CKD and mortality [2]. H2S biosynthesis inhibitors significantly
worsen renal parameters [10].

The retention of many substances that are normally filtered by healthy kidneys leads
to the development of the uremic syndrome. Retention solutes that negatively interact
with biologic functions are called uremic toxins [11] and play a central role in impairing
polymorphonuclear leukocyte (PMNL) functions in CKD patients [12]. Uremic toxins are re-
sponsible for the reduction in H2S concentration and its anti-oxidant and anti-inflammatory
effects. While H2S is decreased in uremic patients on hemodialysis, lanthionine, a non-
proteinogenic amino acid and byproduct of H2S biosynthesis, is increased [13]. Due to its
ability to impair H2S synthesis in hepatoma cells, it is considered a novel uremic toxin [14].
Furthermore, the uremic toxin indoxyl sulfate impairs H2S formation in renal tubular
cells [15]. Cyanate, a uremic toxin produced by the decomposition of urea in CKD patients,
leads to a carbamoylation reaction [16–18] that abolishes the antioxidant and cytoprotective
activity of H2S [19].

Immune dysfunction and particularly disturbed PMNL functions are a main cause of
the high risk of infections and cardiovascular diseases and, as a result, increased morbidity
and mortality in patients with CKD [12]. PMNLs are cells of the primary non-specific
cellular immune response and play a crucial role in the defense against bacterial and fungal
infections. Disturbed functions of PMNLs lead to a higher risk of bacterial infections
and cardiovascular diseases and are a major cause of the increased risk of morbidity
and mortality among CKD patients [12]. After chemotactic movement to the source of
infection, PMNLs take up the invading microorganisms by phagocytosis and kill them
with proteolytic enzymes intracellularly released from granula and with reactive oxygen
species (ROS) produced during the oxidative burst. These critical PMNL functions can be
impaired, leading to infectious diseases or pre-activated/primed, causing inflammation and
subsequently cardiovascular disease. The coordinated elimination of activated PMNLs is
essential for the resolution of inflammation [20]. Increased apoptosis results in a decreased
immune response, whereas delayed apoptosis of PMNLs or impaired clearance of apoptotic
PMNLs by macrophages causes inflammation [21]. In uremia, the balance between pro-
and anti-inflammatory and between pro- and anti-apoptotic factors is disturbed.

In this study, we investigated the in vitro effect of H2S on several essential PMNL func-
tions using the H2S-producing substances sodium hydrosulfide (NaHS), diallyl trisulfide
(DATS) and diallyl disulfide (DADS), cysteine, and GYY4137.

2. Results
2.1. Chemotaxis

Figure 1 shows the concentration dependency of the H2S-releasing substances NaHS,
DADS, and cysteine on the chemotactic movement of PMNLs. None of the substances had
a significant effect under the experimental conditions. The decrease of chemotaxis in the
presence of the highest concentration of NaHS did not reach statistical significance.

2.2. Phagocytosis

NaHS and DATS at the concentrations tested had no significant effect on PMNL
phagocytosis. Neither the percentage of PMNLs taking up E. coli (Figure 2A,C) nor the
number of fluorescent-labeled E. coli cells taken up per PMNL, as measured by mean
fluorescent intensity (MFI), was affected (Figure 2B,D), except that a slight, non-significant
increase was observed in the presence of NaHS.



Toxins 2023, 15, 198 3 of 21Toxins 2023, 15, 198 3 of 21 
 

 

 

Figure 1. Effect of the H2S-releasing substances NaHS (A), DADS (B), and cysteine (C) on PMNL 

chemotaxis. The distance migrated in the absence of substance was set as 100%. n = 4–10 for A; n = 
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Figure 1. Effect of the H2S-releasing substances NaHS (A), DADS (B), and cysteine (C) on PMNL
chemotaxis. The distance migrated in the absence of substance was set as 100%. n = 4–10 for A; n = 5
for B; n = 4–6 for C. NaHS: sodium hydrosulfide, DADS: diallyl disulphide.
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Figure 2. Effect of the H2S-releasing substances NaHS (A,B) and DATS (C,D) on PMNL phagocytosis.
(A,C): percentage of PMNLs taking up E. coli; (B,D): relative percentage MFI as a measure of the
number of E. coli cells taken up per PMNL. The value in the absence of substance was set as 100%.
n = 3–7 for (A,B); n = 3–6 for (C,D). NaHS: sodium hydrosulfide, DATS: diallyl trisulfide, MFI: mean
fluorescent intensity.
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2.3. Oxidative Burst

NaHS did not affect the basal oxidative burst at all the tested concentrations (Figure 3).
However, NaHS increased the phorbol 12-myristate 13-acetate (PMA)-stimulated oxidative
burst in a concentration-dependent manner (Figure 3A). NaHS also increased the oxidative
burst stimulated by E. coli (Figure 3B). However, this effect did not reach statistical significance.
Therefore, NaHS primes PMNLs for the production of ROS activated by PMA or E. coli.
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Figure 3. Effect of the H2S-releasing substance NaHS on PMNL oxidative burst in the absence (gray
bars) or presence (black bars) of PMA (A) or E. coli (B). The MFI of the unstimulated sample in the
absence of substance was set as 100%. n = 4 for 0.0125 and 0.025 mM; n = 6 for 0.05 mM. NaHS:
sodium hydrosulfide, PMA: phorbol 12-myristate 13-acetate, MFI: mean fluorescent intensity.

Neither DATS nor cysteine had an effect on the basal or PMA-stimulated oxidative
burst (Figure 4A,C). However, both DATS and cysteine significantly decreased the oxidative
burst stimulated by E. coli (Figure 4B,D).

2.4. Apoptosis

NaHS, DADS, and cysteine increased the percentage of viable PMNLs, i.e., reduced
PMNL apoptosis in a concentration-dependent manner (Figure 5A–F). This effect was
observed both by evaluating morphological features (Figure 5A,C,E) and by the DNA
content (Figure 5B,D,F). The percentage of viable PMNs was higher when measuring the
DNA content as compared to the assessment of PMNL morphology, because DNA fragmen-
tation is a later event during spontaneous PMNL apoptosis compared to morphological
changes [20]. This could also explain the finding that no concentration-dependent effect of
DADS on the DNA content was observed (Figure 5D).
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H2S-releasing activity, may prevalently act through alternative pathway(s). 

Figure 4. Effect of the H2S-releasing substances DATS at a concentration of 50 µM (A,B) and cysteine
at a concentration of 20 mM (C,D) on PMNL oxidative burst in the absence (gray bars) or presence
(black bars) of PMA (A,C) or E. coli (B,D). The MFI of the unstimulated sample in the absence of
substance was set as 100%. n = 6 for A and B; n = 7 for C and D. DATS: diallyl trisulfide, PMA:
phorbol 12-myristate 13-acetate, MFI: mean fluorescent intensity.

In contrast to NaHS, DADS, and cysteine, GYY4137 increased PMNL apoptosis and
thereby decreased their viability concentration dependently (Figure 5G,H). These results
suggest that, in the model system adopted here, GYY4137, although endowed with an
H2S-releasing activity, may prevalently act through alternative pathway(s).

To elucidate the involvement of signal transduction pathways in the effect of the
apoptosis-decreasing cysteine and the apoptosis-accelerating compound GYY4137, we used
several specific signal transduction inhibitors. The p38 mitogen-activated protein kinase
(MAPK) inhibitor SB203580 alone increased PMNL apoptosis (Figure 6A,B), consistent
with reports that p38 MAPK is responsive as a part of a cell survival signaling pathway in
PMNLs [22–25].
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Figure 5. Effect of the H2S-releasing substances NaHS (A,B), DADS (C,D), cysteine (E,F), and
GYY4137 (G,H) on PMNL apoptosis. Apoptosis was determined by assessing morphological features
according to the fluorescence upon ethidium bromide uptake (A,C,E,G) and by measuring the DNA
content (B,D,F,H). n = 3–5 for (A,B); n = 6 for (C–F); n = 8 for (G,H). NaHS: sodium hydrosulfide,
DADS: diallyl disulphide.
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Figure 6. Effect of 1 mM GYY4137 (GYY) and 30 mM cysteine (Cys) on PMNL in the absence and
presence of 30 µM SB203580 (SB; p38 MAPK inhibitor; (A,B)) and 50 µM PD98059 (PD; ERK inhibitor;
(C,D)). Apoptosis was determined by assessing morphological features (A,C) and by measuring
the DNA content (B,D). n = 8. MAPK: mitogen-activated protein kinase, ERK: extracellular signal-
regulated kinase. n.s.: non-significant.

The p38 MAPK inhibitor did not significantly affect the attenuating effect of cysteine,
suggesting that H2S synthesized from cysteine targets signaling downstream of p38. On the
other hand, SB203580 had a slight additive effect on GYY4137-induced apoptosis. Additive
effects point to different downstream signaling pathways [26–28], suggesting that p38
MAPK is not involved in GYY4137-triggered apoptosis.

The extracellular signal-regulated kinase (ERK) inhibitor PD98059 did not alter the
apoptosis-modulating effects of GYY4137 and cysteine, and nor did it affect spontaneous
PMNL apoptosis alone (Figure 6C,D).

Whereas the caspase 8 inhibitor Z-IETD-FMK had no effect, the caspase 9 inhibitor
Z-LEHD-FMK attenuated the spontaneous PMNL apoptosis (Figure 7), indicating an in-
volvement of the intrinsic apoptotic pathway. The caspase 8 inhibitor exerted no statistically
significant interference on the GYY4137 or the cysteine effects on apoptosis (Figure 7A,B).

The caspase 9 inhibitor abrogated the effect of GYY4137 (Figure 7C,D), suggesting
that the intrinsic pathway of apoptosis is mainly involved in GYY4137-induced PMNL
apoptosis. The caspase 9 inhibitor showed an effect additive to the cysteine effect, indicating
that different signaling pathways are involved in the inhibitory effect.

The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 decreased PMNL viability,
i.e., accelerated PMNL apoptosis (Figure 8A,B), as described in the literature [29]. The
PI3K inhibitor did not influence the effects of GYY4137 and cysteine, suggesting that both
substances target signaling downstream of PI3K.

Consistent with the pro-survival, pro-inflammatory effect of nuclear factor kappa B
(NF-κB), the inhibitor SN50 increased PMNL apoptosis. However, this effect was only
observed when assessing morphological features (Figure 8C). As in the case of LY294002,
SN50 did not affect the effects of GYY4137 and cysteine.
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Figure 7. Effect of 1 mM GYY4137 (GYY) and 30 mM cysteine (Cys) on PMNL in the absence and
presence of 20 µM Z-IETD-FMK (caspase 8 inhibitor; (A,B)) or Z-LEHD-FMK (caspase 9 inhibitor;
(C,D)). Apoptosis was determined by assessing morphological features (A,C) and by measuring the
DNA content (B,D). n = 8. n.s.: non-significant.
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Figure 8. Effect of 1 mM GYY4137 (GYY) and 30 mM cysteine (Cys) on PMNL in the absence and
presence of 25 µM LY294002 (PI3K inhibitor (A,B)) or 4 µM SN50 (NF-κB inhibitor (C,D)). Apoptosis
was determined by assessing morphological features (A,C) and by measuring the DNA content (B,D).
n = 8. PI3K: phosphoinositide 3-kinase, NFκB: nuclear factor kappa B. n.s.: non-significant.

3. Discussion

In CKD patients, uremic toxins contribute to reduced levels of H2S, a substance that
has a variety of beneficial effects in multiple biological systems. In this study we showed
that essential functions of PMNLs, cells of the first-line non-specific immune defense and



Toxins 2023, 15, 198 9 of 21

crucial for protection against bacterial and fungal infections, were modulated in vitro by
H2S synthesized from several H2S-producing substrates and H2S-releasing precursors.
(Figure 9). Depending on the concentration and the kinetics of the H2S release from the
precursor compounds, both attenuating and stimulating effects on various functions of
PMNLs were observed.
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compounds on PLMN functions.

Along with the more familiar carbon monoxide and nitric oxide, H2S belongs to the
family of gasotransmitters. H2S is largely dissociated (86%) under physiological condi-
tions, and only 14% is present as a gas [1]. Because of its lipophilicity, H2S gas can easily
diffuse through cell membranes independently from receptors and cause various local
and systemic effects [30]. H2S is closely linked to several vascular diseases and is used as
a new therapeutic target [31]. H2S is involved in the regulation of various physiological
and pathological conditions in cardiovascular [32], renal [33], and central nervous sys-
tems [34]. H2S has a neuroprotective effect by increasing the production of the antioxidant
glutathione in neurons exposed to oxidative stress [8,9]. In addition, H2S has effects on res-
piratory [35], reproductive [36], and digestive systems [37]. Implications of H2S production
have also been reported in periodontitis development [38]. H2S decreases the production
of pro-inflammatory cytokines, chemokines, and enzymes [4] and downregulates cAMP,
a regulator of renin secretion from juxtaglomerular cells, thereby regulating blood pres-
sure [39]. H2S synthesis is independent of O2. However, cystathionine beta-synthase (CBS),
one of the H2S-producing enzymes, is a hemesensor protein [40]. By sensing hypoxia, it
can block tubular transport and increase medullar blood pressure [41]. In endothelial cells,
lanthionine (a prospective uremic toxin and a byproduct of H2S biosynthesis) hampers
H2S release; reduces protein content and glutathionylation of the transsulfuration enzyme
CBS; modifies the expression of miR-200c, miR-423, and vascular endothelial growth factor;
and, most importantly in this context, increases intracellular Ca2+ levels [42]. Protein
persulfidation, a posttranslational modification of cysteine residues to persulfides caused
by H2S, is an important mechanism of H2S-mediated signaling pathways [43].

Divergent results have been reported regarding the effects of H2S on the immune sys-
tem [44,45]. Some studies report a pro-inflammatory effect of H2S. In models of inflammation
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such as sepsis, endotoxic, and hemorrhagic shock, increased levels of H2S were observed.
Furthermore, the cystathionine γ-lyase (CSE) inhibitor DL-propargylglycine leads to reduced
inflammation [46–50]. Other studies described H2S as an anti-inflammatory molecule, e.g., in-
hibiting TNFα and lipopolysaccharides-stimulated NF-κB activation [51,52]. H2S modifies
inflammatory responses on the level of endothelium and leukocytes [53]. In addition, it re-
duces monocyte cell adhesion and relevant inflammatory triggering by preventing ADAM17-
dependent TNF-α activation [54].

The plasma levels of H2S in patients with coronary heart disease, hypertension, and
smokers are lower than in the healthy reference group [5]. A study by Whiteman et al.
showed that patients with obesity or type-2 diabetes had decreased H2S plasma levels [55].
CKD is associated with significantly reduced H2S production and H2S plasma levels [56].
In end-stage kidney disease patients, in contrast to the low levels of H2S, the plasma
concentrations of cysteine and homocysteine are elevated [56]. Hyperhomocysteinemia
is a well-known risk factor for cardiovascular disease and leads to downregulation of
CBS, CSE, and 3-mercaptopyruvate sulfurtransferase (3-MST) in the kidneys and liver,
resulting in decreased H2S plasma levels [57]. The deficiency of H2S and its anti-oxidant,
anti-inflammatory, and cytoprotective properties may contribute to the progression of CKD
and its mortality [2]. Infusion of L-cysteine into the renal artery to raise the endogenous
production of H2S resulted in an increase in GFR [58].

The uremic milieu and uremic toxins in particular play a key role in the reduction of
H2S levels in renal disease. Many risk factors affecting increased cardiovascular mortality
in CKD are associated with uremic toxins and their derivatives [59]. The metabolism
of sulfur-containing amino acids is mainly affected. Lanthionine, a by-product of H2S
biosynthesis, has historically served as a marker for H2S production. Lanthionine plasma
levels are considerably elevated in uremic patients, and it has been categorized as a new
uremic toxin [14]. Lanthionine is removed to some extent by a single dialysis session, which
is accompanied by an increase in H2S levels [13]. In endothelial cells, lanthionine inhibits
H2S release by decreasing the protein content and glutathionylation of CBS. The uremic
toxin nature of lanthionine has also been evaluated in a zebrafish animal model [60]. The
uremic toxin indoxyl sulfate downregulates the H2S-generating enzymes CSE, CBS, and
3-MST [15]. This effect was reversed by inhibiting the receptor for indoxyl sulfate, the
aryl hydrocarbon receptor. The uremic toxin cyanate is produced by the decomposition of
urea. It can inhibit the scavenging of free radicals by H2S via carbamoylation and thereby
contributes to the increased oxidative stress in CKD patients [19].

For H2S to serve as an endogenously produced messenger, tissue production and
catabolism must result in intracellular microenvironments with a sufficiently high H2S
concentration to activate a local signaling mechanism [61]. The concentration of H2S in
mammalian plasma may be substantially increased in certain microenvironments, e.g., H2S
release from bound sulfur [62]. Increased sulfide levels of up to 1 mM have been reported
at infected sites in polymicrobial infections during periodontal disease [63].

H2S production from L-cysteine involves the enzymes CBS, CSE, and 3-MST. Pyridoxal
phosphate is a coenzyme of CBS and CTH. Several H2S donors with potential therapeutic
applications in cardiovascular diseases have been described [64–66]. In our in vitro assays,
we used the H2S-producing substances NaHS, DATS and DADS, GYY4137, and cysteine.
GYY4137 is a water-soluble synthetic H2S donor [67,68]. The main advantage of GYY4137
over NaHS is the significantly slower H2S-releasing process. Whereas H2S release by
GYY4137 peaks after 6–10 min, the H2S release by NaHS peaks already within 5–8 s. This
more gradual increase in concentration corresponds more closely to conditions in vivo [68].
Low H2S concentrations that persist for a relatively long period are more comparable to
the physiological milieu in vivo and have no cytotoxic effect. On the other hand, high
H2S concentrations peaking in a short time period correspond to pathological conditions
that lead to the activation of specific signal pathways and thus to cell death [68]. DATS
and especially DADS also release H2S at a lower rate than NaHS [69]. H2S production
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by DADS and DATS in tissue depends on glutathione. DADS–GTH interaction generates
S-allyl-glutathione and allylperthiol, which induce H2S release through GTH [70].

In our chemotaxis assay, NaHS, DADS, and cysteine had no significant effect on
PMNL migration (Figure 1). In septic mice, NaHS stimulated PMNL migration to the side
of infection [71]. H2S-releasing substances increase the migration of PMNLs and work as
anti-inflammators and anti-oxidants. Treatment of LPS-challenged naive mice with the H2S
donor NaHS enhanced neutrophil migration [72]. H2S can also reduce leukocyte adherence,
leukocyte infiltration, and edema formation [53].

NaHS and DATS had no significant effect on PMNL phagocytosis of E. coli bacteria
(Figure 2). Cleasson et al. [73] reported that phagocytosis of Streptococcus agalactiae was
only slightly affected by the presence of sulfide.

NaHS increased the PMA- and E.coli-stimulated oxidative burst. Therefore, NaHS
primes PMNLs for the production of ROS activated by PMA and E. coli (Figure 3). Whereas
priming of PMNLs is an important physiologic mechanism in regulating the immune
defense [74], excessive PMNL priming results in inflammation and oxidative stress [75].

DATS and cysteine significantly decreased the oxidative burst of PMNLs stimulated
by E. coli (Figure 4). The observation that both substances do not interfere with the direct
activation of protein kinase C (PKC) by PMA but inhibit the receptor-mediated stimulation
of the oxidative burst by E. coli suggests that H2S released by DATS and cysteine interferes
with signaling upstream of PKC. Anti-oxidative and anti-inflammatory properties of DADS
and DATS have been described. In epithelial cells, DADS reduces inflammation by inhibit-
ing ROS production and NF-κB activation [76]. In a mice model of lipopolysaccharide
(LPS)-induced acute lung injury, H2S released by the H2S donor GYY4137 led to reduced
migration of PMNL and an impaired ROS production [77].

The synchronized elimination of activated PMNLs by apoptotic cell death is essential
for the termination of inflammation [78]. A complex system of intracellular signaling
pathways mediates PMNL death and is controlled by various extracellular stimuli, e.g., pro-
inflammatory cytokines [79]. We found that NaHS, DADS, and cysteine reduced PMNL
apoptosis, but GYY4137 had an apoptosis-enhancing effect (Figure 5). A difference in the
kinetics of H2S formation might explain the differences in effects on apoptosis. Consistent
with our results, Rinaldi et al. reported that H2S produced by NaHS attenuated PMNL
apoptotic cell death and that this effect is due to inhibition of p38 MAPK and caspase 3 [80].
Shigemi et al. reported that DATS-mediated suppression of NF-κB signaling leads to induc-
tion of apoptosis [81]. However, the effect of allyl derivatives on apoptosis is controversial.
Several studies found that DADS and DATS induce apoptosis [82–85]. On the other hand,
studies on cardiomyocytes indicate an anti-apoptotic effect of DATS [86,87].

In agreement with the literature reporting that p38 MAPK mediates PMNL sur-
vival [22–25], we found that the p38 MAPK inhibitor SB203580 accelerated PMNL apop-
tosis (Figure 6A,B). The p38 MAPK inhibitor did not significantly affect the apoptosis-
attenuating effect of cysteine, suggesting that H2S synthesized from cysteine targets signal-
ing downstream of p38. SB203580 had an additive effect on GYY4137-induced apoptosis
(Figure 6A,B). Additive effects indicate different downstream signaling [26–28,88,89], sug-
gesting that GYY4137-triggered apoptosis is independent of the p38 MAPK pathway. Inhi-
bition of ERK by PD98059 did not change PMNL apoptosis or the effects of GYY4137 and
cysteine (Figure 6C,D). Results in the literature on the role of ERK in apoptotic pathways
are not consistent, reporting both pro- and anti-apoptotic properties of ERK [90–92].

Whereas inhibition of caspase 8 had no effect on PMNL apoptosis, the caspase 9
inhibitor had an attenuating effect (Figure 7), showing a contribution of the intrinsic
pathway. In a review article, Webb et al. described that spontaneous neutrophil apoptosis is
independent of Fas ligation but is mediated by caspases 8 and 9 [93]. Caspase 9 inhibition
abolished the GYY4137 effect (Figure 7C,D), indicating that the intrinsic apoptosis pathway
is mostly involved in GYY4137-induced PMNL apoptosis. At the moment, we do not have
a satisfactory explanation for the unexpected finding that the caspase 9 inhibitor showed
a much stronger effect in the presence of GYY4137 than alone. Caspase 9 inhibition had
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an additive influence on the inhibitory effect of cysteine, suggesting different signaling
pathways (Figure 7).

The PI3K inhibitor LY294002 reduced PMNL viability (Figure 8A,B), consistent with
the reported involvement of PI3K in anti-apoptotic signaling pathways [29]. Several growth-
factor and survival-factor receptors activate PI3K [94,95]. Stimulated by second messengers,
phosphoinositide-dependent protein kinase-1 phosphorylates protein kinase B, resulting in
activation of NF-κB and transcription of anti-apoptotic genes [96]. The PI3K inhibitor did
not affect either the apoptosis-enhancing effect of GYY4137 or the apoptosis-attenuating
effect of cysteine (Figure 8), suggesting that both substances target signaling downstream
of PI3K.

Consistent with the pro-survival, pro-inflammatory effect of NF-κB, we showed that
the inhibitor SN50 increased PMNL apoptosis (Figure 8C,D). H2S is an endogenous in-
flammatory mediator by increasing the activity of NF-κB [48,53,97]. H2S produced by CSE
stimulates DNA binding and gene activation of NF-κB. Its anti-apoptotic transcriptional
activity is caused by sulfhydration of NF-κB [98].

A wide range of H2S in vivo concentrations has been reported in the literature:
8 µM [13], 38 µM [99], 34 µM [100], 46 µM [101], and 274 µM [102] have been measured.
In in vitro experiments using H2S-donors, the volatility of H2S has to be considered. H2S
volatilization is so fast that the applied H2S concentration is not reached. The loss of H2S
produced from Na2S crystals is rapid and exponential, with half-times of 5 min [103,104].
In cumulative H2S dose–response studies on mouse aortas, only 9% of the expected value
was measured [105]. Exogenous sulfide is rapidly removed from blood, plasma, or 5%
bovine serum albumin in vitro. When sulfide was added to whole blood, the measured
peak concentration typically did not exceed 20% of that added [106]. Sulfide consumption
increased with increasing BSA concentrations [106]. Therefore, both time and protein con-
centration are of the greatest importance for the concentration of available H2S in biological
samples [107].

It should be noted that samples were taken from healthy subjects for our study. We
used whole blood for the phagocytosis and oxidative burst assays. As a result, we increased
the current H2S concentration but observed effects without the interference by the uremic
milieu. On the other hand, we used isolated PMNLs for the chemotaxis and apoptosis
tests. Therefore, the cells were only exposed to the H2S released by the added substances.
Furthermore, PMNLs from healthy subjects have not been exposed to uremic toxins, which
pre-activate immune cells while impairing their ability to respond to stimuli. It has been
shown that PMNLs from healthy subjects react differently to uremic toxins than PMNLs
from CKD patients [108,109]. Mononuclear cells from CKD patients have a significantly
decreased cytokine production when exposed to lipopolysaccharide [110] and a diminished
proliferative response to antigens in vitro [111]. One limitation of this study is that we only
determined the concentration of releasing substances based on the literature and did not
measure the amount of H2S generated during experiments.

4. Conclusions

We tested the effect of H2S-releasing substances on functions of PMNLs from healthy
subjects in vitro. None of the tested substances had a significant effect on chemotaxis
or phagocytosis under the experimental conditions. NaHS primed PMA- and E. coli-
stimulated PMNL oxidative burst, whereas DATS and cysteine significantly reduced E.
coli- stimulated oxidative burst but had no effect on PMA activation. NaHS, DADS, and
cysteine reduced PMNL apoptosis, while GYY4137 had the opposite effect. Experiments
with signal transduction inhibitor suggest that the intrinsic pathway of apoptosis is mainly
involved in GYY4137-induced PMNL apoptosis. Investigating the effect of H2S on PMNLs
from CKD patients and measuring the actual H2S concentration during the experiments
are topics of future research projects.
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5. Material and Methods
5.1. Healthy Subjects

We only included healthy subjects between 18 and 65 years of age. A total of
66 probands (35.5 ± 1.6 years; mean ± SEM) donated blood: 32 women (33.8 ± 2.1 years)
and 34 men (37.1 ± 2.2 years). Some probands gave a blood sample several times, but only
once per experimental set.

Excluded were people with signs of infection or inflammation, chronic diseases, or
taking medications that influence the immune system. The blood donors suffered neither
from renal dysfunction nor from any psychiatric or neurological disease.

5.2. Material

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA):
NaHS (catalog number #161527), DADS (#SMB00378), L-cysteine (#168149), GYY4137
(#SML0100), fMLP (#F3506), RNAse (#R4875), propidium iodide (#P4170), SB203580 (#S8307),
PD98059 (#P215), LY294002 (#L9908), and SN50 (#SML1471). DATS was purchased from
Cayman (Ann Arbor, MI, USA; #10012577). The caspase inhibitors were purchased from
R&D Systems (Minneapolis, MN, USA): caspase 8 inhibitor Z-IETD-FMK (#FMK007) and
caspase 9 inhibitor Z-LEHD-FMK (#FMK008).

5.3. Isolation of PMNLs

Discontinuous Ficoll-Hypaque (GE Healthcare Bio- Sciences AB, Uppsala, Sweden;
#17144003) density-gradient centrifugation was used for the isolation of PMNLs. Ten mL of
whole venous blood from healthy donors was collected in a sterile lithium heparin vacutainer
tube (Greiner Bio-One GmbH, Kremsmünster, Austria) and then underlayered with 12 mL of
Ficoll-Hypaque. After centrifugation, hypotonic lysis on ice with ammonium chloride buffer
(157 mM NH4Cl, 10 mM KHCO3, and 0.1 mM ethylenediaminetetraacetate Na2) removed
the erythrocytes. Then the PMNLs were collected by centrifugation at 4 ◦C and washed once
with lysis buffer and twice with phosphate-buffered saline (PBS, pH 7.4; BioWhittaker Lonza
Services, Verviers, Belgium; #BE17-513F)). The viability of the PMNL isolated by this protocol
was >95%, as determined by the exclusion of ethidium bromide (GibcoBRL Life Technologies,
Gaithersburg, MD, USA; #15585011) under the fluorescence microscope.

In preliminary experiments, we used one concentration of the H2S donor. Subse-
quently, we tested the concentration dependence of the observed effect. Therefore, different
numbers of experiments were performed for the different concentration.

5.4. Chemotaxis

The chemotactic movement of PMNLs was measured by the under-agarose method as
previously described [103]. Isolated PMNLs were suspended at a concentration of
0.5× 106/10 µL in PBS or in PBS containing the H2S-releasing substance. N-formyl-methionyl-
leucyl-phenylalanine (fMLP) was used as a chemoattractant at a final concentration of
4.2 × 10−7 M. The plates were incubated for about 2 h at 37 ◦C, 5% CO2. After fixation of the
PMNLs with methanol and paraformaldehyde (Fluka, Sigma-Aldrich Chemie GmbH, Buchs,
Switzerland; #76240) and staining with Giemsa (Merck, Darmstadt, Germany; #1.09204.0500),
the distance the cells migrated under the agarose was measured under the microscope.

5.5. Phagocytosis

PMNL phagocytosis was analyzed by flow cytometry in heparinized whole blood. The
percentage of PMNL that had taken up fluorescein (FITC)-labeled opsonized E. coli and the
amount of ingested E. coli per PMNL were determined using the “PhagoTest” kit (Celonic,
Heidelberg, Germany; #10-0100). Sample histograms are shown in the Supplementary Figure S1.

5.6. Oxidative Burst

The oxidative burst of PMNLs was assessed in heparinized whole blood using
Bursttest (Celonic, Heidelberg, Germany; #10-0200). Unlabeled opsonized E. coli, PMA,
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and the chemotactic peptide fMLP were used as stimulants, and dihydrorhodamine (DHR)
123 was used as fluorogenic substrate. The MFI was measured by flow cytometry on a BD
FACSCanto II (BD Biosciences, San Jose, CA, USA). Sample histograms are shown in the
Supplementary Figure S2.

5.7. Apoptosis
5.7.1. Incubations

The spontaneous PMNL apoptosis was assessed as previously described [104]. PMNLs
were isolated under sterile conditions and incubated at 6 × 106 cells/mL for 20 h at 37 ◦C
in PBS containing 100 U/mL penicillin–streptomycin (Gibco—Thermo Fisher Scientific,
Waltham, MA, USA; #15140122).

5.7.2. Morphological Features

The fluorescent DNA-binding dyes ethidium bromide and acridine orange (Merck,
#15931) were added to the PMNL suspension at a final concentration of 5 µg/mL each.
DNA in apoptotic cells is condensed, while DNA of non-apoptotic cells is structured.
Acridine orange bound to DNA appears green. Ethidium bromide is taken up by cells
with a damaged plasma membrane and stains the DNA more intensely orange. As a
result, viable non-apoptotic (green, structured nucleus), apoptotic (green, condensed nu-
cleus), and secondary necrotic (orange, condensed nucleus) cells can be counted under the
fluorescence microscope.

5.7.3. Analysis of the DNA Content by Flow Cytometry

Apoptotic cells have a lower DNA content due to DNA cleavage by activated nucleases.
PMNLs were centrifuged at 360× g for 10 min and washed with PBS. Then 250 µL ice-
cold 70% ethanol was added to the cell pellet and incubated on ice for 60 min. After
centrifugation and washing with PBS, PMNLs were suspended in 200 µL PBS containing
250 µg/mL RNAse (type I-A) and 50 µg/mL propidium iodide. The samples were stored
on ice, protected from light, until analyzed by flow cytometry analysis.

5.7.4. Data Presentation

The data are presented as a percentage of viable PMNLs. Apoptotic PMNLs are in
a stage between viability and secondary necrosis. Under in vivo conditions, apoptotic
PMNLs would be readily phagocytosed. Therefore, viable PMNLs are most important for
the interpretation of the results.

5.8. H2S-Releasing Substances

The concentration of H2S-releasing substance has been chosen based on the available
values in literature (Table 1).

Table 1. H2S-releasing substances.

Substance Concentration Cells Effect Comment Ref.

NaHS 0.2–0.4 mM Lymphocytes (CD8+, NK) Apoptosis ↑ Caspase independent,
glutathione dependent [112]

NaHS 10–75 µM Lung fibroblasts Apoptosis ↑ 12–48 h [113]

NaHS 10, 100, 300 µM Neutrophils (mice) (MIP-2 induced)
chemotaxis ↑ [72]

NaHS 10 mM Jurkat Apoptosis ↑ (caspase 9) 15 min [114]

NaHS 10–1000 µM HUVEC
3T3 fibroblasts (IRI-induced) apoptosis ↓ [115]

NaHS 0.23–3.66 mM Neutrophils Apoptosis ↓ [80]

NaHS 100, 500, 1000 µM Endothelial cells Apoptosis ↑ “100 µM safe in vitro
concentration” [54]



Toxins 2023, 15, 198 15 of 21

Table 1. Cont.

Substance Concentration Cells Effect Comment Ref.

NaHS 100, 200 µM RAW 264.7 LPS-stimulated PGE2-
biosynthesis ↓

↑ (n.s.) at 1000 µM,
“biphasic effect” [52]

Na2S 100 µM SMC Ca2+ release ↓ [116]

Na2S 25 µM Neutrophils NETosis PMA-induced [117]

DATS 100, 200 µM HepG2 H2O2 ↑ not for DADS [118]

DATS 100 µM HepG2 Caspase 3 ↑ not for DADS [118]

DATS 20 µM U937 Apoptosis ↑ not in THP-1, HL-60,
K562 cells [119]

DATS 1–10 µM Cardiomyocytes Glucose-induced
apoptosis ↓ ROS ↓ NFκB ↓ [87]

DATS 100 µM Pancreatic cancer cells Apoptosis ↑ [120]

DATS 5, 10 µM Cardiomyocytes Glucose-induced
apoptosis ↓ [86]

DATS 1–5 µM WEHI-3 Apoptosis ↑ [121]

DATS 12, 24 µM Rat hepatic stellate cells Apoptosis ↑ [122]

DATS 10–100 µm “several human cancer cells” Apoptosis ↑ [122]

DATS 20, 40 µM (5–120 µM) Human osteosarcoma cells Apoptosis ↑ ROS ↑ [82]

DATS 0–50 µM Primary effusion lymphoma
cells Apoptosis ↑ [81]

DATS 1–5 µM Ethanol-stimulated L02 Apoptosis ↓ ROS ↓ [123]

DADS 5–50 µM Lung fibroblasts Proliferation ↓ [124]

DADS 5–300 µM KG1α Apoptosis ↑ 24, 48, 72 h [84]

DADS 1–100 µM C28I2 Chondrocytes
(IL1β-induced) ROS ↓

(mitochondrial) apoptosis
↓

2–24 h
25 µM after 24 h not

cytotoxic
[125]

DADS 1, 5, 10 µg/ml BAR-T cells Apoptosis ↑
(DCA-induced) ROS ↓ 1, 3, 6, 12 h [76]

DADS 25–250 µM A549 Apoptosis ↑
ROS ↑ [126]

DADS 10, 20 mg/l HL-60 Apoptosis ↑
ROS ↑ [85]

Cysteine 10 mM SMC Ca2+ release ↓ [116]

Cysteine 10–1000 µM Neutrophils [Ca2+]i ↑ [127]

GYY4137 1 mM Hoxb8 neutrophils
ROS ↓

Endothelial
transmigration ↓

[77]

GYY4137 200 µM Neutrophils
(LPS stim.) ROS ↓

(LPS inhibited) apoptosis
↑

[128]

GYY4137 500 µM RAW264.7cells NF-κB activation (LPS) ↓ [129]

GYY4137 400 µM MCF-7 Apoptosis Not for IMR90 cells [130]

GYY4137 100–1000 µM RAW 264.7
LPS-stimulated PGE2-,
NO2

−-, TNFα-, IL-1β-
biosynthesis ↓

[52]

HepG2: human hepatoblastoma cells. U937: human leukemia cells. WEHI-3: murine leukemia cells. L-02:
human fetal hepatocyte line. KG1α: leukemia cell line. BAR-T cells: Barrett’s carcinoma precursor epithelial cells.
A549: lung cancer cells. Hoxb8 neutrophils: conditionally HoxB8-immortalized mouse hematopoietic progen-
itors are suitable for in vitro differentiation of a range of myeloid cells, including neutrophils. RAW264.7cells:
monocyte/macrophage-like cells, originating from Abelson leukemia virus transformed cell line derived from
BALB/c mice. MCF-7 cells: epithelial cell line isolated from the breast tissue of a patient with metastatic
adenocarcinoma. IMR90 cells: normal human lung fibroblasts. RAW 264.7: murine macrophages. IRI: Ischemia-
reperfusion injury. The arrows ↑ and ↓ indicate increase and decrease, respectively, of the indicated parameter.
n.s.: non-significant.



Toxins 2023, 15, 198 16 of 21

5.9. Statistics

Data were checked for normality with QQ-plots. In case non-normality was detected,
we used the Wilcoxon test to compare groups. For more than two groups, a Kruskal–
Wallis test followed by Dunn’s test was used to analyze the differences. In cases where
normality could be assumed, a mixed model was used. For multiple pairwise comparisons
and comparison to a control group, the Bonferoni–Holm method and the Dunnett test
were applied, respectively. Data are presented as mean values ± standard error of the
mean (SEM). A p-value less than 0.05 was considered significant. Statistical analysis was
performed with SAS 9.4 for Windows (Cary, NC, USA) and R version 4.0.4 with the package
FSA [131,132].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxins15030198/s1, Figure S1: Sample histograms PhagoTest; Figure S2: Sam-
ple histograms BurstTest.
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