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Abstract: Specific and sensitive tools for the diagnosis and monitoring of accidents by venomous ani-
mals are urgently needed. Several diagnostic and monitoring assays have been developed; however,
they have not yet reached the clinic. This has resulted in late diagnoses, which represents one of the
main causes of progression from mild to severe disease. Human blood is a protein-rich biological
fluid that is routinely collected in hospital settings for diagnostic purposes, which can translate
research progress from the laboratory to the clinic. Although it is a limited view, blood plasma
proteins provide information about the clinical picture of envenomation. Proteome disturbances in
response to envenomation by venomous animals have been identified, allowing mass spectrometry
(MS)-based plasma proteomics to emerge as a tool in a range of clinical diagnostics and disease
management that can be applied to cases of venomous animal envenomation. Here, we provide
a review of the state of the art on routine laboratory diagnoses of envenomation by snakes, scorpions,
bees, and spiders, as well as a review of the diagnostic methods and the challenges encountered. We
present the state of the art on clinical proteomics as the standardization of procedures to be performed
within and between research laboratories, favoring a more excellent peptide coverage of candidate
proteins for biomarkers. Therefore, the selection of a sample type and method of preparation should
be very specific and based on the discovery of biomarkers in specific approaches. However, the
sample collection protocol (e.g., collection tube type) and the processing procedure of the sample
(e.g., clotting temperature, time allowed for clotting, and anticoagulant used) are equally important
to eliminate any bias.

Keywords: biomarkers; blood plasma; clinical proteomics; human envenoming

Key Contribution: We present methods and challenges for discovering and validating protein
markers in blood plasma samples for envenomation by venomous animals.

1. Introduction

Human envenoming by venomous animals represents the main neglected health
problem in tropical and subtropical countries [1–4]. Due to its climatic heterogeneity
and different biomes, Brazil harbors a great variety of venomous animals with harmful
potential for humans [5–7]. The therapeutic procedures for envenoming by venomous
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animals consist of the administration of antivenoms [8]. An antivenom is a product that
contains antibodies, or fragments thereof, that act on the active toxins that are circulating
in the victim’s plasma [9].

However, the application of an antivenom is not a trivial task due to uncertainties
about the identity of the species responsible for the accident [10], the identification of
dry bites, the late appearance of symptoms and presence of asymptomatic windows [11],
the amount of venom injected, and the dose of antivenom to be used [12]. The lack
of knowledge/preparation of the medical team, associated with the lack of diagnostic
tools, contributes to these uncertainties as well. Diagnosis, including identifying the
animal/genus responsible and the severity of the envenoming, is challenging but crucial
in deciding when and how much antivenom to use. Thus far, specific and sensitive
diagnostic tools have not yet reached the clinic, resulting in late diagnoses based on
clinical manifestations and laboratory tests [1]. This leaves room for errors regarding
the administration (or lack thereof) of antivenoms and the amount of antivenom to be
administered. The waiting time for decision making based on the observation of signs and
symptoms may represent a factor in the progression of the clinical condition from mild to
severe illness.

Considering that animal venoms use plasma as a means of biodistribution, their effects
on this fluid, as well as the activation of biochemical pathways, modulate the organism’s
proteome, providing abundant information and biomarkers for investigation [13]. Serum
and/or plasma have attracted substantial attention due to their ease of sample collection
and preparation. The dynamics in the abundance of proteins and [14] metabolites, in
association with the correlation between disease progression and severity [15,16], can be
used for diagnosis, differentiation between pathologies with very similar etiology and
clinical manifestations, and monitoring disease progression [17].

Previous studies have addressed the importance and advancements in the field of diag-
nosis of envenomation by venomous animals, but the use of mass spectrometry, particularly
proteomics, has not yet been fully explored [14]. Establishing predictive blood biomarkers
for the diagnosis, severity, and complications of envenomations would be highly valuable
for prognosis, monitoring disease progression and responses to therapy, and predicting
outcomes [14]. Research on plasma biomarkers has increased exponentially in an effort to
elucidate the complex pathogenesis of human diseases, leading to the creation of plasma
and serum marker panels [13].

However, caution must be taken from the sample collection phase to the interpretation
of results in order to fill in gaps and minimize errors and variables during the clinical
sample collection and laboratory workbench. The need for new tools in the diagnostic
and prognostic field of clinical toxinology and the scarcity of proteomics studies with
clinical samples justify the importance of this publication, since it will initiate a discussion
on the relevance of the proposed strategy and methodology. Data analysis, including
open-source frameworks, software libraries, and tools, will not be considered here, since
this is an extensive topic that should be addressed in a future manuscript.

2. Diagnostic and Monitoring Tools for Envenomation: An Urgent Need
2.1. Snakebite

The diagnosis of snakebite envenomation is hampered by uncertainties regarding the
identity of the species that caused the envenomation, and it is often restricted to clinical
manifestations and case reports [10,18,19]. The anamnesis of snakebite victims has been
based on five basic questions: (i) where were you bitten?; (ii) what time/when were
you bitten?; (iii) what were you doing when you were bitten?; (iv) where was the snake
and what did it look like?; and, finally, (v) how are you feeling now? [1]. In addition,
laboratory tests (such as clotting time) have been used to evaluate hemostasis due to the
higher incidence of snake envenomations that induce coagulopathy. These tests include the
20-min whole blood clotting test (20WBCT), bleeding time (TS), prothrombin time (PT),
and activated partial thromboplastin time (APTT) [20,21].
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Hematological analysis based on cell counts has been used to diagnose snakebite
envenomation. Clinically, cases of thrombotic microangiopathy (TMA) with accompanying
kidney injury and thrombocytopenia after Bothrops envenomations have been reported in
Brazil [22–24]. However, markers of microvascular hemolysis and anemia after snake en-
venomation are not specific yet [25]. The platelet count used to identify thrombocytopenia
does not show specificity for the genus and type of venom due to the variability of the ac-
tion of toxins on platelets, which can cause platelet aggregation or inhibition. Neutrophilia
and severe thrombocytopenia have been reported in cases of snakebites that had tissue loss
and/or limb amputation [26–28], showing a low predictive potential for clinical outcome.
This reinforces the need to discover and develop new tools for monitoring snakebites.

Biochemical parameters are used to monitor envenoming, but they have low specificity
and sensitivity and may not reflect the actual clinical condition of the patient. For example,
creatine kinase (CK) quantification assays are used to identify and monitor myonecrosis
caused by venoms. CK has a relatively short half-life, and its activity returns to normal
quickly after the cessation of myodegeneration or local necrosis [29]. Although it has been
considered a gold standard for assessing muscle damage, evidence has shown that this
biomarker does not reflect the amount of tissue damage [29,30]. CK activity depends not
only on tissue damage but also on the number of CK molecules present in the plasma/serum
and the glutathione concentrations, which tend to decrease during rhabdomyolysis [30].

In addition, asymptomatic cases have been reported in epidemiological studies world-
wide [31–36]. The absence of clinical manifestations in these cases could be associated with
the lack of venom injection, but their diagnosis to decide on the need (or lack thereof) to
apply antivenoms and the lack of methods to detect the presence of venom in the patient’s
blood may lead to an erroneous interpretation of the case, leading to a misapplication of
antivenom that can result in early or late adverse reactions to it [9,11,37].

In this context, Enzyme-Linked Immunosorbent Assay (ELISA) and lateral flow strip
assays for the detection of venom in blood samples from patients have been developed [38–40].
However, numerous variables come into play with this form of production. One of the
problems to be listed regarding the development of these diagnostic kits refers to the
cross-reactivity observed between the venoms. Some classes of proteins in each venom
overlap, and detection devices are not species/genus-specific and detect a variety of species
when using immunological techniques, which may direct the diagnosis to a false-positive
or false-negative result [38–40]. Another critical factor to be considered is the amount of
injected and free venom in the patient’s plasma in relation to the sensitivity of the kit,
since the toxins can be highly diluted in the plasma samples and, consequently, outside the
detection range [40]. Additionally, there are several toxins that are quickly absorbed into
deep tissue, while others act locally and are never absorbed, remaining in the bite/sting
site [41].

2.2. Scorpion Envenomation

In scorpion envenomation, the pain caused by the venom of these animals, as well
as the morphological characteristics described by patients who take the specimen to the
hospital, help in the diagnosis [42]. Although little used in the clinic, enzyme-linked
immunosorbent assays of the ELISA type have allowed for the determination of the con-
centration of venom in patients envenomated by scorpions [43–45]. Furthermore, in cases
where the victim does not see the animal, the diagnosis can still be made based on the
set of elements that involve the occurrence (place of occurrence, pain, clinical signs, and
others) [46].

In addition, the use of antivenoms for treatment is based on the clinical condition
presented by the victims [2,42], which can lead to errors regarding the administration (or
lack thereof) of antivenoms and, in cases where the application is necessary, errors as to
the amount of antivenom to be administered. Late systemic manifestations and clinical
complications can be detected using electrocardiography to identify cardiac changes [47]
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and radiography and echocardiography to identify changes in the cardiac area, as well as
signs of acute pulmonary edema and other complications [46,48].

2.3. Honey Bee Stings

Human envenomation by honey bees can result in a complex pathophysiological
picture that includes inflammatory reactions, allergic manifestations, anaphylactic shock,
and systemic toxic reactions, depending mainly on the number of stings that the victim
received, the age, weight, comorbidities, and medical conditions of the patient [5,49].
However, there is no specific diagnosis or protocol for monitoring the clinical condition
of patients. During the multicenter phase I/II clinical trial of the first apilic antivenom for
the treatment of Africanized bee stings, several clinical and biochemical parameters were
taken into account to monitor treatment and therapeutic success [49,50]. The laboratory
findings observed included the presence of stinging at the bite sites, hemodynamic changes,
respiratory disorders, elevated levels of CK, C-reactive protein (CRP), fibrinogen, alanine
transaminase (ALT), and leukocytosis. In addition, for the first time, plasma samples from
patients were analyzed by mass spectrometry, through which it was possible to identify
the presence of melittin in bee venom, suggesting that this tool can be used to identify
biomarkers for envenomation [50].

2.4. Spider Envenomation

The diagnosis of spider envenomation becomes challenging when the spider is not
felt or seen by the patient, being completely dependent on clinical and laboratory analysis
as well as knowledge of the distribution of the species in the region [51]. The diagnosis
based on systemic and/or local symptoms may lead to confusion with other medical
conditions that have been or may be diagnosed as recluse bites [52]. Despite being useful
as a diagnostic tool in some contexts, this method is primitive and can provide false
information, which highlights the need for better diagnoses.

The diagnosis is mainly clinical and focused on the skin wound; however, the clinical
team also uses laboratory tests, although nonspecific, to obtain a possible differential
diagnosis [52–54]. The laboratory diagnosis relies on the presence of several hematological
tests (analysis of the red series and WBC) to identify hemolysis and leukocytosis, hemostatic
tests (fibrinogen, APTT, PT, and D-dimer assay) to assess the presence of disseminated
intravascular coagulopathy, and biochemical tests (ALT, AST, total and direct bilirubin,
urea, creatinine, CRP, lactate, lactate dehydrogenase, CK, sodium, potassium, glucose, and
venous blood gases) to diagnose and monitor kidney injury [55].

Although several spiders cause medically important envenoming, most studies involv-
ing the development of tools to identify and quantify toxins are developed for Loxosceles
sp. and Latrodectus sp. Thus, skin exudate samples (passive hemagglutination inhibition
test and ELISA) [56–58], biopsy and hair samples (competitive ELISA) [56,58,59], and
serum [60] have already been used to detect Loxosceles venom. Although the possibility of
detecting Loxosceles venoms has been reported for a long time, their use in the clinic is not
yet common knowledge. In addition, assays with serum samples are under development
for the diagnosis of envenomation by Phoneutria, Atrax, and Hadronyche spiders. In the case
of Phoneutria venom, its detection was possible 8 h after experimental envenoming [61], and
there are already reports of its detection in human samples [62,63]. The detection of Atrax
and Hadronyche venom in human samples has also been reported [63]. Thus, there is a need
for studies that demonstrate the effectiveness of these kits in the laboratory-hospital routine.

3. Biomarkers for Envenomation by Venomous Animals: What to Look For?

During the transition from the discovery phase to the verification and validation
phases, a different set of quality assessments is required to ensure the analytical validity of
the biomarkers. The discovery of new biomarker candidates by MS has evolved, thanks
to new applications of MS methods in omics research (lipidomics, metabolomics, and
proteomics), allowing for the analysis of complex samples, including blood, urine, and
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biopsy tissues, and the obtaining of a profile of molecules that indicate a certain pathological
scenario [64,65]. Within this context, proteomics has played a distinguished role due to
the wide variety of proteins being explored as biomarkers for different human pathogenic
conditions [13].

Considering that animal venoms use plasma as a means of biodistribution, their effects
on this fluid, as well as the activation of biochemical pathways, modulate the organism’s
proteome, providing an abundance of information and biomarkers for investigation [13].
Serum and/or plasma have attracted substantial attention due to their ease of sample collec-
tion and preparation, as well as the dynamics in the abundance of proteins and metabolites
in association with the correlation between disease progression and severity [15,16,66].
In addition, many of these proteins can be used for diagnosis, differentiation between
pathologies with similar etiology and clinical manifestations, and monitoring disease
progression [17]

Human envenomation by venomous animals causes changes in plasma protein abun-
dance that are currently monitored by assays that primarily assess changes in hemosta-
sis [20,21]. Additionally, other proteins that are or are not involved in hemostasis have
already been identified as potential biomarker candidates but require validation for mon-
itoring clinical complications associated with envenomation [67–70]. Furthermore, the
possibility of identifying circulating animal toxins in plasma samples from patients after
multiple bee stings [50] and snake bites [41,71] using proteomics tools has already been
reported. Several toxins show a high degree of homology with human blood proteins,
which makes accurate identification using MS difficult. Thus, previous experiments can
be performed based on the immunodetection of the toxins present in the plasma using
Western blot assays [71], and the bands that correspond to the toxins can be easily identified
by MS. Therefore, it is also necessary to overcome another challenge with regard to the
immunodetection of toxins: the use of specific antibodies that have thus far been obtained
from commercial antivenoms [40].

Studies involving mass spectrometry in toxinology have focused on the study of pro-
teins present in animal venoms, converging on (i) the identification of isolated and purified
proteins from venoms [72–74], (ii) the description of the composition of venoms [75–81],
and (iii) the identification of altered biological processes in tissues after tissue damage
caused by snake venom [41,67–70,82,83]. MS can assist in the development and tracking of
target toxins and improve the sensitivity and specificity of ELISA and Western blot assays
by identifying toxins circulating in the blood of the victims. This information can be used
for the production of antibodies against specific toxins, aiding in the elimination of het-
erophilic antibodies and reducing the probability of a cross-reaction in the diagnosis. When
used in combination, proteomics tools (ELISA, Western blot, and mass spectrometry) have
the ability to identify and validate biomarkers for tracking early tissue damage, predicting
clinical outcomes, and evaluating therapeutic response (Figure 1).

The use of specific antibodies in the development of diagnostic tools (ELISA and
lateral flow strip assays) for envenoming by venomous animals can accurately deter-
mine the type of snakebite incident and classify the severity of the case based on the
amount of circulating venom, thus avoiding unjustified administration and unnecessary
antivenom [11,40,50,60,61,84]. Consequently, the specificity of the antibodies present in
antivenoms is associated with the venoms of species selected for hyperimmunization, and
variations in intra/interspecific toxins can result in reduced recognition of toxins from
different venoms [85–87].

Different studies report the use of polyclonal antibodies with low specificity and
saturation in high concentrations of snake venom, for example, the polyclonal diagnostic
antibodies used to classify the cases of envenomation by hematotoxic and neurotoxic snakes
and the polyclonal diagnostic antibodies used for individual species and bees [40,50]. The
purification of antibodies from these preparations can compromise the reliability of the
number and type of toxins detected, since detection will be dependent on the presence of
antibodies that recognize a particular toxin. Therefore, we believe that the study of the
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production of genus-specific antibodies for venomous animals is indispensable and can be
obtained through various techniques of immunization of animals [88,89].
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Figure 1. Suggested workflow for discovery of biomarkers (toxins and toxin fragments) in victims
of venomous animals. (a,b) After collecting plasma samples from patients, the concentration of
venom in the plasma should be explored using ELISA assays. (c) Then, plasma proteins must be
fractionated using SDS-PAGE and analyzed using Western blot with antibodies specific to the target
venoms. This will provide the catalog of toxins and their fragments present in the patients’ plasma.
(d) Bands and spots corresponding to toxins and their fragments identified using Western blot must
be excised, digested, and analyzed using LC–MS/MS. (e) Peptides should be identified and quantified
using bioinformatics tools. Created with BioRender.com (accessed on 8 September 2022) by Joeliton
S. Cavalcante.

4. Biomarker’s Development Phase

Biomarkers are indicator biomolecules that help in early diagnosis, discriminate among
different diseases, and provide valuable tools for monitoring the progression/severity of
diseases [16,17,90–93]. The development of biomarkers for human diseases is divided into
three phases: discovery, verification, and validation, with the latter being further divided
into two stages: analytical validation and clinical validation. As the study progresses
through these phases, the number of candidate biomarkers (peptides and proteins) de-
creases, and they are measured in more samples and subjects [13]. During the transition
from the discovery phase to the verification and validation phases, a different set of quality
assessments is required to ensure the analytical validity of the biomarkers.

In the discovery phase, a large number of biomarker candidates are identified through
an in-depth and untargeted analysis of the proteome of biological samples, which is con-
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sidered the analyte source that aims to identify as many candidates as possible. However,
due to the complexity of obtaining clinical samples, economic cost, and other factors, this
phase is carried out with a very small number of patients [13,16,17,90,92–95]. Peptides, and
therefore proteins, are identified by matching experimental tandem mass spectra (MS/MS)
to computationally predicted MS/MS spectra.

In the verification phase, assays are performed to validate the abundance of target pep-
tides/proteins in patient samples relative to the control group. One of the most commonly
performed tests for this purpose is the addition of synthetic peptides labeled with stable
isotopes to the samples. This facilitates the reliable identification and quantification of
targeted peptides using mass spectrometry techniques such as selected/multiple reaction
monitoring (SRM/MRM) [96]. In the verification phase, the number of samples analyzed
depends on the disease, its complexity, previous research, and the analytical testing plat-
form. The number of patients should be based on a power analysis. In addition, the
number of subjects ranges from tens to hundreds to confirm the abundance of biomarker
candidates [66].

Analytical validity includes the analysis of several parameters such as precision,
specificity, sensitivity, recovery, and stability. Precision analysis includes a measure of
repeatability, which focuses on investigating within-day variability, and reproducibility,
which refers to day-to-day variability [97]. To define the coefficient of variation, repeated
analyses under different conditions and at different concentrations are used, and the
robustness of a coefficient of variation must be interpreted within the context of what is
considered a clinically significant change in the analyte. In addition, verifying that assays
yield similar results when performed by different individuals and in different laboratories
is part of validating reproducibility [98].

Afterwards, the analytical validation phase is performed to confirm the usefulness of
biomarker candidates and their respective assays. To provide a measure of robustness, an
expanded cohort of patients used in the earlier stages, and even a cohort of individuals
with the same disease/condition not previously analyzed, is considered for analysis. The
validation phase also requires a number of patients defined through power analysis, and
the number of biomarkers to be tested must also be considered. This can range from tens to
thousands of patient samples, which are analyzed by immunological assays such as ELISA,
immunohistochemistry, dot blot, Western blot, and others [13,15,66,99,100].

5. Preanalytical Variables: Sample Preparation Challenges

Blood is the most commonly used medium in clinical analysis and an important
biofluid for researching diagnostic and prognostic biomarkers of human
diseases [13,15–17,66,90,92,93,95,97,100,101]. An innumerable number of variables can
have an immeasurable impact on the results of the analyses (Figure 2). Therefore, they
must be minimized by adopting strict criteria and carrying out the collections through
the development and implementation of standard operating procedures (SOPs). SOPs
must be strictly followed and include detailed criteria and information to be followed
from sample collection to processing [102]. This will help to validate and interpret blood-
based biomarker results across all studies and will facilitate the implementation of these
biomarkers in diagnostic and assay settings.

The use of blood has its own advantages, such as ease of collection and obtaining, in
addition to yield, since more plasma is obtained from an equal amount of whole blood
compared to serum. The use of plasma with EDTA or citrate anticoagulant without the
addition of protease inhibitors, following the guidelines of the Human Proteome Orga-
nization, favors greater reproducibility of the results due to a lower degree of ex vivo
degradation [103–106].
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Processing time is also an essential issue for sample preparation and experimental
design in research [107]. For example, the processing time alters the integrity of human
peripheral blood mononuclear cells (PBMC), leading to contamination and activation of
granulocytes that can alter the proteome in a biased manner and should be considered
during the performance of the studies [108,109]. On the other hand, samples submitted
to freeze/thaw cycles do not show degradation, although hemolysis is a known issue
associated with delayed sample processing [110]. However, the greatest pre-analytical
variation is reported in the centrifugation time and the time from centrifugation to storage,
during which tubes are kept at room temperature or cold [111]. Other pre-analytical
variables, such as centrifugation conditions, delay time for the first centrifugation, and
blood and anticoagulant storage temperatures, contribute significantly to plasma proteomic
variation and may result in increased intracellular plasma proteins [107,112].

The removal of major proteins to improve proteomic analysis has been widely studied,
and it is a variable of great relevance for the study of biomarkers. Removing major pro-
teins such as albumin allows the detection of other proteins of lower abundance, and as
more proteins are removed, additional proteins can be identified [113]. A wide variety of
columns for the depletion of major proteins other than albumin (such as IgG, antitrypsin,
IgA, transferrin, and haptoglobin) can also be used [114]. However, the investigator must
pay attention to the percentage of target-protein capture efficiency, which is related to
the manufacturer, workflow, and amount of target proteins from the column selected for
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depletion. This influences the number of proteins detected and increases the degree of vari-
ability in the effectiveness of depletion among individual isoforms of certain proteins [115].
A potential problem with plasma protein depletion is that some non-target proteins may
be removed along with the target proteins, either due to their association with the target
proteins or because they interact non-specifically with the column [114,116]. Furthermore,
the use of depletion columns involves inserting additional sample manipulation steps,
leading to losses and introducing more variability into the data [113].

The efficiency, reproducibility, and non-specific binding of different depletion products
have been investigated [117–119]; however, most studies have focused on removing human
serum albumin (HSA) and IgG [119–123]. Different columns for the depletion of these
proteins are commercially available, such as those capable of retaining 7 (MARS Hu-7
from Agilent Technologies), 14 (Seppro IgY14 from Sigma Aldrich or the MARS Hu-14
kit from Agilent Technologies), or 20 high-abundant proteins (HAPs) (ProteoPrep20 from
Sigma). A topic that requires attention is the ability to immunocapture the largest number
of proteins, which should be considered the most efficient depletion system currently
available (such as the ProteoMiner approach). Furthermore, the efficiency in obtaining the
data must also be considered. For example, the ProteoMiner column induces a reduction in
terms of the total number of identified proteins and the total number of peptides, resulting
in a high number of proteins (30%) being identified with only one significant peptide [124].

6. Sociodemographic Background

Human envenomations by venomous animals are known to have a higher incidence
in countries with limited resources, as well as those with lower income and other indicators
of poverty [125]. This alerts us to a series of patient and environmental characteristics
that are factors that can interfere with proteomic analysis. Factors such as the diversity
of socio-epidemiological background, the exposure to various environmental risk factors
and infectious agents, ethnicity, lifestyle, diet, alcohol intake, cigarette use, and hormonal
variables can significantly alter serum/plasma components [13,126,127].

In patients with neglected diseases, it is also possible to observe a reflection of these
sociodemographic factors, since they are endemic diseases in low-income populations.
Proteomic studies point to variations in plasma proteins in patients with tuberculosis [128],
Chagas disease [129], schistosomiasis [130], and leprosy [131], among others.

Regarding the ethnicity and diet of the groups studied, Brenner et al. (2011) evaluated
54 high-abundance plasma proteins in a multiethnic population of healthy young adults
and found significant associations with previously identified dietary patterns. Most of these
proteins have functions related to processes such as inflammation and lipid metabolism.
Another example is the study by García-Bailo and co-authors [91], who observed that Cau-
casians had higher mean concentrations of adiponectin than East Asians and South Asians.

Specifically, in patients with chronic alcohol abuse, an alteration in the microhetero-
geneity of serum glycoproteins has already been observed, with abnormal isoforms of
transferrin and alpha-1 antitrypsin in the serum [132]. In passive smokers, it was possible to
identify nine proteins differentially expressed in plasma. Of these, ceruloplasmin and Inter-
alpha-trypsin heavy chain H4 inhibitor (ITIH4), which are two acute-phase inflammatory
proteins, showed a high number of isoforms and exhibited an increase in their abundance
associated with tobacco exposure. This may have been due to a specific proteolytic cleavage
or increased instability due to oxidative modifications [133].

Plasma hormonal variables are closely related to sex, as pointed out by the study by
Ramsey et al. (2016), which showed that the serum concentrations of 117 of the 171 (68%)
molecules studied were associated with sex and/or female hormonal status. The study
took into consideration variables such as age, Body Mass Index, medication use, lifestyle,
health, and other relevant demographic variables. The biomarker studies produced up to
40% of false leads when the patient and control groups were not matched for sex, and up to
41% of false results when premenopausal women were not matched for oral contraceptive
pill use. Failure to account for sex and female hormonal status as important sources of
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variability in serum molecule concentrations can result in confounding these variables with
disease status, reducing the power to detect differences, and contributing to poor analysis
performance [126].

Consequently, the selection of research subjects should follow comparable sex ratios,
age groups, demographic characteristics, and dietary considerations. The choice and careful
recording of these factors are essential to minimize pre-analytical variation, since the lack
of detailed information can lead to misinterpretations of the results obtained. Therefore,
meticulous monitoring of all variables is extremely important for data reproducibility and
for correct analysis/interpretation [132].

7. Clinicopathological Background

Clinicopathological details, mainly information about the time between envenoma-
tion and arrival at the hospital, local and systemic manifestations, clinical complications,
the amount of antivenom administered, and use of other drugs, are crucial during the
analysis of the plasma proteome of patients. The lack of detailed information can lead
to erroneous interpretations of the results obtained. Therefore, meticulous screening of
all clinical variables is extremely important to obtain reproducible results and for further
analysis/interpretation of the results. To this end, clinical evaluation forms must be com-
pleted as clearly and completely as possible and accompany the samples to be entered in
the clinical study. Obtaining well-annotated samples is very challenging, but assembling
stable biobanks/biorepositories from collected and stored samples from a large number of
samples with comprehensive clinical-pathological and socio-epidemiological information
can speed up the studies [94,134].

8. Other Directions for Studies of Biomarkers in Envenomations

In recent years, there has been a tremendous advance in the use of clinical proteomics
in the search for new biomarkers. Critically, the development and refinement of techniques
that allow identifying and validating the use of biomarkers has paved the way for prelimi-
nary studies that investigate their usefulness in clinical settings [13,16,17,90,93]. However,
in clinical toxinology, the process of searching for new molecules for use in diagnosis,
monitoring, and prognosis is still in its early stages. Several significant obstacles begin to
emerge from the design of studies for this purpose, but the efforts will bring immeasurable
gains in terms of the implementation and usefulness of these molecules in clinical care for
envenomation by venomous animals.

The number of species within the same genus can be a critical challenge for studies
of biomarkers in envenomation by venomous animals. As observed in experimental
studies, different biomarker candidates may be associated with the species that caused the
envenomation, requiring the search for candidates that overlap at the genus level [67–69].
There is an opportunity for high specificity if the biomarker target is not endogenous, for
example, specific toxins with markers [41,50,71]. This highlights the need for large-scale
studies and clinical trials involving the recruitment of participants in different regions
affected by different species and genera of venomous animals for discovery, validation, and
standardization purposes.

Furthermore, the ability to actually target and separate the biomarkers associated
with clinical complications from those that are not could be a potential challenge. One of
the limitations encountered so far in studies is that they display a map of the proteome
differentially expressed at a single moment during disease progression compared to healthy
individuals or individuals who did not present a specific event [37,67–70]. Single-point
analysis (case versus control) in the case of envenomations by venomous animals, which
involves obtaining an overview of biomarkers at the moment the patient enters the hospital
service, will help to identify possible diagnostic markers.

However, longitudinal studies involving repeated observations of the same individu-
als over different time periods, such as different intervals after antivenom treatment until
hospital discharge, may provide valuable additional information about changes in biomark-
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ers and their usefulness as monitoring or prognostic markers [135,136]. In addition, the
longitudinal analysis of molecules associated with clinical complications can be identified
in this way, with the change in the abundance of these biomarkers being monitored and
validated as a potential predictor [83].

While blood-based proteomic analyses have been the most common avenue of investi-
gation, other samples such as exudate and the contents present in blisters offer a unique
opportunity to further refine biomarkers and increase their sensitivity, specificity, and
overall reliability [41,137]. Indeed, studies comparing the efficacy of plasma and other
fluid-based biomarkers (or their combinations) will be of great interest.

9. Conclusions

Human envenomation by venomous animals is of great epidemiological importance
in the world due to the high annual number of cases and deaths, which is aggravated by the
lack of more precise and specific diagnostic tools for monitoring associated complications.
The development of simple, accurate, low-cost, and stable diagnostic, monitoring, and
predictive tools for clinical complications and their implementation in developing countries
are crucial due to the high incidence of complications and deaths resulting from envenoma-
tion by venomous animals, mainly due to the lack of early and predictive diagnosis and
timely treatments. Therefore, without a doubt, the use of proteomics in the clinic will be
one of the most promising applications for the identification of diagnostic and prognostic
biomarkers and the development of predictive tools for complications and envenomation
outcomes, which can effectively improve diagnosis and therapy.
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