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Abstract: Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to
receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological
functions of synapses and affecting biological processes. With more and more research on the
toxins of various origins, many neurotoxins are now widely used in clinical treatment and have
demonstrated good therapeutic outcomes. This review summarizes the structural properties and
potential pharmacological effects of neurotoxins acting on different components of the synapse, as
well as their important clinical applications, thus could be a useful reference for researchers and
clinicians in the study of neurotoxins.

Keywords: neurotoxins; synapse; botulinum toxin; cobrotoxin; pain

Key Contribution: Summarized basic biological characteristics of neurotoxins, new developments in
understanding the mechanisms of their pharmacological actions, and their current clinical applica-
tions with critical comments on their unique benefits and limitations.

1. Introduction

There are thousands of biological species that can produce toxins, and most of them are
neurotoxins [1]. Over millions of years of evolution, biological toxins have acquired specific
selectivity to interfere with some physiological functions and disrupt a large number of
basic neurobiological processes such as synaptic transmission [2].

At the neuromuscular junction (NMJ), nerve signals from spinal motor neurons are
transmitted to the muscles via the release of synaptic acetylcholine (Ach), which causes
muscle contraction. Structurally, there are three main components of the NMJ: the presy-
naptic nerve terminals, the synaptic cleft, and the postsynaptic receptors, mainly the dense
cluster of nicotinic acetylcholine receptors (nAChRs) [3]. Ach-containing synaptic vesicles
at presynaptic nerve terminals initiate the process of coalescing with the presynaptic mem-
brane; then, the nerve terminal depolarizes, leading Ca2+ to flow in through voltage-gated
channels. As a result of the influx of Ca2+, the vesicles begin to fuse with the membrane
surface. Subsequently, Ach is released to the synaptic cleft from vesicles [4]. The Ca2+-
mediated exocytosis of Ach described above primarily depends on the SNARE (soluble
N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly [5],
which generally comprises syntaxin, VAMP, and SNAP-25 homologs. The AChR is a type
of ligand-gated ion channel [6] formed by five subunits, and it has several subtypes and
these subtypes are assembed of 17 different subunits (α1–α10, β1–β4, γ, δ, and ε) [7]. The
different AchRs are expressed in specific regions of the brain and peripheral tissues of
mammals [8]. The AchR was first identified as a classic neurotransmitter receptor [9],
and recently there is also evidence showing that the nAChR exists in non-neuronal cells,
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including certain types of tumor cells. When it is activated, it promotes the development of
tumors by inducing the release of autocrine growth factors [10].

Generally, the release of ACh and the process of Ach binding to the AchR are two of
the main targets of neurotoxins [4]. Many neurotoxins are presynaptic neurotoxins that act
at the presynapse and specifically bind to ion channels to regulate neurotransmitter release
or to block the neuronal transmission of signals [1]. According to this feature, presynaptic
neurotoxins can be roughly divided into four categories: (1) clostridial neurotoxins that
block the neurotransmitter function by their specific metalloproteolytic activity aiming
at SNARE proteins; (2) presynaptic neurotoxins in snake venoms with phospholipase A2
activity; (3) excitatory latrotoxin-like neurotoxins [11]; and (4) neurotoxins that function
via various ion channels (such as calcium channels, potassium channels, etc.) [12]. There
are also a variety of neurotoxins that have postsynaptic effects. They bind to acetylcholine
receptors, acetylcholinesterase, or ion channels, thereby altering cholinergic functions [1].
There are a large class of snake neurotoxins defined as postsynaptic neurotoxins, collectively
called “α-neurotoxins” [13]. All members of the α-neurotoxin family show high similarity
in the mechanism of neuromuscular paralysis, in which they primarily target and then
bind the postsynaptic nAChRs, specifically at the NMJ [14–16].

This review aims to discuss the structures and mechanisms of action of the presynaptic
and postsynaptic neurotoxins and to provide a summary of recent developments in clinical
applications of these neurotoxins. This review might be considered as a first-hand reference
for experts and clinicians interested in translating these neurotoxins into clinical therapies
and uncovering the underlying mechanisms associated with clinical efficacy. Critical
comments on the prospects for clinical application of these neurotoxins in diverse diseases
are also provided.

2. Presynaptic Neurotoxins
2.1. The Clostridial Neurotoxins

The anaerobic bacteria that belong to the clostridia class are a vital threat to human
health, causing a variety of disorders such as food poisoning and, even worse, gas gan-
grene [17]. Above all, two main categories of clostridial neurotoxins are considered as
the most potent toxins that we have known: botulinum neurotoxins (BoNTs) and tetanus
toxins (TeNTs) [18]. These two types of toxins have a similar molecular structure: 150 kDa
molecular size with three main functional domains [18], the light chain (LC, 50 kDa) and
the heavy chain (HC, ~100 kDa) with two domains. The LC and HC are connected by a
disulfide bond. Both BoNT and TeNT act in a similar way: (i) binding to the presynaptic
membrane; (ii) internalization; (iii) membrane translocation and release of the LC into the
cytosol; and (iv) cleavage of SNAREs driven by the LC [19]. The HC will form a channel to
help translocation of the LC into the cytosol [20]. The C-terminal part of the HC mediates
the interaction of the toxins with neurons [21] via a neurospecific double binding to the
polysialoganglioside and the glycosylated lumenal domain of a synaptic vesicle protein,
which then leads to the internalization of the toxin [18,19]. The function of the N-terminal
part of the HC is not fully understood, although some studies revealed that it protects
the LC from the cutting of non-specific substrates until the LC is localized within the
cytosol [22,23]. The LC is a metalloprotease [24], which has selectivity for SNARE proteins
and can cut SNARE at different peptide bonds [25]. This specific structure is the basis for
the action of BoNT and TeNT [26]. Both toxins can target and enter the nerve terminals
at NMJs, then change the conformation to enable translocation of the LC into the cytosol.
In there, the release of the neurotransmitters is disturbed by the LC via cleaving SNARE
proteins [27–29] (Figure 1).

The neuroselectivity of BoNT and TeNT is probably due to the following aspects:
(1) The C-terminal part of the HC mediates the interaction of the toxins with their receptors,
and the receptors are mainly enriched in the neuronal terminals. (2) The receptor-mediated
endocytosis makes them enter the neuronal cells, but BoNT and TeNT enter in different
endocytic vesicles. (3) SNAREs, the target molecules of BoNT and TeNT, are expressed in
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the neuronal cells of almost all vertebrate phylla [30–32]. However, the neuroselectivity of
BoNT is not absolute and it can act on the non-neuronal cells to exert some functions, such
as glial cells [33].
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Figure 1. This is a synaptic structure. The top left is the normal release of neurotransmitters from
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Up to now, there are eight BoNT serotypes that have been identified and named as A–
G and X. They are classified due to lack of cross-neutralization by different antisera against
each toxin type [34,35]. Over 40 subtypes have been identified [36]. They bind to different
receptors to drive the process of internalization [19]. The flaccid paralysis induced by BoNTs
occurs primarily due to the blockade of peripheral cholinergic nerve endings [21,37–39],
whereas TeNT, produced by a Gram-positive bacillus, Clostridium tetani [40], has only one
type [18]. The release of neurotransmitters, such as GABA and glycine, is blocked by TeNT
which can lead to spastic paralysis [41–43]. With prolonged action, it causes death when
muscular hypertonus occurs in the respiratory muscle and leads to breathing failure [44].

The two clostridium neurotoxins act in a similar way, but they cause very different
diseases. The reason for this is that TeNT travels retroaxonally and is transferred via
a trans-synaptic movement to inhibitory interneurons in the CNS to block the release
of neurotransmitters, which results in motor neuron hyperactivity and spastic paralysis.
However, BoNT mainly acts on the NMJs to inhibit the release of acetylcholine and then
induce flaccid paralysis [18,41,45]. Specifically, TeNT moves retroaxonally along the axons
of motor neurons into the cell body, releases and thereby enters the connecting inhibitor
neurons, and then the LC exerts the function of blocking neurotransmitter release [46].
TeNT can bind to not only the connecting inhibitor neurons but also the dendrites of sensory
and adrenergic neurons [41].

2.2. Excitatory Latrotoxin-like Neurotoxins

There are high-molecular neurotoxins extracted from the venom of black widow
spiders called latrotoxin-like neurotoxins (LaTXs). They consist of various specific types:
one vertebrate-specific toxin (α-latrotoxin (α-LTX)) [47], five highly specific insecticidal
toxins (α-, β-, γ-, δ-, and ε-latroinsectotoxin (LITs)) [48], and one crustacean-specific toxin
(α-latrocrustatoxin (α-LCT)) [49]. LaTXs are secreted into the gland lumen as 160 kDa
inactive precursor polypeptides. In the gland lumen, the N-terminal signal peptide and
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a C-terminal inhibitory domain are cleaved and proteolyzed, which produces the final
mature 130 kDa toxin [39,40].

Among the above-mentioned toxins, there are a number of studies on α-LTX. α-LTX
causes a syndrome called lactrodectism in the clinic, which has the feature of serious muscle
spasm and lots of other effects, for example, hypertension, sweating, and vomiting [50,51].
The α-LTX also affects the process of exocytosis and has a high affinity for three types
of receptors: cell adhesion protein neurexin (NRX) [52–54]; G-protein-coupled receptor
latrophilin (LPHN or CIRL) [55,56]; and the receptor-like protein tyrosine phosphatase σ
(PTPσ) [57]. The α-LTX initiates the release of neurotransmitters by two distinct mecha-
nisms, both of them relying on the binding of the toxin to three types of receptors [58–60]:
(1) in a Ca2+-dependent manner: α-LTX binds to the cell adhesion protein neurexin in the
presence of Ca2+ and then inserts into the plasma membrane to form the pore and thereby
induces the influx of Ca2+ [61], and (2) in a Ca2+-independent manner: it binds to the other
two receptors without Ca2+. Furthermore, LPHN may mediate the process of stimulating
PLC, producing IP3 and diacyl glycerol, releasing the stored Ca2+, and activating PKC. This
cascade promotes the release of neurotransmitters form vesicles [60,62] (Figure 1).

2.3. Presynaptic Neurotoxins from Snakes

Most snake venoms contain both pre- and postsynaptic neurotoxins [63], whereas some
snake venoms contain only presynaptic neurotoxins [64]. These presynaptic neurotoxins
belong to phospholipases A2 (PLA2), which are Ca2+-dependent enzymes [63]. They can
hydrolyze the sn-2 ester bond of 1,2-diacyl-3-sn-phosphoglycerides to produce fatty acids
and lysophospholipids [11,65]. Various snake presynaptic PLA2 neurotoxins have a similar
secondary structure with three larger α-helices and a short two-stranded β-sheet [66,67].
The pharmacological effects of these neurotoxins are also attributed to their PLA2 enzymatic
activity, including antibacterial, cardiotoxic, and neurotoxic actions [68–75].

The studies on PLA2 snake neurotoxins are extensive, and the neurotoxicity induced
by them can be attributed to the inhibition of presynaptic neuromuscular transmission [76].
Snake presynaptic neurotoxins exert a function that blocks the release of ACh in the nerve
terminals [63] because they can strongly reduce the frequency of spontaneous exocytosis
that releases ACh from small synaptic vesicles (SSVs) but does not affect the amount of
ACh in one single SSV [65]. The electron microscopic studies of NMJ affected by snake
presynaptic neurotoxins revealed: (1) swollen and enlarged axon terminals; and (2) the
emergence of lots of Ω-shaped plasma membrane invaginations [77–81]. Recently, a PLA2
neurotoxin MiDCA1 extracted from the venom of Micrurus dumerilii carinicauda coral
snake [82,83] has been found to affect the process of the release of neurotransmitters [82]
through targeting the Kv2 channels [84]. Thus, it was proposed that MiDCA1 blocks the
Kv2.1 channels and thereby decreases the release of Ach [84].

2.4. Other Presynaptic Neurotoxins Acting on Ion Channels

The release of neurotransmitters, which happens in a Ca2+-dependent manner [85],
relies on the voltage-gated Ca2+ (Cav) channels (VGCCs) that have selective permeability
to Ca2+ and can drive calcium influx [86,87]. Among all types of VGCCs, Cav2 channels
mainly regulate exocytosis. Cav2 channels contain Cav2.1(P/Q-type), Cav2.2 (N-type),
and Cav2.3 (R-type). Furthermore, the release of neurotransmitters at ribbon synapses in
the retina and inner ear mainly relies on Cav1 channels (L-type) [88]. In addition to the
above-mentioned types of presynaptic neurotoxins, there are some presynaptic neurotoxins
that act on ion channels, such as agatoxins, conotoxins, and dendrotoxins.

Agatoxins are a class of toxins extracted from the American funnel web spider A. aperta
that can target different types of ion channels. They have various components that are
divided into three classes: α-Agatoxins, µ-Agatoxins, and ω-Agatoxins, according to
their functions on different channels [89,90]. Among these,ω-Agatoxins are particularly
special because they are selective for different subtypes of calcium channels [89,91]. The
ω-Agatoxin IA, which has five disulfide bonds [92], appears to be selective for insect
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calcium channels; theω-Agatoxin IIA with three disulfide bonds disturbs both mammalian
and invertebrate calcium channels [93];ω-Agatoxin IIIA with six disulfide bonds [93] acts
as a pore blocker due to the poor selectivity among the family of high-voltage-activated
channels [94,95]; andω-Agatoxin IVA exerts functions as a gating modulator via interfering
with the domains of the voltage sensor [96–98].

Conotoxins are peptides with distinct cysteine frameworks, and they mainly target
various ion channels and receptors [99], such as G-protein-coupled receptors (GPCRs), trans-
porters, and enzymes [100,101]. Among the various subgroups of conotoxins,ω-conotoxins,
consisting of 24–30 amino acids [102], physically block the pore of the channel to prevent
calcium influx [98,103,104]. The two most characterizedω-conotoxins are GVIA [105] and
MVIIA [106], which can selectively inhibit the N-type VGCC (neuron-type voltage-gated
calcium channel). Furthermore, the selectivity of MVIIA on the channel is weaker than that
of GVIA, but it can dissociate quicker due to the weaker selectivity [107,108], and therefore
it was developed as a therapeutic peptide ziconotide (Prialt®) for pain treatment [90].

3. Postsynaptic Neurotoxins

The postsynaptic neurotoxins have postsynaptic blocking functions at the skeletal
muscle end-plate and neurons, named α-neurotoxins [15]. They act as antagonists of
nAChRs in the NMJs and neurons [109]. The α-neurotoxin family has a similar mechanism
of the function that causes muscular paralysis due to blockade of the postsynaptic nAChRs
at the NMJ [110–112].

The α-neurotoxins in snake venoms belong to the three-finger toxins [113]. These
kinds of toxins are flat molecules, and the reason for the name of “three-finger” is that the
flat molecules have a small globular hydrophobic core, and this core can form three ad-
jacent loops, with the shape of three fingers [111,114,115]. The three-finger toxins are
mainly generated form Elapid snakes, including α-cobratoxin (α-Cbtx), α-cobrotoxin
(α-Cotx), and α-bungarotoxin (α-Bgtx) [116]. In addition, based on their molecular struc-
tures, α-neurotoxins are roughly divided into three categories: short-chain toxins with
60–62 amino acids residues and four disulphide bridges (α-Cotx) [117]; long-chain toxins
with 66–75 amino acid residues and five disulphide bridges (α-Cbtx) [118]; and weak
toxins, which have the feature of hypotoxicity (LD50 ~ 5–80 mg/kg as compared to
LD50 ~ 0.04–0.3 mg/kg for other toxins) [103]. What they have in common is that they all
target muscle α1 nAChRs, but only long-chain α-neurotoxins can bind to the α7 nAChR
with high affinity [109,119,120], while only the dimmer of cobrotoxin binds to it. As we
know, the α7-type nAChR is considered as a potentially essential target for the treatment
of many diseases in the clinic [121], such as cognitive disorders [122,123], inflammatory
diseases, and chronic pain [124]. Alzheimer‘s disease, Parkinson’s disease, Lewy body
dementia, and schizophrenia all have the feature of neuroinflammation [125–133]. At
present, some researchers have started to explore the effect of α-neurotoxins on central
nervous system diseases [134–138]. Among these toxins, the α-bungarotoxin (αBgt) is the
most popular one as a pharmacological tool used for studying α7 nAChR [121] because of
the practically irreversible binding to the Torpedo acetylcholine receptors [139].

In addition to snake neurotoxins, α-conotoxins generated from marine organisms of
the genus Colocasia also target nAChRs [140]. There are many subgroups of α-conotoxins
that are selective for different subtypes of AChRs, such as α3/5-conotoxins that selectively
block the muscle nAChR, and α4/3-, α4/4-, α4/5-, α4/6-, and α4/7-conotoxins that
selectively block the neuronal nAChRs [140–142] (Figure 2).

All the above-mentioned neurotoxins that are classified into presynaptic and postsy-
naptic neurotoxins, even though they are from different sources, have many types, and their
complex subtypes and structures make it difficult to generalize with a symbolic model that
they have a similar principle of function in the intervention of the neuromuscular signal
transmission process, in which they affect the transmission of neurotransmitters at synaptic
sites by regulating ions, receptors, and membrane fusion proteins and in other ways.
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Besides those mentioned above, there are still some toxins not marked as “neurotoxins”
that exert the same action on the nervous system. For example, the epsilon toxin (ET),
produced by clostridium perfringens types B and D, can cause enterotoxaemia in sheep,
goats, and cattle. When it enters the brain, it targets the neural cells and also induces
the release of glutamate and other transmitters; but the specific mechanism needs more
exploration [143]. Some bacterial enterotoxins, such as toxin B (TcdB) and cholera toxin
(CT), can attack the enteric nervous/endocrine system. There is evidence that CT activates
a secretomotor neural reflex to further enhance the secretory responses; and TcdB can
catalyze the glucosylation of Rho proteins (Rho, Rac, and Cdc42) to block neurotransmitter
exocytosis [30,144–147].

4. Clinical Applications of Neurotoxins

For the clinical applications of neurotoxins, besides their pharmacological effects, we
also need to consider their half-life in vivo and their distributions in our body to exert
their clinical effects. For most neurotoxins, they are limited to the injection compartment
and cannot cross the barrier due to their peptide structure [148]. However, there are some
special toxins that can break through this limitation, such as apamin (a peptide found in bee
venom), which has the capacity to cross the blood–brain barrier [149]. Moreover, (1) toxins
impairing the blood–brain barrier, such as clostridium perfringens epsilon toxin, can cross
the barrier [143]; and (2) neurotoxins with retrograde axonal transport can reach the target,
such as TeNT, mentioned above [46]. Because of this feature, they can be a more effective
treatment in pain management [150].

4.1. Clostridial Neurotoxins

As we can see from Table 1, only BoNT/A and BoNT/B have been officially ap-
proved. The use of BoNT/B is limited due to its higher incidence of adverse effects
than that of BoNT/A [151,152]. In addition, it does not have such long-lasting effects as
BoNT/A [153]. The current treatments with BoNT are mainly used in the area of dystonic
muscle contractions, which depends on the inhibition of the excessive release of the ACh
neurotransmitter [154]. Recently, several articles also revealed that for some other diseases,
such as chronic pain that is associated with a variety of neurological disorders (trigeminal
neuralgia), neuroinflammation [155,156], depression [157], and skin diseases [158], BoNT
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can also play a therapeutic role. However, the therapeutic effects of BoNT mentioned above
cannot be simply explained by the mechanism of NMJ blockade and needs more explo-
ration. It has a long half-life in vivo, and one of the factors responsible for this phenomenon
is that the catalytic light chain escapes from the proteasomal degradation by binding to the
deubiquitinating enzyme, VCIP135/VCPIP1, and therefore remains enzymatically active
for months [159,160]. This explains the clinical phenomenon that after the injection of
BoNT in the detrusor muscle, the patients with neurogenic urinary incontinence do not
need additional injections for 36 weeks and side effects are not observed [161,162]. For
its distribution, sometimes it needs to cross barriers to reach the target area, and there is
evidence that it can travel in a way similar to TeNT [18,163]. Therefore, it can influence the
ascending pain processing pathway [150].
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Table 1. The summary of the clinical applications of neurotoxins (the “Indications” are found in the table).

Types of
Neurotoxins

Trade Name
(FDA Approved) Indications

(FDA Approved)
Clinical

Applications Reference

BoNT

Botox (BoNT/A)
Xeomin (BoNT/A)
Dysport (BoNT/A)

Myobloc/Neurobloc
(BoNT/B)

Botox

Overactive bladder (OAB) with symptoms of urge urinary;
Urinary incontinence due to detrusor overactivity associated with a
neurologic condition (e.g., spinal cord injury (SCI), multiple sclerosis (MS))
in adults who have an inadequate response to or are intolerant of
anticholinergic medication;
Neurogenic detrusor overactivity (NDO) in pediatric patients 5 years of age
and older who have an inadequate response to or are intolerant of
anticholinergic medication;
Prophylaxis of headaches in adult patients with chronic migraine (≥15 days
per month with headache lasting 4 h a day or longer);
Spasticity in patients 2 years of age and older;
Cervical dystonia in adult patients;
Severe axillary hyperhidrosis that is inadequately managed by topical
agents in adult patients;
Blepharospasm associated with dystonia in patients 12 years of age and
older;
Strabismus in patients 12 years of age and older.

Dystonic muscle contractions
Neuropathic pain

Neuroinflammation
Depression (under

investigation)
Skin diseases

Headache

[164]
[155,156,165,

166]
[167]
[168]
[158]
[169]

Xeomin

Chronic sialorrhea in patients 2 years of age and older;
Upper limb spasticity in adults;
Upper limb spasticity in pediatric patients 2 to 17 years of age, excluding
spasticity caused by cerebral palsy;
Cervical dystonia in adults;
Blepharospasm in adults;
Temporary improvement in the appearance of moderate-to-severe glabellar
lines with corrugator and/or procerus muscle activity in adults.

Dysport

Cervical dystonia in adults;
Temporary improvement in the appearance of moderate-to-severe glabellar
lines associated with procerus and corrugator muscle activity in adults < 65
years of age;
Spasticity in patients 2 years of age and older.

Myobloc/Neurobloc
Cervical dystonia to reduce the severity of abnormal head position and neck
pain associated with cervical dystonia in adults;
Chronic sialorrhea in adults.

TeNT
Improve the motor functions

Carrier to deliver into the
CNS

[170]
[171]
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Table 1. Cont.

Types of
Neurotoxins

Trade Name
(FDA Approved) Indications

(FDA Approved)
Clinical

Applications Reference

α-LTX Type I diabetes (expected) [172]

Snake
Presynaptic
Neurotoxins

Anticancer
Antibacterial

Antinociception

[173]
[174]
[175]

ω-agatoxin Modulate the nociceptive
process [176]

Conotoxins
Prialt™

(Ziconitide)
(a form of

ω-conotoxin MVIIA)
Management of severe chronic pain in patients for whom intrathecal therapy is warranted and who
are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies,

or intrathecal morphine.

Chronic pain (cancer- or
AIDS-related neuropathy)

Spinal cord injury

[177]
[178]

DTX
Diagnosis of

neurodegenerative diseases
(potential)

[179]
[180]

Postsynaptic
Neurotoxins Cobratide

Disorders linked to NMJ
dysfunction
Anticancer

Anti-inflammation
Analgesic effect

[181]
[182]
[183]
[183]
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Owing to the technical advances in recombinant DNA technology and purification
techniques of recombinant proteins, more and more engineered BoNTs are produced for
clinical uses [184]. The indications of them are classified into the following categories based
on the inhibition of different transmitters or other unclear mechanisms. For the inhibition
of Ach release, here are the indications:

4.1.1. Dystonic Muscle Contractions

From a translational perspective, when the nerve–muscle impulse is inhibited, NMJ
function can be restored after BoNT treatment, which provides a scientific basis for BoNT
in the treatment of various human diseases characterized by hyperfunction of cholin-
ergic activity [1]. The initial clinical application was the treatment of benign essential
blepharospasm by Scott and his coworkers [185]. Therefore, BoNT was first applied in the
clinic for patients with dystonia and had a remarkable benefit, and it is now still considered
as a choice of treatment for patients with problems of focal or segmental dystonia, including
blepharospasm, oromandibular dystonia, spastic dysphonia, and so on. Furthermore, the
treatment of hemifacial spasm and primary dystonia, such as cervical dystonia, is another
application of BoNT in the clinic. What is more, BoNT can also be used for the treatment of
some occupational dystonias, such as writer’s and musician’s cramps and stroke-related
hemiplegia [186]. For laryngeal dystonia, characterized by spasmodic dysphonia, which
manifests as either a laborious and tense sound that is interrupted by frequent articulatory
interruptions and silent pauses, or a respiratory murmur, BoNT is also considered the
treatment choice [187]. As for gastrointestinal, genitourinary, and sphincter disorders (such
as achalasia, spasm of the sphincter of Oddi, and anal fissure [186]), the therapeutic efficacy
of BoNT also acts on the spasm muscles in these organs [162,188–191]. Generally speaking,
BoNT mainly leads to the alleviation of dystonic muscle contractions.

BoNT also interferes with transmission located at the cholinergic autonomic parasym-
pathetic and postganglionic sympathetic nervous system, and therefore this toxin has been
widely used for the diseases of the autonomic nervous system [192], such as essential
focal hyperhidrosis, which is characterized by excessive sweating of the palms, feet, or
axillae, and it is related to secretomotor hyperactivity [192]. After the treatment with BoNT,
the patients’ quality of life is significantly improved due to a significant improvement in
the symptoms [193–195]. The current clinical applications of botulinum toxin are mainly
concentrated in the field of aesthetic medicine, such as the glabellar frown lines [196] and
aging neck (hypertrophic platysma muscle bands) [197].

4.1.2. Skin Diseases

For skin diseases, BoNTs have some label and off-label applications [158]. In sweat
gland disorders (idiopathic hyperhidrosis, chromhidrosis, and bromhidrosis), the patients
mainly suffer from excessive sweating in one or more parts of the body. The BoNT injec-
tion can decrease sweat secretion [198] by preventing the release of Ach and some other
neurotransmitters from presynaptic vesicles [199]. In alopecia (alopecia areata and andro-
genetic alopecia), a study showed that BoNT downregulated the expression of TGF-β, thus
suppressed follicular epithelial cell growth [200].

4.1.3. Neuropathic Pain and Neuroinflammation

BoNT can inhibit not only the release of Ach but also other neurotransmitters [32]. For
several types of neuropathic pain such as trigeminal, posttraumatic, or postherpetic neural-
gia, significant analgesic effects have been observed after administration of botulinum toxin
A (BoNT/A) [165,201,202]. It is speculated that BoNT/A exerts its therapeutic effect by
inhibiting the process of the secretion of some pain mediators (substance P, glutamate, and
calcitonin-gene-related protein (CGRP)) and other pain transmitters released from the nerve
terminals and dorsal root ganglions (DRGs) and trigeminal sensory neurons [165,203–205].
There is evidence that after peripheral administration of BoNT/A, the antinociceptive
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action is not primarily mediated by the direct prevention of central CGRP release. This
indicates that it might depend on the toxin’s axonal transport [206].

Research revealed that intraplantar administration of BoNT/A alleviated mechanical
and thermal hypersensitivity and the activation of microglia induced by chronic constric-
tion nerve injury in the ipsilateral lumbar spinal cord in rats [207], decreased the amount of
the pro-inflammatory cytokines IL-1β and IL-18, and increased the level of IL-1 receptor
antagonist and IL-10 in the spinal cord and/or the DRG [167]. Recently, an in vitro study
indicated that in primary rat microglia the expression of pro-inflammatory IL-1β, IL-18,
IL-6, and nitric oxide synthase 2 (NOS2) was inhibited by BoNT/A, and the intracellular
signaling pathways mediated by p38, ERK1/2, and NF-κB were also inhibited. Addi-
tionally, the expression of SNAP-23 was decreased, whereas the expression of TLR2 was
increased [208].

4.1.4. Depression

The first article that reported the antidepressant effect of BoNT was in 2006. It was
found that the self-rated depression scores on the Beck Depression Inventory (BDI) II were
significantly improved after 8 weeks in ten middle-aged women that had moderate-to-
severe, partly chronic, and treatment-resistant depression when they received one single
application of BoNT administration in the glabella [209]. Subsequently, several randomized
controlled trials were conducted, and they confirmed the efficacy of BoNT for the treatment
of depression [210–214]. With more and more evidence showing that BoNT can be used
for the treatment of depression, it is important to find the underlying mechanisms of
this action. So far, several possible mechanisms have been proposed. Firstly, there is
a feedback loop from the face to the brain, called “emotional proprioception”, that can
reinforce and maintain the negative emotions. When BoNT/A disturbs it, depression can
be ameliorated [215]; Secondly, in rat depression models, there is evidence that after the
administration of BoNT in the face, the metabolism of monoaminergic neurotransmitters
is changed in the limbic brain regions [216]. Thirdly, some experimental evidence shows
that high-dose [217], locally injected BoNT can enter the central nervous system (CNS),
possibly through retrotransportation, which might be another mechanism for BoNT in
regulating mood [218]. Moreover, some substances might be related to the mechanism of
BoNT for antidepression, such as the RAS-related C3 botulinum toxin substrate 1 (Rac1).
This is the central nervous substrate of BoNT [219]. Emerging evidence has also shown
that the expression of BDNF diminishes in animal models of depression and depressed
patients [220–222]. BDNF is essential for neurogenesis and the reduction in depression-like
behaviors [223]. It promotes the phosphorylation of CREB through ERK activation [224].
A recent article has shown that the expression of BDNF at both the mRNA and protein
level was up-regulated in the hippocampus by BoNT/A, and therefore the downstream
ERK-CREB signaling pathway was activated in depression mice models [168].

4.1.5. Headache

Headache is a common neurological disorder. According to the international classifica-
tion of headache disorder (ICHD-3), it is classified into primary headaches and secondary
headaches. Primary headaches include migraine, trigeminal autonomic cephalalgia (TAC),
and tension-type headache (TTH). Secondary headaches include neuropathies, facial pains,
and other forms of headache [225]. They all share the common pathophysiology of the
abnormal activation of the trigeminovascular system [226], which leads to vasodilation
and neurogenic inflammation and pain sensitization in the peripheral and central nervous
system, resulting in the persistent headache [166]. The onabotulinum toxin A, as a BoNT
formulation, has been used for the treatment of chronic migraine [169]. Several articles
suggested that BoNT/A could suppress the release of neuropeptides and neurotransmitters
that contain CGRP [227], substance P [228], and glutamate from sensory peptidergic sen-
sory neurons [229]. In addition, BoNT/A can also interfere with the pain-sensing receptors
expressed on the plasma membrane, including transient receptor potential cation channel
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vanilloid subfamily member 1 (TRPV1), transient receptor potential cation channel ankyrin
subfamily member 1 (TRPA1), ATP-gated P2X receptor cation channel family 3 (P2X3) [230],
and AMPA receptor [231–234]. All mechanisms mentioned above may contribute to the
antinociceptive action of BoNT/A.

As for TeNT, it is the only known toxin that has the potential for selective improve-
ment of motor functions, so the flabby and weak muscles induced by the injury of the
brain and spinal cord can be treated with TeNT [170,235,236]. Due to the presence of the
blood–brain barrier [2], it makes it difficult for some drugs to enter the brain. Another
clinically relevant area of TeNT has generated great interest, which is its potential as a
fusion protein or carrier to deliver drugs into the CNS. TTFC (a segment with 50 kDa from
the carboxy-terminal HC of TeNT) can exert the function of delivery by interacting with
neural gangliosides and specific proteins linked with lipid microdomains of the neuronal
surface [171,237–241] and then moving retroaxonally to the CNS [242–244]. It can bind
to polysialylgangliosides GD1b and GT1b and then is internalized by motor neurons at
the NMJ. Finally, it reaches and influences the CNS via traveling retroaxonally [245,246].
Some potential therapeutic molecules, such as cardiotrophin-1 (CT1) and Bcl-xL, have been
successfully transported into neurons by coupling with TTFC [245]. Furthermore, when
coupling with these molecules, TTFC still keeps its capacity of neuronal binding [246].
However, their effects as therapeutic agents will need more studies in vivo.

Moreover, TTFC has also been demonstrated to have neuroprotective activities [246].
In the amyotrophic lateral sclerosis mice model, TIFC can modulate the levels of NLRP3
and caspase-1 in the spinal cord and reduce the level of IL-6 in tissues [247]. In the models
of Parkinson’s disease (PD) and Alzheimer’s disease (AD), it can be used for neuronal
dysfunction, learning impairment, and memory impairment [248,249]. TTFC can protect
against apoptosis via activating the MAPK/ERK pathway to inhibit the disruption of the
dopaminergic neurons caused by MPP+ [245].

There are several engineered BoNTs; here are some of them: (1) the Erythrina cristagalli
lectin replaces the C-terminal of the HC of BoNT, and thereby forms a novel conjugate. It
binds to eDRG neuronal cell types and inhibits the neurotransmitter release [250]. After
injecting it into the intrathecal space of a mouse, it was demonstrated to have a long-lasting
analgesic effect [251]; (2) the botulinum construct (Bitox), synthesized by “stapling” the
recombinant LC/translocation domain of BoNT/A and receptor-binding domain has the
potential to treat pain and does not result in muscle paralysis [252,253]. The recombinant
LC/translocation domain of BoNT/A can bind to the TeNT receptor-binding domain [254];
(3) the chimeras of BoNT/A and BoNT/E can significantly reduce the acute nociception
induced by capsaicin [255].

4.2. LaTXs

α-latrotoxin is an inducer of Ca2+ influx and is expected to ameliorate dysfunctions and
diseases that are associated with the reduction in the release of transmitters and hormones.
It is also expected to treat metabolic diseases, such as type I diabetes [172,256]. The structure
of α-latrotoxin is homologous to glycogen-like peptide-1 (GLP1) an endogenous peptide,
and it can control the level of blood glucose by binding to GLP1 receptors in the cell
membrane of pancreatic β-cells to increase the release of insulin. Therefore, α-latrotoxin
has been used as a potential drug for the treatment of obesity, diabetes, and other related
metabolic disorders [257–259].

4.3. Snake Presynaptic Neurotoxins
4.3.1. Anticancer

Snake presynaptic neurotoxins have PLA2 activity. PLA2 has been reported to have
anticancer properties, which involve inhibiting angiogenesis, migration, and adhesion of
various kinds of cancer cells [260]. For example, crotoxin extracted from the venom of
South American rattlesnake has been found to have potential anticancer effects in several
types of cancers [173]. Several experiments demonstrated that crotoxin arrested the cell
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cycle at the G2/M phase [261]. Furthermore, recently it has been reported that crotoxin
is also a potential regulator of the signaling cascade involved in epithelial–mesenchymal
transition (EMT) [262]. Crotoxin may have a high affinity for EGFR [263], which suggests
that crotoxin might modulate the EGFR signaling pathway to exert its anti-tumor activity in
SPCA-1 cells [264]. The research on lung cancer has attracted people’s attention because it
is the leading cause of cancer-related mortality worldwide [265]. In human lung squamous
carcinoma SK-MES-1 cells, crotoxin can induce apoptosis and autophagy through the
p38MAPK signaling pathway in vitro [266]. Furthermore, in the process of treating cancer
with crotoxin, a phase I clinical trial revealed that besides its anticancer effect, analgesic
effects were also observed in terminal cancer patients [267]. In some other animal models,
such as acute pain models, studies have demonstrated that crotoxin also showed the effect
of antinociception [268] without the involvement of opioid receptors [175,269], instead of
the central cholinergic, serotonergic, and noradrenergic systems [270].

4.3.2. Antibacterial

In addition to the anticancer and analgesia effects, crotoxin also exerts an antibacterial
effect because of the change in membrane permeability induced by PLA2, which destroys
the integrity of the bacterial cell membrane [271].

4.4. Other Presynaptic Neurotoxins Acting on Ion Channels
4.4.1. Analgesia

For presynaptic neurotoxins targeting calcium and potassium channels, the clinical
applications mainly depend on their ability to block or activate the channels. For example,
voltage-gated calcium channels are important for the process that conducts pain signals
from the periphery into the dorsal horn of the spinal cord. Some conditions of pain that are
difficult to treat with clinically available drugs, such as cancer and neuropathic pain, can be
treated effectively with crotoxin [272].

Due to the selective blockage of the Ca2+ channel by ω-agatoxin, it may be potentially
useful in clinical applications to treat a variety of disorders. Evidence from behavioral
and electrophysiological reports suggests thatω-agatoxin IVA-sensitive P-type channels
significantly modulate spinal nociceptive processes [176,273]. A study reported that in-
trathecal administration ofω-agatoxin IVA reduced late nociceptive behaviors induced by
formalin [274].

Conotoxins have been widely used in basic neuroscience research to analyze neuronal
voltage-gated Ca2+ currents, as well as in treatments in the clinic because of their powerful
and pervasive ability to block Ca2+ channels. Conotoxins have the potential to become
popular drugs [275,276] becauseω-conotoxins specifically target presynaptic voltage-gated
Ca2+ channels (VGCC), particularly N-type VGCCs, that have been proved to be involved
in pain pathways, makingω-conotoxins potential analgesics [273]. Prialt™ (a form of the
ω-conotoxin MVIIA) is a drug that has been approved by the FDA to treat the chronic
pain that results from cancer- or AIDS-related neuropathy [177]. However, it is difficult
for Prialt™ to cross the blood–brain barrier due to its inherent large molecular size and
hydrophilicity [277], so its treatments are confined to intrathecal administration. Besides,
there are various side effects (such as cognitive and neuropsychiatric adverse reactions [278])
that arise in the clinic and which need to be further investigated [273]. It is well known that
the release of glutamate is essential in the process of spinal nociception, and the inhibition
of the glutamate transporter GLT-1 can significantly reduce nociception behaviors [279].
Prialt™ is usually administered intrathecally to relieve pain by blocking VGCCs and
abolishing capsaicin-evoked glutamate release in the spinal cord synaptosomes [220].

4.4.2. Neuroprotection

Studies have reported that Prialt™ has neuroprotective potential after spinal cord
injury (SCI), which suggests it may be a good alternative treatment for acute SCI [178].
After SCI, secondary neuronal death happens due to the glutamate-mediated excitotoxicity,
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leading to excessive intracellular calcium, mitochondrial dysfunction, acidosis, and the
overproduction of free radicals [280–286]. This condition can be prevented by Prialt™
via inhibiting the release of glutamate [287,288] and calcium influx [276] and protecting
mitochondria from traumatic brain injury [289–291]. Moreover, Prialt™ can reduce the
expression of nNOS to inhibit apoptosis [178]. Furthermore, a recent article has reported a
novelω-conotoxin Bu8 with five amino acid residues and three disulfide bonds synthesized
by Conus Bullatus. The potency in inhibiting N-type voltage-gated calcium (CaV2.2)
channels is twice that of MVIIA, and the inhibition of CaV2.2 channels is highly selective,
so there are fewer side effects [292].

Because dendrotoxins (DTXs) selectively bind to the Kv1.1 channel, they can be used to
study the basic biology of K+ channels and the mechanisms of synaptic transmission. DTX
plays an essential role in neuronal degeneration and seizures in nonclinical models. Deletion
of Kcna1/Kv1.1 or Kcna2/Kv1.2 has been reported to cause epilepsy in rodents [179,180].
DTXs can bind to presynaptic KV channels with a high affinity, which reveals their great
potential to quantify the density of synapse in the CNS, and this potential usage might
be applied to the diagnosis of neurodegenerative diseases that affect the integrity of the
brain’s connectomes. For example, the loss of synapses in hippocampal tissue has been
detected by α-DTX [2].

4.5. Postsynaptic Neurotoxins

Although there is currently no drug derived from α-neurotoxins on the market for
muscle-associated diseases, there is data suggesting that some short-chain and long-chain
α-neurotoxins that target the NMJ and other nAchRs have the potential therapeutic ability
of treating disorders linked to NMJ dysfunction and others [181].

4.5.1. Anticancer

One characteristic of many tumors is the increased expression of nAChRs. The en-
hancement of tumor cell proliferation and the acceleration of tumor growth are associated
with nAChRs [293]. Ach, an autocrine growth factor of human lung cancer, can bind to
nAChRs in lung cancer cells to accelerate their proliferation, migration, and invasion [293].
Studies have shown that the nicotinic and/or muscarinic receptors mediate the growth
and apoptosis signals in mesothelioma and non-small-cell lung cancer (NSCLC) [294–297].
Furthermore, the activation of nAChRs stimulates lung cancer growth [294,298,299]. These
effects suggest that α-neurotoxins have potential anticancer therapeutic prospects because
they antagonize the receptors of the nAchRs. Moreover, α-cobratoxin has shown potential
anticancer effects for NSCLC [182].

4.5.2. Analgesia and Anti-Inflammation

We mainly discuss the long-chain toxin (cobratoxin) and short-chain toxin (cobrotoxin)
in this review, focusing on their analgesic effects. Cobratoxin is purified from Naja naja
kaouthia, and it has been suggested to have several essential functions including modulation
of the nerves, suppression of the immune system, and anti-tumor, anti-inflammatory, and
analgesic effects [183,300]. The possible analgesic mechanism is mediated by M4 mAChR,
which is activated by cobratoxin and then triggers the CaMKII/CREB signaling pathway
and inhibits low-potential Ca2+ channels [301]. Its effects of antinociception and anti-
inflammation are also due to binding to the α7 subtype of nAChR with high affinity, which
is followed by the decreased production of inflammatory cytokines such as TNF-α, IL-1,
and IL-2 [302].

Cobrotoxin is purified from Naja atra venom (NNAV). It shows great inhibition of the
inflammatory response in rat models of rheumatoid arthritis induced by adjuvant [303], as
well as analgesic effects in rodent models of inflammatory pain induced by formalin and
acetate [183]. It has been widely used for the treatment of chronic arthralgia, sciatica, and
neuropathic headache in the clinic. Cobrotoxin is an approved drug by the CFDA [304]
and has been called “Cobratide” in Chinese clinics. Recently, it has been reported that
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cobrotoxin in a higher dose has potential for the treatment of trigeminal neuralgia [305].
Cobrotoxin has similar analgesic action and underlying mechanisms of action as cobratoxin.
It might have dual pain regulation, and there is a hypothesis to explain this phenomenon,
namely, that cobrotoxin might activate the adenosine A1Rs and then inhibit the mitogen-
activated protein kinases/extracellular signal-regulated protein kinase pathway to exert
analgesic effects. However, with the increasing dose of cobrotoxin, the adenosine A2ARs
are activated to produce sensitization to pain [306]. Besides the analgesic effects, cobrotoxin
can also exert the effect of anti-inflammation by interacting with the NF-κB signaling
pathway [307]. The binding between cobrotoxin and the kinase domain of IKK can inhibit
the phosphorylation of IKK and then prevent the release of free NF-κB from IκB, thereby
reducing the transcription of inflammatory genes [308]. It is quite interesting that initial
animal and clinical studies showed that cobrotoxin (Cobratide) can treat acute gout and
relieve motor and some non-motor symptoms of PD (unpublished observations from
Dr Qin’s lab).

5. Summary

Neurotoxins targeting the synapse structure have attracted attention for treating dis-
eases that do not have a very effective therapy in the clinic. Up to now, natural neurotoxins
have been proven to be highly useful for the treatment of many kinds of diseases, and
the list of diseases being treated with neurotoxins keeps expanding. The neurotoxins
that have been approved for clinical use by the FDA and CFDA are Botox, Xeomin, Dys-
port, Myobloc/Neurobloc, Cobratide, and Prialt™; the rest are currently under preclinical
investigation for a variety of diseases.

5.1. Clinical Applications of FDA-Approved Neurotoxins

As we can see from Table 2, the clinical applications of neurotoxins, mainly BoNTs, on
the market are still limited, and most of them focus on muscle-related diseases and pain.
Therefore, other indications for these neurotoxins are now being studied to expand their
range of applications. BoNT has been found to treat neuropathic pain, neuroinflammation,
depression, and skin diseases, but the mechanisms involved have not been confirmed yet,
which limits their use in the clinic.

Table 2. Summary of the clinical applications of the FDA-approved neurotoxins.

Applications

Botox
Muscle

Blepharospasm hemifacial spasm
Strabismus cervical dystonia

Upper limb and lower limb (adults) spasticity
Bladder (neurogenic detrusor overactive (DO), overactive bladder (OB))

Forehead wrinkles

Other Migraine

Xeomin
Muscle Cervical dystonia frown lines

Blepharospasm upper limb spasticity

Other Sialorrhea in adults

Dysport Muscle
Cervical dystonia

Upper limb (adults) and lower limb (children + adults) spasticity
Frown lines and wrinkles

Myobloc/Neurobloc Cervical dystonia

Prialt™ Severe chronic pain

Cobratide Chronic pain
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5.2. Neurotoxins in Preclinical Studies

The other neurotoxins are mostly studied in the preclinical period. More informa-
tion about their pharmacological properties and toxicity is needed. For example, our
understanding of the Ca2+-independent effects of α-latrotoxin is still insufficient.

5.3. Expectations

In biological therapy, neurotoxic peptides offer great therapeutic potential, but they
still have many functions that need to be discovered and validated. In this review, we briefly
summarized the biological and clinical functions of neurotoxins aiming at synapses. There
are methodological challenges, such as the fact that these neurotoxins are peptides and
cannot cross the BBB or that they are unstable, which limits the wider use of neurotoxins
and is a major challenge. However, these neurotoxins aiming at synapses have passed
the test of time as biological therapeutics and have also made positive contributions in
animal models. In the future, more and more detailed studies are needed, and the structure
of these neurotoxins should be continuously improved to make them suitable for clinical
applications and benefit human beings.
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