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Abstract: The objectives of this study were to explore the possibility of using near infrared (NIR) and
Fourier transform mid-infrared spectroscopy—attenuated total reflectance (ATR-FT/MIR) molecular
spectroscopic techniques as non-invasive and rapid methods for the quantification of six major
ergot alkaloids (EAs) in cool-season wheat. In total, 107 wheat grain samples were collected, and
the concentration of six major EAs was analyzed using the liquid chromatography-tandem mass
spectrometry technique. The mean content of the total EAs—ergotamine, ergosine, ergometrine, er-
gocryptine, ergocristine, and ergocornine—was 1099.3, 337.5, 56.9, 150.6, 142.1, 743.3, and 97.45 µg/kg,
respectively. The NIR spectra were taken from 680 to 2500 nm, and the MIR spectra were recorded
from 4000–700 cm−1. The spectral data were transformed by various preprocessing techniques
(which included: FD: first derivative; SNV: standard normal variate; FD-SNV: first derivative + SNV;
MSC: multiplicative scattering correction; SNV-Detrending: SNV + detrending; SD-SNV: second
derivative + SNV; SNV-SD: SNV + first derivative); and sensitive wavelengths were selected. The par-
tial least squares (PLS) regression models were developed for EA validation statistics. Results showed
that the constructed models obtained weak calibration and cross-validation parameters, and none of
the models was able to accurately predict external samples. The relatively low levels of EAs in the
contaminated wheat samples might be lower than the detection limits of the NIR and ATR-FT/MIR
spectroscopies. More research is needed to determine the limitations of the ATR-FT/MIR and NIR
techniques for quantifying EAs in various sample matrices and to develop acceptable models.

Keywords: spectroscopic techniques; chemometric; spectral pretreatments; the partial least squares
regression (PLS); wavelength selection; mycotoxin quantification; cool-season adapted wheat

Key Contribution: ATR-Ft/MIR vs. NIRs molecular techniques with chemometrics were used to
reveal responses and sensitivity to major ergot alkaloids from fungal mycotoxins. Ergot alkaloids
are mycotoxins produced primarily by Claviceps fungal species and are common cereal grain con-
taminants. Both ATR-Ft/MIR and NIR molecular spectra were studied on cool-season wheat grain
samples. Various molecular spectral preprocessing and wavelength ranges were used to test for cali-
bration. The PLS regression models with ATR-Ft/MIR and NIRs generally showed weak performance
in the prediction of major ergot alkaloids from fungal mycotoxins.

1. Introduction

Ergot alkaloids (EAs) are toxic compounds produced by Claviceps fungi species, which
can parasitize the seed heads of some small grains and grasses during the time of flower-
ing [1,2]. Th Numerous monocotyledonous plants can be attacked by those fungi, including
durum wheat, oats, barley, rye, corn, forage grasses, etc. [3]. During the infection, the
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healthy grain or seed will be replaced by ergots (i.e., sclerotia). The ergots are brown to
purple-black in color and usually contain high concentrations of EAs [4].

More than 40 different EAs have been reported. Generally, they could be classified
into three groups, including clavinet alkaloids, peptide alkaloids, and lysergic acid deriva-
tives [5]. Ergometrine, ergotamine, ergosine, ergocristine, ergocryptine, and ergocornine
are the main EAs produced by Claviceps species [4]. Ergots are usually harvested from
uncontaminated grass or grains. Even when the sclerotia were removed from wheat and
rye samples by hand cleaning, EAs could still be found [6].

A widespread presence of ergot and EAs contamination in western Canadian cereals
has been reported. In 1999, 4% of Western Durum and 12% of Canadian Western Red
Spring wheat samples were positive for ergot, and similar outbreaks have been reported in
Manitoba in 2005 and in all three Prairie provinces (Alberta, Saskatchewan, and Manitoba)
in both 2008 and 2011 [7]. EAs can pose great health risks to humans and animals. For in-
stance, EAs can harm the health and productivity of animals, such as lactation performance,
growth, reproductive performance, pregnancy rates, sperm motility, etc. [8].

Due to analytical limitations, the monitoring of ergot contamination of grain is mainly
focused on controlling the content of ergot bodies, while regulations for the concentra-
tion of individual EAs in grain are still unavailable [6]. However, the content of EAs
and the proportion of individual EAs are extremely variable within ergot bodies and
could be significantly affected by geographic regions, harvest time, crop species, and
variety [8]. Up to date, the popular methods for the determination of EAs in agricul-
tural commodities are based on wet chemistry, such as high-performance liquid chro-
matography, liquid chromatography-tandem mass spectrometry (LC-MS/MS), thin-layer
chromatography, etc. [9,10]. These methods usually need professional technicians and are
expensive and time-consuming.

Infrared (IR) spectroscopy has been widely used as a fast and noninvasive approach
in feed and food research [10]. Moreover, the IR spectroscopy technique has been reported
as a promising technique for the estimation of mycotoxins in agricultural commodities [11].
The commonly used infrared spectral data methods for transformation with various pre-
processing techniques include: FD: first derivative; SNV: standard normal variate; FD-
SNV: first derivative + SNV; MSC: multiplicative scattering correction; SNV-Detrending:
SNV + detrending; SD-SNV: second derivative + SNV; SNV-SD: SNV + first derivative.
Shi et al. (2019) [10] reported vibrational spectroscopy limitations for the barley study
and suggested additional research on vibrational spectroscopy in grain research. Some
studies have been conducted to explore the potential of infrared-based techniques in the
ergot detection area. Roberts et al. (1997) [12] applied the NIR method for the quantita-
tive analysis of ergovaline concentration in tall fescue. In another study, Vermeulen et al.
(2012) [4] established a model for quantifying the content of ergot bodies (0–10,000 mg/kg)
based on hyperspectral imaging techniques. In our previous study, Shi et al. (2019) [10]
reported a barley study with vibrational spectroscopy. Nevertheless, the possibility of
using a spectroscopic method for the fast prediction of major EAs in cool-season-adapted
wheat with low heat units has not been explored.

The aim of this research was to explore the possibility of using near- and mid-infrared
spectroscopy combined with different spectral pretreatments and spectral regions to quan-
tify the six major EAs in western Canadian wheat grown under low heat unit (cold)
climate conditions.

2. Results and Discussion
2.1. Statistic Values of EAs

According to the LC-MS/MS analysis, EAs were detected in 75 of the collected samples.
Table 1 shows the statistical summary of the ergot alkaloids, including the concentration
ranges, averages, standard errors, skewness, and variance. The mean concentrations for
total EAs, ergotamine, ergosine, ergometrine, ergocryptine, ergocristine, and ergocornine
were 1099.3, 337.5, 56.9, 150.6, 142.1, 743.3, and 97.5 µg/kg, respectively. Most of the
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positive samples contained relatively low levels of EAs, and the median of the EAs-positive
samples was below 42.1 µg/kg. The positive samples also had rather broad EA concen-
tration ranges. For instance, the ranges for total EAs and ergocristine were 21,969.2 and
12,414.6 µg/kg, respectively.

Table 1. Statistical summary of reference ergot alkaloids content of wheat samples.

Parameter Ergocornine Ergocristine Ergocryptine Ergometrine Ergosine Ergotamine Total EAs

N 1 37 64 53 45 36 44 75
Mean, % 97.48 743.31 142.07 150.59 56.88 337.48 1099.32
Max, % 1602.53 12,416.19 1954.23 1952.25 671.37 4462.75 21,970.40
Min, % 1.30 1.62 1.29 1.28 1.30 1.30 1.25

Median, % 5.63 39.26 11.30 11.20 7.07 33.21 42.10
Range, % 1601.23 12,414.57 1952.94 1950.97 670.07 4461.45 21,969.15
Standard

deviation, % 296.89 1981.60 371.06 378.59 138.61 797.90 3221.62

Variance, % 88,142.30 3,927,756.00 137,686.30 143,327.80 19,212.86 636,637.90 10,378,850
Skewness 4.37 4.20 3.80 3.44 3.75 3.80 4.65

1 N: Number of samples contaminated with a quantifiable level of ergot alkaloids.

It was difficult to develop proper PLS models with such broad ranges and low con-
centrations. During the model construction stage, various attempts have been made to
ameliorate the frequency distribution of EA content, such as removing samples with
extremely high (e.g., >8000 ppb) or low (e.g., <10 µg/kg) concentrations of total or
individual EAs.

2.2. Overview of Spectral Data

The unprocessed IR spectra of wheat are shown in Figure 1. The peaks in the spec-
tra were mainly due to absorption due to the presence of moisture, protein, carbohy-
drates, and lipids. NIR spectroscopy deals with molecular combination bands and over-
tones primarily of OH, CH, NH, and CO vibrations [13]. The broad and complex bands
make it difficult to interpret the NIR spectrum visually and assign specific bands to spe-
cific chemical components. The MIR spectrum contains information related to funda-
mental molecular vibrations and could be divided into four major sections, including
the region of X-H stretching (4000–2500 cm−1), triple bond (2500–2000 cm−1), double
bond (2000–1500 cm−1), and the so-called “fingerprint” (1500–400 cm−1) [14]. In the
NIR region, the characteristic absorption bands of proteins are located between 2148 and
2200 nm, which are related to combinations of C-O stretching, C-N stretching, N-H in-plane
bending, the combination of C-H and C=O stretch, and the second N-H bend overtone [15].
Amide I (ca. 1700–1600 cm−1) and amide II (ca. 1480–1575 cm−1) bands were utilized for
characterizing the primary structures and investigating the relative richness of protein
molecules [10,16,17].

2.3. PLS Model Construction

The raw IR spectra usually contain undesirable noise and background variations,
which can reduce the performance of multivariate models. Spectral variations unrelated
to the chemical or physical properties of the samples can be removed by spectral pretreat-
ment [15,18]. Both individual preprocessing and the integration of different preprocessing
methods can be applied to reduce side information and multiple types of interference and
variations [10,19].
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Figure 1. Infrared spectra of cool-season wheat grain samples grown under low heat unit (cold)
climate conditions: (A) near-infrared range 680–2500 nm; (B) mid-infrared range 4000–700 cm−1.

Various pretreatments are available to researchers. For instance, non-uniform particle
sizes in samples could result in light scattering effects; MSC and SNV are commonly used
techniques to reduce such effects and adjust the baseline offsets. Resolution enhancement,
random noise reduction, and subtle band shape highlights can be achieved by performing
derivative algorithms. Detrending targets to adjust the curvilinearity and baseline shift of
samples in powder form or densely packed samples [15,19,20].

In another research, several pretreatments including detrending, first derivative, SNV,
SNV-Detrending, spectral-average, and baseline offset were used to preprocess the NIR
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spectra to develop PLS model for predicting endophyte alkaloids concentrations in dried
perennial ryegrass [10,21].

The irrelevant information contained in full spectra may distort the models calibrated
based on full wavelengths [19]. The redundancy and collinearity of the spectral data can be
reduced by selecting important wavelengths. RCA is an effective technique for detecting
important wavelengths [22]. Wavelengths with high absolute RC values are suggested as
important wavelengths for the specific models.

The RCA chart of PLS models established based on spectra preprocessed by SNV
for predicting total EAs concentrations is shown in Figure 2. Several conditions, such
as different pre-processing and different wavelengths (e.g., the fingerprint bands of the
MIR region, the classical NIR bands of 1000–2500 nm, and a variety of selected sensitive
wavelengths), were used for calibration to obtain acceptable PLS models.

2.4. Evaluation of PLS Models

Partial least squares regression is capable of reducing the data dimension and over-
coming the multicollinearity problem and has been suggested as an alternative technique
to ordinary least squares since the 1960s [10,23]. It is particularly powerful in developing
IR models because it could effectively remove irrelevant spectral variations [24,25]. Many
researchers have developed calibration models for predicting ergosterol, aflatoxin, fumon-
isin, ochratoxin A, and deoxynivalenol content in different cereals by the PLSR method or
its variants [11].

PCA was performed on both selected wavelength ranges and the full wavelength
ranges to explore the sample spectral structures [10]. Nevertheless, the biplots of PCA
analysis revealed that those wheat samples couldn’t be clustered clearly by EA concentra-
tion. The result of PCA analysis of the infrared spectra (pretreated by MSC) of samples
containing different total EA concentrations is shown in Figure 3. The significant differ-
ences in the spectra of samples might result from differences in major chemical constituents
among samples.
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Figure 2. Regression coefficients for PLS models to predict total EAs content in cool−season wheat
grain grown under low heat unit (cold) climate conditions constructed with SNV pretreated NIR (A)
and MIR (B) spectra.

The performance of multivariate models can be evaluated with a number of statistical
criteria. The coefficient of determination is a primary criterion that can indicate the good-
ness of fit [26]. Excellent models usually obtain a R2 greater than 0.91; the R2 of a good
prediction ranges from 0.82 to 0.90; models with an R2 value between 0.66 and 0.81 could
be used for approximate quantitative estimation; models with an R2 = 0.50–0.65 could only
make discrimination analyses between samples with high and low concentrations [27].

The statistical parameters of NIR and MIR models constructed for predicting individ-
ual EAs and total EA concentrations are listed in Table 2 (1–7). Most PLS models developed
in the present study obtained rather low R2

C values, and the R2
CV was unavailable (NA).

Although the R2
C values of some models were higher (e.g., the model for ergocornine

constructed with FD pretreated NIR spectra), their cross-validation statistics were very
poor, and none of them had external prediction capability (i.e., the R2

P was unavailable).
The results suggested that good calibration fit didn’t automatically produce desirable exter-
nal predictive ability. This was inconsistent with the findings in a previous study, which
reported that good fits to models during calibration do not infer the obtained model can
make satisfying external predictions [28].

The statistical parameters obtained during the calibration and validation stages
showed that the constructed models can’t be used for quantification or discrimination
of the EA content in wheat. When the models were developed using a variety of selected
wavelength ranges, no improvement was observed.

Roberts et al. (2005) [29] reported that the total EA concentrations in tall fescue can be
determined by NIR spectroscopy. In their study, the EAs content analyzed by commercial
ELISA test kits was calibrated with NIR spectra (1110–2490 nm) to create PLS models
(R2 = 0.77–0.95). However, it should be noted that the actual values of total EAs were
unavailable in their study, and the reference EA levels were replaced by the absorbance
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values since there was no standard for converting the relative content into actual EA
concentrations. Furthermore, no independent prediction result was reported.
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Lolitrem B, peramine, and ergovaline are common endophyte alkaloids found in
perennial ryegrass plants. The NIR models for detecting and quantifying endophyte
alkaloids in perennial ryegrass were constructed in a previous study [30]. The average
levels for ergovaline, lolitrem B, and peramine were 0.71, 1.32, and 7.16 mg/kg, respectively.
A modified PLS method was applied, and they obtained R2

CV values of 0.76, 0.41, and
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0.94 for ergovaline, lolitrem B, and peramine, respectively. Based on their results, the
concentration of peramine and ergovaline can be predicted by NIRS models, while the
models for lolitrem B achieved undesired results.

Table 2. 1. Parameters of partial-least square regression model using NIR and MIR techniques for
the determination of ergocornine content in wheat. 2 (Cont’d). Parameters of a partial-least square
regression model using NIR and MIR techniques for the determination of ergocristine content in wheat
1. 3 (Cont’d). Parameters of a partial-least square regression model using NIR and MIR techniques
for the determination of ergocryptine content in wheat 1. 4 (Cont’d). Parameters of a partial-
least square regression model using NIR and MIR techniques for the determination of ergometrine
content in wheat 1. 5 (Cont’d). Parameters of a partial-least square regression model using NIR
and MIR techniques for the determination of ergosine content in wheat 1. 6 (Cont’d). Parameters
of a partial-least square regression model using NIR and MIR techniques for the determination of
ergotamine content in cool-season wheat grain grown under low heat unit (cold) climate conditions 1.
7 (Cont’d). Parameters of a partial-least square regression model using NIR and MIR techniques for
the determination of total ergot alkaloids content in cool-season wheat grain grown under low heat
unit (cold) climate conditions 1.

1

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 24 12 1700–2500 nm 1 0.02 350.35 357.89 NA 368.48 376.40 − − −
MIR 24 12 1800–700 cm−1 1 0.24 310.82 317.51 NA 407.52 415.97 − − −

Baseline
offset NIR 24 12 680–2500 nm 1 0.05 344.90 352.32 NA 370.36 378.32 − − −

MIR 24 12 1800–700 cm−1 1 0.17 324.02 330.99 NA 391.14 399.35 − − −
Detrending NIR 24 12 680–2500 nm 1 0.05 344.95 352.37 NA 371.01 378.99 − − −

MIR 24 12 1800–700 cm−1 1 0.17 324.47 331.45 NA 398.61 407.06 − − −
MSC NIR 24 12 900–2000 nm 1 0.07 341.07 348.41 NA 391.96 400.39 − − −

MIR 24 12 4000–700 cm−1 1 0.12 334.22 341.41 NA 410.75 419.58 − − −
SNV NIR 24 12 1700–2500 nm 1 0.07 342.31 349.68 NA 381.52 389.72 − − −

MIR 24 12 4000–700 cm−1 1 0.12 334.14 341.33 NA 410.74 419.57 − − −
SNV-

Detrending NIR 24 12 1100–2500 nm 1 0.13 329.97 337.07 NA 399.26 407.80 − − −
MIR 24 12 3200–2700 cm−1 1 0.11 334.56 341.76 NA 415.97 424.91 − − −

FD NIR 24 12 1200–1900 nm 1 0.04 347.05 354.52 NA 369.31 377.25 − − −
MIR 24 12 2750–2950 cm−1 1 0.10 336.55 343.79 NA 372.15 380.15 − − −

SD NIR 24 12 680–2500 nm 4 0.92 100.16 102.31 0.12 345.48 352.30 NA 242.72 227.66
MIR 24 12 4000–700 cm−1 1 0.22 314.34 321.10 NA 383.78 392.03 − − −

FD-SNV NIR 24 12 680–2500 nm 7 0.91 106.34 108.63 0.26 305.70 310.74 NA 275.39 271.23
MIR 24 12 4000–700 cm−1 1 0.29 299.40 305.84 NA 422.64 431.73 − − −

SD-SNV NIR 24 12 680–2500 nm 3 0.74 181.33 185.23 0.14 341.38 348.60 NA 132.71 137.16
MIR 24 12 1800–700 cm−1 1 0.54 241.60 246.80 NA 408.13 416.85 − − −

2

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 24 12 1300–2500 nm 1 0.04 1641.10 1676.39 NA 1843.45 1883.06 − − −
MIR 24 12 1800–700 cm−1 1 0.10 1607.24 1641.80 NA 1799.57 1838.15 − − −

Baseline
offset NIR 24 12 1500–2500 nm 1 0.04 1641.90 1677.21 NA 1844.92 1884.47 − − −

MIR 24 12 4000–700 cm−1 1 0.08 1621.82 1656.70 0.02 1749.88 1787.52 NA 1619.79 1686.22
Detrending NIR 24 12 680–2500 nm 1 0.04 1644.06 1679.42 NA 1844.41 1883.88 − − −

MIR 24 12 1800–700 cm−1 1 0.11 1595.34 1629.65 0.05 1746.87 1784.41 NA 1652.37 1720.66
MSC NIR 24 12 1100–2300 nm 1 0.05 1636.33 1671.52 NA 1773.05 1811.18 − − −

MIR 24 12 1800–700 cm−1 1 0.14 1572.20 1606.01 NA 1824.91 1864.11 − − −
SNV NIR 24 12 1300–2200 nm 1 0.05 1636.02 1671.20 NA 1775.62 1813.81 − − −

MIR 24 12 1800–700 cm−1 1 0.14 1571.49 1605.29 NA 1825.58 1864.80 − − −
SNV-

Detrending NIR 24 12 1100–2500 nm 1 0.06 1627.35 1662.35 NA 1861.23 1901.21 − − −
MIR 24 12 1800–700 cm−1 1 0.15 1561.65 1595.24 NA 1838.60 1878.07 − − −

FD NIR 24 12 1250–2250 nm 1 0.05 1639.82 1675.09 NA 1880.07 1920.31 − − −
MIR 24 12 4000–700 cm−1 1 0.14 1571.35 1605.15 0.01 1759.46 1797.30 − − −

SD NIR 24 12 1900–2500 nm 5 0.99 173.13 176.85 0.14 1623.09 1657.99 NA 1868.90 1937.85
MIR 24 12 4000–700 cm−1 1 0.27 1447.99 1479.13 NA 1912.70 1953.59 − − −

FD-SNV NIR 24 12 680–2500 nm 1 0.09 1597.72 1632.09 NA 1857.61 1897.39 − − −
MIR 24 12 4000–700 cm−1 1 0.18 1534.38 1567.38 NA 1853.50 1892.76 − − −

SD-SNV NIR 24 12 1250–2500 nm 3 0.76 819.45 837.08 0.14 1610.93 1645.00 0.01 1547.16 1594.61
MIR 24 12 1800–700 cm−1 1 0.43 1281.08 1308.63 NA 2126.75 2165.27 − − −
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Table 2. Cont.

3

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 31 15 1200–2500 nm 1 0.03 364.82 368.85 NA 375.53 379.68 − − −
MIR 19 9 1800–700 cm−1 3 0.47 405.06 416.16 0.16 526.69 540.99 NA 691.37 545.08

Baseline
offset NIR 31 15 1500–2500 nm 1 0.07 347.99 353.74 0.02 373.01 379.18 − − −

MIR 19 9 1800–700 cm−1 1 0.35 448.32 460.60 0.12 533.11 547.52 NA 715.46 513.14
Detrending NIR 31 15 680–2500 nm 1 0.06 348.59 354.35 NA 372.53 378.69 − − −

MIR 19 9 1800–700 cm−1 3 0.45 411.93 423.21 0.13 546.94 561.49 NA 575.98 505.01
MSC NIR 31 15 1700–2500 nm 1 0.09 343.16 348.84 NA 384.04 390.39 − − −

MIR 19 9 1800–700 cm−1 3 0.49 398.18 409.09 0.20 521.37 535.26 NA 411.61 385.58
SNV NIR 31 15 1500–2400 nm 1 0.10 342.20 347.86 NA 389.46 395.89 − − −

MIR 19 9 1800–700 cm−1 3 0.49 397.94 408.85 0.20 521.76 535.58 NA 408.38 382.90
SNV-

Detrending NIR 31 15 900–2400 nm 1 0.12 337.72 343.31 NA 389.16 395.57 − − −
MIR 19 9 1800–700 cm−1 3 0.47 402.38 413.40 0.22 500.03 513.66 NA 398.99 355.25

FD NIR 31 15 1300–2000 nm 1 0.05 350.73 356.53 0.01 370.34 376.46 − − −
MIR 19 9 4000–700 cm−1 2 0.54 375.79 386.09 0.13 543.90 558.59 NA 491.24 295.8

SD NIR 31 15 1200–2500 nm 1 0.03 353.81 359.66 NA 369.32 375.43 − − −
MIR 19 9 4000–700 cm−1 1 0.39 434.47 446.37 0.13 531.07 545.61 NA 518.52 273.73

FD-SNV NIR 31 15 680–2500 nm 1 0.09 344.09 349.78 NA 376.95 383.18 − − −
MIR 19 9 4000–700 cm−1 2 0.59 355.49 365.23 0.21 515.21 528.67 NA 375.43 228.24

SD-SNV NIR 31 15 680–2500 nm 1 0.03 354.04 359.89 NA 370.82 376.95 − − −
MIR 19 9 1800–700 cm−1 1 0.59 356.40 366.16 0.17 512.05 525.75 NA 488.11 313.50

4

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 26 12 1100–2500 nm 1 0.04 436.89 445.54 NA 469.46 478.72 − − −
MIR 30 14 1800–700 cm−1 1 0.01 417.36 424.50 NA 459.18 467.02 − − −

Baseline
offset NIR 26 12 1400–2500 nm 1 0.06 432.42 440.98 NA 467.49 476.71 − − −

MIR 30 14 1800–700 cm−1 1 0.01 418.89 426.05 NA 447.97 455.58 − − −
Detrending NIR 26 12 1300–2000 nm 1 0.06 431.64 440.19 NA 465.80 474.99 − − −

MIR 30 14 1800–700 cm−1 1 0.01 418.27 425.42 NA 452.58 460.30 − − −
MSC NIR 26 12 680–2500 nm 1 0.05 434.55 443.16 NA 500.46 510.07 − − −

MIR 30 14 1800–700 cm−1 1 0.03 414.18 421.26 NA 466.45 474.42 − − −
SNV NIR 26 12 680–2500 nm 1 0.05 434.58 443.19 NA 500.79 510.40 − − −

MIR 30 14 1800–700 cm−1 1 0.03 414.27 421.35 NA 466.12 474.09 − − −
SNV-

Detrending NIR 26 12 1700–2400 nm 1 0.03 437.83 446.50 NA 476.78 486.22 − − −
MIR 30 14 4000–700 cm−1 1 0.04 412.21 419.26 NA 475.95 484.05 − − −

FD NIR 26 12 1200–2000 nm 1 0.07 430.40 438.93 NA 467.05 476.27 − − −
MIR 30 14 1800–700 cm−1 1 0.02 414.83 421.92 NA 464.67 472.49 − − −

SD NIR 26 12 680–2500 nm 1 0.01 442.32 451.08 NA 465.11 474.32 − − −
MIR 30 14 1800–700 cm−1 1 0.18 379.45 385.94 NA 501.11 509.60 − − −

FD-SNV NIR 26 12 1200–2300 nm 1 0.02 440.11 448.83 NA 467.84 477.11 − − −
MIR 30 14 4000–700 cm−1 1 0.12 392.88 399.60 NA 502.98 511.57 − − −

SD-SNV NIR 26 12 680–2500 nm 2 0.62 275.62 281.08 0.16 415.20 423.08 NA 433.66 373.51
MIR 30 14 4000–700 cm−1 1 0.34 341.98 347.82 NA 508.91 517.61 − − −

5

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 22 10 680–2500 nm 1 0.06 163.99 167.85 NA 175.88 180.02 − − −
MIR 24 10 4000–700 cm−1 1 0.06 157.93 161.32 NA 179.19 183.05 − − −

Baseline
offset NIR 22 10 680–1900 nm 1 0.08 162.35 166.17 0.02 175.07 179.18 − − −

MIR 24 10 1800–700 cm−1 1 0.08 156.78 160.15 NA 175.78 179.56 − − −
Detrending NIR 22 10 680–2500 nm 1 0.07 163.14 166.98 NA 175.01 179.13 − − −

MIR 24 10 1800–700 cm−1 1 0.05 158.79 162.21 NA 180.67 184.55 − − −
MSC NIR 22 10 1400–2500 nm 1 0.06 164.21 168.07 NA 180.45 184.69 − − −

MIR 24 10 1800–700 cm−1 1 0.04 160.23 163.68 NA 181.76 185.65 − − −
SNV NIR 22 10 1800–2500 nm 1 0.06 163.72 167.58 NA 178.17 182.36 − − −

MIR 24 10 4000–700 cm−1 1 0.04 160.23 163.68 NA 183.52 187.46 − − −
SNV-

Detrending NIR 22 10 1100–2500 nm 1 0.09 161.30 165.10 NA 179.45 183.67 − − −
MIR 24 10 4000–700 cm−1 1 0.04 159.64 163.07 NA 184.87 188.83 − − −

FD NIR 22 10 1250–2050 nm 1 0.07 163.42 167.26 NA 175.38 179.51 − − −
MIR 24 10 1800–700 cm−1 1 0.05 158.89 162.31 NA 184.74 188.67 − − −

SD NIR 22 10 1300–2500 nm 1 0.06 164.25 168.12 NA 175.34 179.46 − − −
MIR 24 10 1800–700 cm−1 1 0.21 145.42 148.55 NA 183.62 187.16 − − −
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Table 2. Cont.

5

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

FD-SNV NIR 22 10 1200–2500 nm 1 0.06 163.68 167.54 NA 176.69 180.83 − − −
MIR 24 10 4000–700 cm−1 1 0.17 148.01 151.19 NA 201.63 205.69 − − −

SD-SNV NIR 22 10 680–2500 nm 3 0.79 77.66 79.49 0.22 151.28 154.78 NA 83.43 87.43
MIR 24 10 4000–700 cm−1 1 0.43 123.63 126.29 NA 194.15 198.31 − − −

6

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 28 13 680–2500 nm 1 0.02 915.72 932.52 NA 968.47 986.24 − − −
MIR 19 9 1800–700 cm−1 1 0.09 991.25 1018.41 NA 1065.90 1095.09 − − −

Baseline
offset NIR 28 13 1400–2500 nm 1 0.03 913.28 930.03 NA 965.59 983.31 − − −

MIR 19 9 4000–700 cm−1 1 0.07 1003.22 1030.71 NA 1079.52 1109.10 − − −
Detrending NIR 28 13 1200–2200 nm 1 0.02 914.50 931.28 NA 964.52 982.22 − − −

MIR 19 9 1800–700 cm−1 1 0.08 997.38 1024.71 0.05 1069.46 1098.76 − − −
MSC NIR 28 13 1800–2400 nm 1 0.02 916.84 933.67 NA 970.83 988.63 − − −

MIR 19 9 4000–700 cm−1 1 0.10 990.34 1017.48 NA 1086.01 1115.71 − − −
SNV NIR 28 13 1200–2500 nm 1 0.02 917.60 934.43 NA 978.06 996.00 − − −

MIR 19 9 4000–700 cm−1 1 0.10 989.93 1017.05 0.02 1085.99 1115.69 − − −
SNV-

Detrending NIR 28 13 680–2500 nm 1 0.02 914.15 930.92 NA 964.86 982.57 − − −
MIR 19 9 4000–700 cm−1 1 0.10 985.34 1012.34 0.02 1088.02 1117.68 − − −

FD NIR 28 13 680–2500 nm 1 0.03 913.61 930.18 NA 964.4 982.09 − − −
MIR 19 9 1800–700 cm−1 1 0.09 991.35 1018.52 NA 1075.01 1104.45 − − −

SD NIR 28 13 680–2500 nm 1 0.02 914.46 931.24 NA 967.61 985.36 − − −
MIR 19 9 1800–700 cm−1 1 0.37 829.33 852.05 NA 1122.04 1152.23 − − −

FD-SNV NIR 28 13 1200–2400 nm 1 0.02 914.74 931.52 NA 970.03 987.77 − − −
MIR 19 9 4000–700 cm−1 1 0.15 961.67 987.67 NA 1134.22 1164.78 − − −

SD-SNV NIR 28 13 1200–2500 nm 1 0.02 914.79 931.58 NA 967.85 985.60 − − −
MIR 19 9 1800–700 cm−1 1 0.41 796.51 818.34 NA 1180.58 1210.74 − − −

7

Calibration Cross-Validation External Prediction

Pretreatment Technique NC NP
Wavelength

Range Factor R2
C RMSEC SEC R2

CV RMSECV SECV R2
P RMSEP SEP

NON NIR 32 15 1500–2500 nm 1 0.01 2178.57 2213.43 NA 2377.60 2415.63 − − −
MIR 32 16 1800–700 cm−1 1 0.09 1422.66 1445.42 NA 1731.73 1758.91 − − −

Baseline
offset NIR 32 15 1400–2500 nm 1 0.02 2169.78 2204.50 NA 2359.29 2397.03 − − −

MIR 32 16 1800–700 cm−1 1 0.01 1484.59 1508.35 NA 1563.29 1588.30 − − −
Detrending NIR 32 15 680–2500 nm 1 0.02 2174.16 2208.95 NA 2360.68 2398.44 − − −

MIR 32 16 1800–700 cm−1 1 0.02 1476.51 1500.13 NA 1653.27 1679.72 − − −
MSC NIR 32 15 1000–2400 nm 1 0.05 2142.26 2176.53 NA 2276.78 2313.21 − − −

MIR 32 16 1800–700 cm−1 1 0.04 1466.07 1489.52 NA 1798.71 1827.05 − − −
SNV NIR 32 15 1000–2500 nm 1 0.05 2142.06 2176.34 NA 2271.13 2307.42 − − −

MIR 32 16 1800–700 cm−1 1 0.04 1463.25 1486.66 NA 1797.76 1825.54 − − −
SNV-

Detrending NIR 32 15 1200–2400 nm 1 0.07 2114.08 2147.91 NA 2398.58 2436.79 − − −
MIR 32 16 1800–700 cm−1 1 0.06 1449.47 1472.66 NA 1871.50 1901.40 − − −

FD NIR 32 15 1000–2300 nm 1 0.02 2174.77 2209.56 NA 2380.40 2418.48 − − −
MIR 32 16 4000–700 cm−1 1 0.09 1423.08 1445.85 NA 1795.95 1823.84 − − −

SD NIR 32 15 680–2500 nm 1 0.01 2188.35 2223.37 NA 2373.48 2411.46 − − −
MIR 32 16 1800–700 cm−1 1 0.39 1163.46 1182.07 NA 1978.47 2006.52 − − −

FD-SNV NIR 32 15 1000–2000 nm 1 0.06 2126.02 2160.04 NA 2367.78 2405.55 − − −
MIR 32 16 1800–700 cm−1 1 0.25 1298.58 1319.36 NA 1932.25 1961.22 − − −

SD-SNV NIR 32 15 1200–2500 nm 5 0.96 427.97 434.82 0.14 2099.56 2131.14 0.22 1585.45 1582.25
MIR 32 16 1800–700 cm−1 1 0.28 1268.08 1288.37 NA 1797.17 1825.61 − − −

1 Abbreviation: NC, sample count of calibration set; Np, sample count of prediction set; R2
C, coefficient of

determination for calibration; RMSEC, root mean square error of calibration (%); SEC, standard error of cal-
ibration (%); R2

CV, coefficient of determination for cross-validation (%); RMSECV, root mean square error of
cross-validation (%); SECV, standard error of cross-validation (%); R2

P, coefficient of determination for prediction
(%); RMSEP, root mean square error of prediction (%); SEP, standard error of prediction (%); MSC, multiplica-
tive scattering correction; SNV, standard normal variate; SNV-Detrending, SNV + detrending; FD-SNV, first
derivative + SNV; SD-SNV, second derivative + SNV.

In another study, the NIR hyperspectral imaging system was used to develop models
for predicting ergot bodies in wheat [4]. They employed multivariate image analysis, PLS
discriminant analysis, and support vector machine techniques to construct models. No
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false positives were observed with non-contaminated samples, and the LOD and LOQ
were 145 mg/kg and 341 mg/kg, respectively. The greater ergot body concentration in
those samples may facilitate the calibration process, although it should be noted that the
EA type and levels in the ergot body can vary greatly. In another study, they reported
that the discrimination models between ergot bodies and cereal kernels were constructed
depending mainly on the differences in fat and starch levels of the grains [2]. Cereal kernels
contain a high level of starch and a low level of fat, while ergot bodies are characterized by
a high lipid content.

Based on the previous studies, the concentrations of EAs in the majority of samples
might be too low for developing a proper NIR or MIR model. Moreover, the difference in
IR absorbance bands between fungal-infected grains and healthy grains mainly reflects the
changes in major chemical constituents such as carbohydrate, protein, etc. Many calibration
studies indicated that the prediction of mycotoxin levels was not based on the toxin directly
but rather relied on the spectral changes related to major chemical components [10,11].

The EA concentration in grains could be too low for direct determination by conven-
tional NIR and MIR methods. Besides, the chemical profiles of ergot bodies may be different
from those of normal grains, and the uneven distribution of ergot particles in grains could
make it more difficult to obtain appropriate spectra for calibration and prediction.

3. Conclusions

The possibility of using NIR and ATR-FT/MIR techniques associated with various
spectra preprocessing methods and wavelength ranges for the quantification of EAs in cool-
season wheat was evaluated. During the calibration process, numerous spectral regions
of both raw and preprocessed spectra were selected and calibrated, but the validation
parameters of all PLS models were undesirable, and no model could be used to perform
independent prediction. The EA content in most samples was rather low, which may be
below the detectable limit of the employed IR spectroscopy. The frequency distribution
of the EAs’ concentration was undesirable, which made the calibration more difficult.
More research is needed in the future to explore the direct detection limit of the infrared
spectroscopic methods for predicting EA concentrations in different grains.

4. Materials and Methods
4.1. Sample Preparation and LC-MS/MS Analysis

A total of 107 wheat samples grown in Western Canada were collected from May 2016
to August 2017. The determination of six major EAs was conducted at Prairie Diagnostic
Services (PDS) by using the LC-MS/MS approach developed by Krska et al. (2008). Reagent
EA standards were supplied by Romer Labs (Union, MO, USA). Primary-secondary amines
were supplied by Agilent Technologies (Palo Alto, CA, USA) and employed as materials
for dispersive solid-phase extraction. Acetonitrile and ammonium acetate were purchased
from Fisher Scientific (Fair Lawn, NJ, USA). The standards for EAs were dissolved in
acetonitrile and stored in a freezer (−80 ◦C).

A grinder with a 1.0 mm screen was used for grinding the samples. 5.0 g of the ground
samples were weighed into an Erlenmeyer flask (125 mL). Twenty-five mL of 85:15 (v/v)
acetonitrile/3.03 mM aqueous ammonium carbonate were added to the samples and stirred
for 10 min. The supernatant was filtered into a clean beaker through Whatman No. 41
(ashless) filter paper. The filtrate (1 mL) was added to 50 mg of primary-secondary amine
and agitated for 5 min to clean the matrix. The supernatant was used for EAs analysis.

The LC-MS/MS system was composed of an Agilent 1100 HPLC system and a Micro-
mass Quattro UltimaTM mass spectrometer (Waters, Milford, MA, USA). Multiple reaction
monitoring was applied to identify the “parent” ions (first quadropole) and the “daughter”
ions (second quadropole). The software used for data collection, processing, and curve
construction was MassLynx 4.1 (Waters Corp., Milford, MA, USA). The standard curves
were fitted to linear regression (y = ax + b), where x and y correspond to the alkaloids’
content and peak area, respectively. The recovery rates for ergometrine, ergometrine,
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ergocryptine, ergocornine, ergocristine, and ergosine were 51, 101, 81, 87, 75, and 82%,
respectively. The limit of quantification was 1.25 µg/kg and the detection limit was
0.5 µg/kg. The concentration of total EAs is the sum of the six major EA concentrations.
The detailed procedures and validation parameters of the methods could be found in
another study [10,21].

4.2. NIR and MIR Spectra Collection

The Unity SpectraStar 2500XL-R NIR analyzer (Unity Scientific, Brookfield, CT, USA)
was applied to obtain the NIR spectra in the reflectance mode from 680 nm to 2500 nm at
an interval of 1 nm. The cool-season wheat samples were placed on the rotary sample-cup
spinner. The NIR spectra (*.SPC format) were recorded with the built-in software (InfoStar,
Unity Scientific, USA). The collection of MIR spectra (ca. 4000–700 cm−1) was carried out
with the Jasco FT/IR-4200 spectrometer in attenuated total reflectance mode (JASCO Corp.,
Tokyo, Japan). To eliminate noise arising from water and carbon dioxide, the background
spectra were recorded. The generated MIR spectra (in JWS format) were transformed
to JCAMP-DX files by the JASCO Spectra Manager II software. For each sample, three
replicate spectra were taken, and they were averaged prior to chemometric modeling. More
detailed information regarding the spectra collection has been summarized in another
study [9,10].

4.3. Chemometric Analysis

The Unscrambler® X software (version 10.4, CAMO Software, Oslo, Norway) was
applied to preprocess spectral data and perform the multivariate analysis.

Nine types of pretreatments were used to transform the raw spectra, including base-
line offset, first and second order derivatives (FD and SD), the standard normal variate
(SNV), multiplicative scattering correction (MSC), detrending, FD-SNV, SD-SNV, and
SNV-detrending.

The spectral data structure and the potential outliers were explored by principal
component analysis (PCA). Samples without outliers were classified into calibration and
independent prediction sets in an approximate ratio of 3:1. Both the raw spectral data and
the preprocessed spectral data were used to construct calibration models. The calibration
models were developed based on calibration sets using the PLS algorithm. To investigate
the important wavelength/wavenumber ranges, the regression coefficient analysis (RCA)
was carried out using the Unscrambler software. Recalibrations were conducted using the
selected sensitive wavelengths to optimize the predictive ability of the original models that
were generated based on full wavelengths. Moreover, F-residuals and/or Hotelling’s T2

values were used for detecting the remaining outliers during regression stages. A leave-
one-out cross-validation was performed to validate the established models. Furthermore,
calibration models that obtained valid cross-validation parameters were applied to the
individual prediction subsets to evaluate their potential for external prediction. More
information regarding the modeling process is also available in another study [9,10].

To evaluate the PLS models, calibration statistics were calculated, including the coef-
ficients of determination in calibration (R2

C) and cross-validation (R2
CV). The minimum

values of root mean square error of calibration (RMSEC) and cross-validation (RMSECV)
were used to select the best PLSR model [31]. The prediction determination coefficient
(R2

P), calibration root mean square error (RMSEP), and prediction standard error (SEP)
were summarized for evaluating the prediction performance of the calibration models [10].
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Abbreviations

General:

ATR-FT/MIR
attenuated total reflectance-Fourier transform mid-infrared
spectroscopy

CP crude protein
EAs ergot alkaloids
IR infrared
MIR mid-infrared
NIR near-infrared
PCA principal component analysis
PLS partial least square
RC Regression coefficient
RCA Regression coefficient analysis
Spectral Pretreatment Technique:
FD first derivative
SNV standard normal variate
FD-SNV first derivative + SNV
MSC multiplicative scattering correction
SNV-Detrending SNV + detrending
SD-SNV second derivative + SNV
SNV-SD SNV + first derivative
Evaluate the models:
R2C determination for calibration
R2CV coefficient of determination for cross-validation
R2P coefficient of determination for prediction
SEC standard error of calibration
SECV standard error of cross-validation
SEP standard error of prediction
RMSEC root mean square error of calibration
RMSECV root mean square error of cross-validation
RMSEP root mean square error of prediction
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