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Abstract: Aflatoxin B1 (AFB1) is one of the most toxic and harmful fungal toxins to humans and
animals, and the fundamental way to prevent its entry into humans is to detect its presence in
advance. In this paper, the monoclonal antibody mAbA2-2 was obtained via three-step sample ampli-
fication and multi-concentration standard detection using a subcloning method based on the limited
dilution method with AFB1 as the target. A dynamic and pseucdo-homogeneous magnetic beads
enzyme-linked immunosorbent assay (MBs-icELISA) was established using the prepared antibody
as the recognition element and immunomagnetic beads as the antigen carrier. The MBs-icELISA
showed good linear correlation in the concentration range of 0.004–10 ng/mL with R2 = 0.99396.
The limit of detection (LOD) of the MBs-icELISA for AFB1 was 0.0013 ng/mL. This new ELISA
strategy significantly shortened AFB1 detection time through improved sensitivity compared to the
conventional ELISA method.

Keywords: aflatoxin B1; monoclonal antibody; magnetic nanobeads; enzyme-linked immunosorbent assay

Key Contribution: Positive cell lines were screened using a three-step sample amplification strategy
combined with multi-concentration standard tests. When using immunomagnetic beads as antigen
carrier, the reaction system is in a dynamic and homogeneous state, the binding efficiency is higher,
and the effect of enrichment can be achieved.

1. Introduction

Agricultural products are highly susceptible to fungal infections during processing,
storage, and transportation, and toxins are highly harmful to humans [1,2]. The most
common fungal toxins in agricultural products are aflatoxins (AFs), ochratoxins (OTA),
vomitoxins (DON), zearalenone (ZEN), and T-2 toxins [3,4]. Among them, AFs are the
most toxic and have strong carcinogenic, mutagenic, teratogenic and immunosuppressive
properties [5]. More than 20 aflatoxin derivatives have been identified, four of which are
produced under natural conditions, namely AFB1, AFB2, AFG1, and AFG2 [6,7]. AFB1 is
the most prominent representative toxin in AFs and one of the genotoxic carcinogens [8].
It was classified as a Class I carcinogen by the World Health Organization Agency for
Research on Cancer in 1993 [9–11]. In the molecular structure of AFB1, dihydrofuran is the
basic toxin structure and oxanaphthone is the main structure causing carcinogenesis [12].
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Early detection of aflatoxin contamination in food is one of the most fundamental ways to
prevent aflatoxin from entering humans [13].

There are multiple quantitative methods for detection of AFs, the most authoritative
being chromatographic (mass spectrometry–liquid chromatography, thin-layer chromatog-
raphy) and biochemical methods [14–16]. However, these methods require extensive,
specialized and expensive instruments, are cumbersome, and require preconcentration
during the sample processing stage. With the development of biotechnology, biosensors
using antibodies and aptamers as recognition elements are also rapidly developing [17,18].
Compared with aptamers, antibodies have superior specificity and affinity. Immunoas-
say techniques that focus on antigen-antibody-specific recognition, such as ELISA [19],
chromatographic immunoassay [20–22], colorimetric immunoassay [23], electrochemilumi-
nescence immunoassay [24], and fluorescence immunoassay [25], have been significantly
investigated. Immunoassay techniques can be divided into heterogeneous and homoge-
neous immunoassays according to the state of matter [26]. Homogeneous immunoassays
are performed in solution and require very few samples to be tested after a simple pretreat-
ment, which can be applied to the detection of samples with more complex composition [27].
The most widely used immunoassay method is ELISA. Traditional ELISA is time consum-
ing, requiring at least 5 h for a single assay, and a heterogeneous immunoassay confines
the reaction surface to the bottom of the enzyme-labeling plate [28,29]. Zhang et al. [30]
established an MBs-based direct competition ELISA based on the competition between
free AFB1 and AFB1-CMO-HRP for MBs-mAbs binding sites by immobilizing mAb on
magnetic beads (MBs) to improve the sensitivity of enzyme immunoassays. Li et al. [31]
used magnetic nanochains instead of microplates as stationary phases to immobilize mAb
while acting as stirring bars to facilitate liquid mixing and mass transfer, and AuNPs
were used to coimmobilize HRP and detect antibodies. An ELISA with magnetic beads
as the stationary phase kept the reaction system in a homogeneous state and improved
the binding rate, which shortened the experimental time and saved reagents, as well as
detection efficiency [32].

The quality of the antibody directly determines the sensitivity of the sensor, and the
prerequisite for obtaining monoclonal antibodies is screening out high-quality positive
hybridoma cells. Current positive hybridoma cell screening methods at the laboratory stage
include the membrane immunoglobulin directed hybridoma screening and cloning (MIHS)
method [33], cell surface fluorescence immunosorbent assay (CS-FIA) [34], and limited
dilution method subcloning [35]. The membrane immunoglobulin directed hybridoma
screening and cloning method (MIHS) and cell surface fluorescence immunosorbent assay
(CS-FIA) either use flow cytometry for cell–cell separation or fluorescent materials for
cell labeling, which are inevitably affected by the physical effects of flow cytometry and
the chemical effects of fluorescent materials [36–39]. The traditional method of antibody
preparation is to select cells in the wells of cell culture plates based on the amount of
antibody in the supernatant of the cell culture medium, and to complete the purification
and screening of positive hybridoma cells by selecting cells with good antibody quality
from the wells for cloning through restriction dilution [40,41]. However, the traditional
restriction dilution method has a long screening cycle, is costly, and high-quality positive
hybridoma cells are easily covered and lost. The screening step can be accelerated by
improving the medium required for cell growth, which is a growth environment and a
source of nutrients. Zhang et al. [42] used the reported “novel two-step screening method”
to screen AFB1 hybridoma cells. Yang et al. [43] used alternating liquid medium–semi-
solid medium screening method to obtain capsaicin-like substance hybridoma cell lines.
These studies established a screening method that accelerates the cell screening cycle by
improving the cell culture medium approach based on the traditional cell screening method.

This study used the class distribution function vertex subcloning method combined
with three-step sample amplification and multi-concentration standard assay screening to
obtain AFB1 monoclonal antibodies for constructing a dynamic homogeneous immuno-
magnetic bead analysis method. In the cell detection after fusion, we found that the cell
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pore detection data distribution was similar to the distribution function, and the cell pore
near the distribution function point is the better cell pore. Selecting these cells for sub-
cloning, we defined this sub-cloning method as the class distribution function fixed-point
sub-cloning method. Cellular pores at the apex of the class distribution function had
the highest sensitivity to AFB1, and were selected for subcloning. Firstly, the cells were
domesticated by reducing their concentration of AFB1. Secondly, the cells screened by
a single standard were amplified with antibody samples after multiple subcloning and
detected sequentially using multiple gradient concentration standards. Finally, the cells
with reasonable specificity, affinity and stability of the secreted antibody were selected
for antibody preparation. In this experiment, the MBs-icELISA was constructed using the
prepared antibodies (mAbA2-2) as recognition primitives. The use of immunomagnetic
beads expands the reaction vector from the bottom surface of a plate to the spherical surface
of an infinite number of beads, significantly increasing the specific surface area of the vector,
while the applied conditions keep the reaction system in a dynamic homogeneous process.
Using immunomagnetic beads and additional conditions improves the binding rate and
sensitivity of the assay.

2. Results
2.1. Screening and Characterization of Monoclonal Antibodies
2.1.1. Effect of Immunization in Mice

The serum indirect ELISA test data of mice after different immune time are shown in
Figure 1. The B0 value was the absorbance value detected at 450 nm for the reaction solution
without AFB1 for indirect ELISA detection, the B value was the absorbance value detected
at 450 nm for the reaction solution with AFB1 for indirect ELISA detection, and the B/B0
value is the absorbance ratio with and without AFB1. As the number of immunizations
increased, the mouse spleen cells became more mature. In the early stages of immunization,
the immune system of mice produced IgM antibodies with a high splicing value but a
short half-life. Therefore, in the early stages of immunization, the potency of the mouse
serum assay was higher. Membrane-bound monomeric IgM (mIgM) antibodies were the
hallmark of immature B cells. With repeated immunizations, the mouse immune system
responded again by secreting IgG-type antibodies with a longer half-life, and the serum
potency (Figure 1a) and specificity of the mice to the target object (Figure 1b–f) were also
improved. After repeated immunizations, the spleen cells of mice matured to form large
numbers of B cells. Immature B cells express only mIgM, while mature B cells may express
both mIgM and mIgD, and were referred to as initial B cells. In the serum test after the
last immunization, the titers of the mice were all above 16,000 (Figure 1a), among which
the potency of B56 and B57 were 32,000, and of B59 and B57 were 16,000. Serum titers
met the requirements of cell fusion. B56 and B57 mice had already reached 32,000 by the
sixth immunization, but combined with the trend of previous serum potency changes,
B56 mice were more in line with the trend of antibody potency changes. Their IC50 in
the competition test was also pretty good. Their IC50 levels in the competition test were
also positive, ranging from 0.2–0.35 ng/mL in the sera of all mice examined, as shown in
Figure 1f. The inhibition curve of mouse B57 did not visually show a promising trend of
inhibition in previous immunizations. The final ranking of the immunization effect of this
mouse was B59, B56, B58, B57.
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Figure 1. Serum detection data of mice after different times of immunization. (a) Determination of
serum titers in mice with different immune times. (b–f) Specific detection data of ABF1 in serum
from mice immunized from the second to the sixth time.

2.1.2. Hybridoma Cell Subclones

In this experiment, three mice were used for cell fusion three times, and three different
cell supernatant detection strategies are, respectively adopted; the results are shown in
Figures 2–4. A mouse that was well immunized in the laboratory was taken for cell fusion,
named AFB1-0519, and the supernatant was detected when the cells in the subclonal cell
hole grew to 1/6 of the cell hole, as shown in Figure 2. After the end of immunization, B59
and B56 mice were selected for cell fusion. If there were multiple cell lines in the cell wells,
the undesirable cells grew faster than the desired cells, which overwhelmed the desired
cells. Therefore, in the process for screening B59 mouse fused cells, the supernatant assay is
performed when the cells grew to a population of approximately 1000, as shown in Figure 3.
However, as the cells grew, the environment in the cell culture medium varied between
the early and late stages of cell growth. Therefore, during the B56 cell screening process,
the cell supernatant was assayed after two days of culture, following a single cell culture
medium change when the cell population reached approximately 500, as shown in Figure 4.

Observing the cell assay plots of the three fusions (Figures 2–4), we observed the
number of cell pores with B0 > 0.6 and 1-B/B0 > 0.3, gradually increasing from AFB1-0519
to B59 to B56 as a whole. Observing the data plots, it could be seen that the cell pore
distribution in the supernatant assay was somewhat similar to the distribution function;
furthermore, the affinity and specificity of the cell pores near their vertices were higher.
As shown in Figure 2, AFB1-0519 fusion cells were tested three times for supernatant
assay and thirteen times for subcloning of the original cell plate. The positive rate of the
subcloned plate gradually increased with the subcloning until the sixth subclonal assay
reached the highest, after which the positive rate fluctuated up and down. As shown in
Figure 3, the first positive rate of the fused protoplasts of B59 mice was 99.99%. However,
the positive rate dropped sharply as the subcloning proceeded and kept fluctuating up
and down, causing the loss of the positive cell line after the sixth subcloning. As shown in
Figure 4, the original cell plate of B56 mice underwent three supernatant assay tests and
thirteen subcloning assays after cell fusion. With the subcloning, the highest positive rate
was reached after the seventh, eighth and ninth subcloning assays, but the positive rate
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decreased after the tenth subcloning. Combined with the fact that the two previous cell
fusions with cloning had not been showing more than 90% inhibition of the subclonal plate,
supernatants with different data were collected for competitive and non-competitive ELISA
assays after the tenth subclonal assay. Cell supernatants were collected and tested using
a non-competitive and indirectly competitive ELISA. The results are shown in Figure 5,
where 1 and 2 are supernatants of cell wells with B0 > 0.6 and 1-B/B0 > 0.3 in the 96-well
supernatant assay, and 3 and 4 are supernatants of cell wells with B0 > 1 and 1-B/B0 < 0.3 in
the 96-well supernatant assay. The results showed that antibodies with high specificity and
affinity for AFB1 were present in the supernatants of cell wells 1–4. The detection at a single
standard concentration and without dilution of the supernatant may be due to the excessive
number of antibodies in their supernatants. From the subclonal assay data, it was found
that there is a disadvantage in choosing a single concentration standard to assay the cell
supernatant. Selecting cells via direct assay without titration of the supernatant can mean
some cells with good data are overlooked. Therefore, after the tenth, eleventh and twelfth
subcloning, cell wells with B0 > 1.5 and in good condition were selected for screening cell
lines using a three-step sample amplification and a multi-concentration standard assay.
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2.1.3. Selection of Positive Cell Lines and Purification of Antibodies

In the tenth to twelfth subclones of B56 mouse fusion cells 21, 30 and 20 cell lines were
selected for expansion into 24-well cell plate culture, respectively. After two amplification
and experimental screenings, four cell lines were identified. ELISA detection results of
14 cell lines are shown in Figure 6 and Table 1. All cell lines except AFB1-B56-0519D5
showed good sensitivity. Comparing the IC50 values and the magnitude of B0 values of the
four cell lines, the final selection was AFB1-B56-0519A2 for antibody preparation.
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Table 1. Summary of each index of culture bottle supernatant assay.

Cell Line Titer B0 IC50 (ng/mL)

AFB1-B56-0519A2 1/16 1.35930 0.14082
AFB1-B56-0519A3 1/32 1.28840 0.19655
AFB1-B56-0519A4 1/32 1.26475 0.49911
AFB1-B56-0519B1 1/24 1.20910 0.14153
AFB1-B56-0519B6 1/32 1.37770 0.29642
AFB1-B56-0519D3 1/32 1.39465 0.38429
AFB1-B56-0519D5 1/32 1.60165 47,895.84380
AFB1-B56-0602C1 1/128 0.72990 0.15767
AFB1-B56-0602C6 1/192 1.26010 0.50066
AFB1-B56-0602D6 1/ 64 1.37515 0.35058
AFB1-B56-0602A6′ 1/512 1.03005 0.23179
AFB1-B56-0618A4 1/96 1.22790 0.16639
AFB1-B56-0618B1 1/512 1.08835 0.18250
AFB1-B56-0618B5 1/64 1.02876 0.24678

AFB1-B56-0519A2 cells were expanded and cultured, and cell suspension cells were
injected into the abdominal cavity of mice previously injected with an incomplete Fredrick
adjuvant to produce ascites purification antibodies. The test results of ascites of different
mice and the antibody test results after purification using the ammonium capylate method
are shown in Figure 7. The testing and recognition of ascites are shown in Figure 7a. The
test results of different ascites consistently showed good stability. The purified antibody
was named mAbA2-2, and the detection results are shown in Figure 7b. As shown in
Table 2, the specific detection of mAbA2-2 showed that the antibody had good specificity
against AFB1. An antibody typing kit was used to detect purified antibodies, which were
mainly IgA, IgM and IgG1. The antibodies were analyzed via SDS-polyacrylamide gel
electrophoresis, and two distinct bands were found.
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Table 2. Data on the specificity of mAbs for different toxins.

Toxin IC50 CR%

AFB1 0.13522 100
AFB2 >2 <6.8
AFM1 >2 <6.8
AFM2 0.47521 28.5
AFG1 >2 <6.8
AFG2 1.0609 12.75

T-2 >2 <6.8
ZEN >2 <6.81
DON 1.17463 11.52
OTA >2 <6.8
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2.2. Construction of MBs-icELISA
2.2.1. Mechanism Explanation of MBs-icELISA

While the conventional ELISA is implemented on an enzyme labeling plate, the MBs-
icELISA changes the carrier to immunomagnetic beads, as shown in Figure 8. Figure 8a
shows the fixation of antigens by magnetic beads via carboxyl groups. MBs-icELISA was
accomplished with immunomagnetic beads as a carrier, combined with AFB1-BSA to form
MBs-AFB1-BSA for subsequent capture (Figure 8b). The well-dispersed MBs-AFB1-BSA
in MBs-ELISA acts as a stirrer to keep the solution in a homogeneous state both in the
presence of a magnetic field and in the mixed state. The construction of MBs -icELISA was
divided into four main parts. First, MBs-AFB1-BSA competes with AFB1 and targets mAb
to form MBs-AFB1-BSA-mAbA2-2. Secondly, after magnetic separation, IgG-HRP was
further identified with MBs-AFB1-BSA-mAbA2-2 to form a sandwich immune complex:
MBs-AFB1-BSA-mAbA2-2-IgG-HRP. In the third step, the immune complex was separated
and washed three times, and TMB color-developing substrate was added. After color
development was completed using HRP, sulfuric acid was terminated, and finally a yellow
reaction liquid was obtained. The absorbance of the reaction product of the terminated
color-developing solution was determined at 450 nm and defined as OD450.
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nism of MBs-AFB1-BSA detection of aflatoxins, using the different absorbance of the reaction solution
at 450 nm for quantitative analysis.

2.2.2. Optimization of MBs-AFB1-BSA Coupling

MBs-AFB1-BSA, as a substrate, affected the sensitivity of the detection method from
the beginning. AFB1-BSA dosage, 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hy-
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drochloride (EDC) dosage and pH of coupling buffer were selected for optimization, and
the results are shown in Figure 9. The immunomagnetic beads obtained under different
coupling conditions were added with 0, 0.2, and 1 ng/mL AFB1, respectively for detection
via MBs-icELISA. Amounts of 0.2 and 1 ng/mL AFB1 were used to mimic low and high
concentrations. The effect of coupling conditions on MBs-AFB1-BSA activity was evalu-
ated by comparing OD450 and the inhibition rate. First, AFB1-BSA at 5–10 µg with the
increase in concentration was also in the rising stage of OD450, and from 10–40 µg with
the increase in concentration was at about the same OD450. Ten micrograms was selected
as the amount of antigen coupling per mg of magnetic beads considering material loss
(Figure 9a). Secondly, 0.2 µg EDC was suitable for the coupling of MBs and AFB1-BSA
(Figure 9b). The function of EDC was to activate the reactive group. Insufficient EDC made
the activation incomplete, and excessive EDC easily deactivated AFB1-BSA. Third, three
buffer solutions with pH 9.6, 7.4, and 5.2 were selected to study the effect of the pH of
the coupling buffer on OD450 values (Figure 9c), and the highest OD450 values and the
highest inhibition were observed at pH 5.2 MES buffer solution. Finally, the capture process
of antigen-antibody was optimized as shown in Figure 9d. Panel A was the case of only
magnetic beads without adding antibody and secondary antibody, panel B was the case of
adding antibody and enzyme-labelled secondary antibody in stages for incubation, and
panel C was the case of adding antibody and enzyme-labelled secondary antibody together
for incubation. Figure 9d shows that the combined effect of a phased addition was better
than that of one-time addition.
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2.2.3. Optimization of MBs-icELISA Capture Process

In addition to the effect of the feeding amount during MBs-AFB1-BSA coupling, the
numbers of reagents added during the reaction affected the sensitivity of MBs-icELISA.
Therefore, the incubation time of mAbA2-2 and the amount of mAbA2-2 and IgG-HRP
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used were optimized, and the results of each optimization are shown in Figure 10. Firstly,
the incubation time of mAbA2-2 increased gradually with the increase in the OD450 value
over 5–30 min, and the OD450 value gradually stabilized after 30 min; the results are shown
in Figure 10a. The incubation time of 30 min mAbA2-2 was selected. Secondly, mAb, as
the most essential recognition element of MBs-icELISA, de-termined the sensitivity of the
sensor; with the rise in mAb, OD450 gradually increased, reaching 1:400 after a stable
trend. These results are shown in Figure 10b. Finally, the amount of IgG-HRP affected the
colorimetric response of MBs-icELISA; too little IgG-HRP affected the sensor and the upper
limit of detection, too much produced waste, and the amount of IgG-HRP was optimized
with the purpose of conservation. The optimal amount of IgG-HRP was 120 µg/mL, as
shown in Figure 10c.
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2.2.4. The Establishment of the MBs-icELISA Standard Curve

The sensitivity of MBs-icELISA to AFB1 was studied under optimal conditions. With
the increase in the AFB1 concentration, the absorbance value of the sensor decreases gradu-
ally, as shown in Figure 11. MBs-icELISA had a good linear relationship in the concentration
range of 0.004~10 ng/mL, and the linear range covers five orders of magnitude. The de-
tection limit (LOD) for AFB1 was 0.0013 ng/mL. The results showed that the prepared
monoclonal antibody had a good application prospect and showed good sensitivity and a
wide recognition range when combined with MBs-icELISA.
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3. Conclusions

In this study, we found that the traditional limited dilution subcloning method had
some drawbacks in the preparation of aflatoxin monoclonal antibodies, and that single stan-
dard detection of antibodies would lead to some better cell lines being ignored. Therefore,
the limited dilution subcloning method combined with three steps of sample amplification
and multiple concentrations of standards was used in the cell-screening process to obtain
aflatoxin monoclonal antibodies. MBs-icELISA was established using immunomagnetic
beads as the carrier, and the dynamic homogeneous reaction process was achieved through
the combination of MBs-AFB1-BSA and IgG-HRP. The addition of magnetic nanobeads
facilitated the kinetics of the assay and enabled rapid separation and enrichment. Com-
pared with traditional ELISA, the use of MBs-icELISA can greatly reduce detection time,
improve sensitivity, simplify operations, and lower costs. MBs-icELISA also has a very
good development prospect and is expected to be applied to the rapid detection of AFB1 in
the field.

4. Materials and Methods
4.1. Materials and Apparatus

Aflatoxin B1-bovine albumin (AFB1-BSA), hypoxanthine-aminopterin-thymidine (HAT),
hypoxanthine-thymidine (HT), polyethylene glycol 1450 (PEG 1450), 2-[4-(2-hydroxyethyl)
piperazin-1-yl]ethanesulfonic acid (Hepes), L-glutamine (L-Gln), and Freund’s adjuvant
were purchased from Sigma-Aldrich (St. Louis, MO, USA). RPMI-1640 medium was
purchased from Cytiva (Beijing, China). Fetal bovine serum was purchased from Every
Green (Zhejiang, China). Goat anti-mouse immunoglobulin G horseradish peroxidase
(IgG-HRP) was purchased from Lvdu (Binzhou, China). Hybridoma Feeder adds factors
were purchased from Boaolong (Beijing, China). Cell growth was observed using a BDS400
inverted microscope purchased from Chongqing AOte Optical Instrument, Chongqing,
China. Absorbance was measured using a Varioskan LUX enzyme label purchased from
Thermofisher (Waltham, MA, USA).

4.2. Animal Immunity and Cell Fusion

The SPF-grade female Balb/c mice (4–6 weeks) were ordered by Jinan Pengyue Experi-
mental Animal Breeding Co., Ltd., Jinan, China. All animal experiments were carried out by
with the ARRIVE guidelines and in accordance with the UK Animals (Scientific Procedures)
Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments,
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and the National Research Council’s Guide for the Care and Use of Laboratory Animals.
Mouse sp2/0 myeloma cells were provided by Shandong Fenghua Biological Co., Ltd. (and
cultured in Hyclone 1640-RPMI complete medium). Each mouse was immunized with
200 µL of the immunization reagent, which contained 50% volume of Freund’s adjuvant
and 40 µg of AFB1-BSA. Immunization was performed via a subcutaneous multipoint
injection on the back after complete emulsification of the immunizing reagent. Mice serum
was collected by tail break and tested by ELISA. Well-immunized mice were selected for
immunization with the same volume of immunogen shock three days before cell fusion. A
sufficient number of myeloma cells cultured in advance were mixed with splenocytes in a
1:3 ratio in the presence of 50% PEG for cell fusion. The fused cells were cultured in 96-well
cell plates with 100 mL of HAT medium.

4.3. Hybridoma Cell Supernatant Assay and Cellular Subcloning

The cell growth in the cell wells was observed at any time, and the cells were tested for
antibody production when the cells in the cell wells had grown to a suitable state. Each cell
well corresponds to two assays: one is a competitive ELISA with AFB1 added, and the other
is a non-competitive ELISA without AFB1 added. The data obtained from the two assays
correspond to the B and B0 values, respectively, and the 1-B/B0 value is the inhibition
rate. The cell wells with good data and good cell status were selected for subcloning. For
subcloning, the cells in the wells were counted and then diluted. One-hundred microliters
of cell suspension with a concentration of 5 cells/mL was added to the first eight columns
of the 96-well cell plate, and 100 µL of cell suspension with a concentration of 50 cells/mL
was added to the last four columns.

4.4. Cellular Three-Step Sample Amplification

The cells in the 96-well cell plate were tested for antibodies and then expanded to the
24-well cell plate by selecting the appropriate cells according to the cell status. The cells
in the 24-well plates were grown exponentially and the cell supernatants were collected
for non-competitive and competitive indirect ELISA assays. Based on the assay data, cells
with low IC50 values were selected and expanded into 6-well plates. After exponential
cell growth, cell supernatants were collected again for non-competitive and competitive
indirect ELISA assays. The cell lines were compared between the two assays, and cells with
stable and low IC50 values were selected for expansion for antibody preparation.

4.5. Preparation and Identification of Antibodies

The hybridoma cells were diluted to 1–2× 105 with basal medium and injected into the
peritoneal cavity of mice immunized intraperitoneally with Freund’s adjuvant 3–10 days
in advance. The mice peritoneal fluid was collected when they were depressed, had prickly
hair and were sluggish in movement. The collected ascites were centrifuged and the
monoclonal antibody powder was prepared by ammonium octanoate method and freeze-
dried. The prepared monoclonal antibodies were tested for specificity and affinity via an
ELISA, and the antibody isotypes were detected using a Mouse Monoclonal Antibody
Isotype Identification Test Kit purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.6. AFB1-BSA Conjugated Beads (MBs-AFB1-BSA)

AFB1-BSA coupled magnetic beads were 500 nm carboxylated magnetic beads pur-
chased from Bemag Biologicals, and the carboxyl group on the beads was used to biocouple
with the amino group of AFB1-BSA. The magnetic beads containing 10 mg of the carboxyl
group were first washed three times with MES buffer (0.05 M, pH 5.2). Then, 100 µg of
ABF1-BAS monoclonal antibody (dialyzed with 0.05 M MES buffer) was added and the
reaction was slowly shaken for 12 h. Subsequently, 0.5 mL of the special blocking agent
was added and the reaction was maintained at room temperature for 4 h. The beads were
washed three times with preservation buffer and stored at 4 ◦C.
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4.7. Protocol of the MBs-icELISA

MBs-icELISA was performed as follows: 1 µL of MBs-AFB1-BSA prepared using the
procedure detailed herein was washed three times with PBST, and 100 µL of different
concentrations of AFB1 and 100 µL of mAbA2-2 at a dilution of 1:400 were added and
mixed in 0.5 mL EP tubes in a mixer at 37 ◦C for 30 min. The tubes were then placed on a
magnet for 5 s, and the supernatant was discarded. IgG-HRP was added in a mixer at 37 ◦C
for 30 min. The immune complex (MBs-AFB1-BSA-mAbA2-2-IgG-HRP) was also added to
the EP tubes. To the EP tube, goat anti-mouse IgG-HRP was added in a mixer at 37 ◦C for
30 min. The immune complex (MBs-AFB1-BSA-mAbA2-2-IgG-HRP) was washed 3 times
with PBST in the presence of a magnet. TMB solution (200 µL) was added and incubated in
the dark at 37 ◦C for 15 min. Briefly, 100 µL of the reaction solution was taken in a 96 micro-
label plate, and 50 µL of 2 M sulfuric acid was added to terminate the reaction. The optical
density (OD450) was measured using a Varioskan LUX multifunctional enzyme marker.
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