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Abstract: Tetrodotoxin, an extremely potent low-molecular-weight neurotoxin, and its analogues
(TTXs) are widely distributed in aquatic and terrestrial ecosystems. Most investigations concern-
ing TTXs have been conducted mainly on puffer fish, octopus, and mollusks, without paying due
attention to various non-edible animals including nemerteans, a small group of marine worms,
several species of which have been shown to possess high amounts of TTXs. In this study, for
the first time, variations in TTX and its analogues, in 32 specimens of Cephalothrix cf. simula and
36 specimens of Kulikovia alborostrata, from Peter the Great Bay Sea of Japan were investigated,
which may contribute to elucidation of TTXs migration pathways in ecosystems. Using high per-
formance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS), it was found
that the total TTXs concentrations within both species vary by one to several orders of magnitude,
85.75–7108.26 µg/g and 0.35–8.11 ng/g in C. cf. simula and K. alborostrata, respectively. The intra- and
interspecies similarities in proportions of TTXs in both species were observed; based on the results, a
possible way of their toxification was discussed.

Keywords: tetrodotoxin; tetrodotoxin analogues; TTX; HPLC–MS/MS; Nemertea

Key Contribution: The total concentrations of TTX and its analogues in the extracts of C. cf. sim-
ula and K. alborostrata vary by several orders of magnitude within species. The qualitative TTXs
compositions in both species show similarity; the dominant toxins are TTX, 5,6,11-trideoxyTTX, and
monodeoxy TTX analogue 1.

1. Introduction

Tetrodotoxin (TTX) is an extremely potent low-molecular-weight sodium channel
blocker that originates from bacteria and is widespread in aquatic and terrestrial ecosystems.
It is responsible for seafood poisoning events in the countries of the Indo-Pacific region [1],
where it was recorded to cause paralysis and respiratory and/or heart failure, in severe
cases. Recently, invasive TTX-bearing species have become increasingly widely distributed
in waters of Europe, North and South America, and Oceania, thereby expanding the
geography of TTX poisoning [2]. It has also been reported that in animals, TTX usually
co-occurs with its analogues [3], of which several are more potent than TTX itself [4].

Nemertea is a phylum of marine worms, also known as ribbon worms, comprising
more than 1350 species [5], of which most are active predators. Among nemerteans, TTX
was first found in 1988 in Lineus fuscoviridis and Tubulanus punctatus [6]. Subsequently, a
number of TTX-bearing nemerteans were identified from all three classes of Nemertean
(Palaeonemertea, Pilidiophora, and Hoplonemertea); those included extremely toxic species
whose TTXs level reaches those recorded from pufferfish, octopus, and newts [7–10]. Cur-
rently, TTX profiles of different organisms attract the increasing attention of researchers
aiming to elucidate the accumulation mechanisms and migration pathways of TTXs in
ecosystems. Previously, a study of concentrations of TTX and its analogues in extremely
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toxic C. cf. simula specimens from different habitats revealed a wide variation in levels
of toxins. Thus, using a mouse bioassay, which is a less precise method than high perfor-
mance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS), Asakawa
et al. [10] estimated the toxicity of the C. simula population that inhabits Hiroshima Bay
(Japan) to be equivalent to 30.08–4555.02 µg/g of TTX per 1 g of body weight. Nevertheless,
they did not provide information about concentrations of the TTX analogues separately.
Another study of C. simula collected at Godrevy Point, Cornwall, England, described the
proportions of separate TTX analogues without evaluating the range of TTXs concentra-
tions, since TTXs were quantified in only a single specimen [11]. An earlier published study
with TTX quantification in a pooled sample from seven specimens of K. alborostrata, showed
that it contained < 0.6 ng/g [12]. In another study, only qualitative TTXs detection was
carried out.

In the present report, the concentrations of TTX and its analogues in two species of
nemerteans, the only TTX-containing animals known from the Russian coast of the Sea of
Japan were assessed. TTXs profiles for 32 specimens of C. cf. simula and 36 specimens of K.
alborostrata, collected from Spokoynaya Bay, Peter the Great Bay, were analyzed, and based
on the results, the possible way of their toxification was suggested.

2. Results

Eight TTXs were detected in extracts of C. cf. simula (Table 1, Figure 1a,b), with their
total concentration varying from 85.75 to 7108.26 µg/g of nemertean body weight. The
toxins TTX and 5,6,11-trideoxyTTX showed the highest representation: their mean values
were 601.91 ± 774.28 (from 27.11 to 2677.51 µg/g) and 886.52 ± 1394.02 µg/g (from 13.35
to 5737.72 µg/g), respectively; the third major toxin was monodeoxy TTX analogue 1, that
amounted to 157.47 ± 291.09 µg/g (from 3.03 to 1340.96 µg/g) (Figure 2a).

Figure 1. Representative high-performance liquid chromatography–tandem mass spectrometry
(HPLC–MS/MS) chromatograms of (a) tetrodotoxin (TTX) standard and (b) TTX and its analogues
from Cephalothrix cf. simula, and (c) Kulikovia alborostrata. The black and red lines represent two
different mass transitions (described in each chromatogram).
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Table 1. Concentrations of tetrodotoxin (TTX) and its analogues in extracts of Cephalothrix cf. simula.
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1 17 May 2020 764.88 31.45 0.37 2.08 2.84 56.91 1.83 3538.99 4399.33

2 16 June 2020 91.85 9.85 0.10 4.23 0.67 61.79 0.99 301.22 470.70

3 16 June 2020 524.84 21.09 0.61 0.60 4.51 306.33 0.62 3596.88 4455.47

4 3 July 2020 2630.35 19.18 0.03 0.04 13.72 21.48 - 762.12 3446.91

5 3 July 2020 98.91 1.26 0.06 0.03 0.37 5.22 0.41 121.86 228.11

6 3 July 2020 2274.31 34.16 5.20 - 6.10 106.23 346.29 4286.28 7058.56

7 4 July 2020 124.22 2.16 0.10 0.06 0.67 9.19 1.27 556.37 694.04

8 4 July 2020 84.17 7.01 0.04 4.81 0.32 46.44 0.56 281.13 424.48

9 5 July 2020 108.61 13.16 0.07 0.03 0.97 39.62 0.76 44.49 207.71

10 5 July 2020 108.52 9.50 0.01 0.02 1.04 29.23 1.33 106.86 256.50

11 5 July 2020 791.36 5.25 0.59 0.21 2.00 16.42 1.82 646.26 1463.93

12 7 July 2020 2677.51 16.17 - - 4.44 9.01 33.38 860.82 3601.32

13 7 July 2020 185.25 5.84 - - 0.81 34.56 86.94 230.07 543.46

14 7 July 2020 279.79 11.47 0.09 0.39 2.24 5.45 6.51 52.91 358.85

15 13 July 2020 2251.33 14.12 0.14 0.84 3.81 59.51 16.97 820.70 3167.42

16 13 July 2020 27.11 2.51 0.06 0.02 0.37 41.44 0.90 13.35 85.75

17 13 July 2020 78.89 5.69 0.04 0.02 1.89 261.44 0.44 111.44 459.85

18 13 July 2020 86.81 3.34 0.19 0.23 0.58 5.50 2.29 48.53 147.47

19 14 July 2020 189.84 16.68 0.03 0.02 3.49 319.14 0.82 149.94 679.95

20 14 July 2020 116.11 6.98 0.06 3.35 2.20 210.25 2.40 232.08 573.42

21 17 July 2020 223.41 30.10 0.22 0.39 4.61 891.39 2.49 540.23 1692.85

22 4 August 2020 915.69 35.86 0.42 0.12 7.29 1340.96 0.97 810.76 3112.08

23 4 August 2020 1218.41 36.05 0.28 0.17 5.48 68.51 41.63 5737.72 7108.26

24 4 August 2020 545.00 18.68 0.32 0.08 5.46 41.94 4.85 554.20 1170.53

25 4 August 2020 851.71 18.66 - - 3.44 636.93 86.39 1195.14 2792.28

26 4 August 2020 114.15 1.13 - - 0.18 3.03 9.09 54.53 182.11

27 4 August 2020 112.96 1.02 0.45 - - 5.43 2.28 56.42 178.55

28 4 August 2020 532.84 1.61 - - - 3.84 16.24 127.90 682.43

29 4 August 2020 381.59 2.36 0.18 15.96 0.82 6.16 2.33 436.23 845.63

30 4 August 2020 204.75 5.31 0.19 4.64 5.27 18.27 0.26 124.42 363.09

31 4 August 2020 271.18 14.44 0.05 0.24 1.36 138.16 27.34 1582.99 2035.76

32 4 August 2020 394.95 12.24 0.12 0.11 5.77 239.16 0.61 385.70 1038.66

-: not detected.
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Figure 2. Box and whisker plot representing the mean and median TTXs concentrations of
(a) Cephalothrix cf. simula (n = 32) and (b) Kulikovia alborostrata (n = 36). Lower and upper box
boundaries represent 25th and 75th percentiles, respectively; lines inside represents box median;
lower and upper error lines reflect the variability outside these percentiles; asterisks (*) indicate
outlying values; and an x mark indicates the mean value.

The extracts of K. alborostrata contained from one to six TTXs (Table 2, Figure 1a,c),
with a total concentration of 0.35–8.11 ng/g of nemertean body weight. The toxin with
the highest representation was 5,6,11-trideoxyTTX (1.28 ± 1.38 ng/g, from the level below
limit of detection (LOD) to 5.33 ng/g), followed by TTX (0.42 ± 0.78 ng/g, from the level
below LOD to 3.32 ng/g), monodeoxy TTX analogue 1 (0.1 ± 0.2 % ng/g, from the level
below LOD to 0.98 ng/g), and 11-norTTX-6-ol 2 (0.09 ± 0.18 ng/g, from the level below
LOD to 0.71 ng/g) (Figure 2b).

Table 2. Concentrations of tetrodotoxin (TTX) and its analogues in extracts of Kulikovia alborostrata.
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1 16 May 2020 2.42 0.54 - 0.30 - 0.65 - 3.03 6.94

2 17 May 2020 3.32 0.25 - - 0.2 0.40 0.27 2.35 6.79

3 18 May 2020 1.57 0.49 - 0.35 - 0.37 - 5.33 8.11

4 19 May 2020 - - - 0.71 - - - 2.30 3.01

5 20 May 2020 1.69 0.69 - 0.61 - 0.98 - - 3.97

6 12 June 2020 0.21 - - - - 0.07 - 0.91 1.19

7 12 June 2020 - - - - - - - 0.71 0.71

8 12 June 2020 - - - - - - - 0.63 0.63
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Table 2. Cont.
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9 12 June 2020 - - - - - - - 1.71 1.71

10 12 June 2020 - - 0.18 - - 0.11 - 1.58 1.87

11 12 June 2020 - - - - - - - 0.73 0.73

12 12 June 2020 - - - - - - - 0.35 0.35

13 12 June 2020 - - - - - - - 1.04 1.04

14 12 June 2020 - - - 0.42 - 0.32 - 0.45 1.19

15 12 June 2020 - - - 0.21 - 0.12 - 0.21 0.54

16 16 June 2020 1.23 0.25 - 0.15 - - - 3.47 5.10

17 16 June 2020 - - - 0.13 - 0.19 - 0.37 0.69

18 16 June 2020 - - - - - - - 0.45 0.45

19 16 June 2020 0.22 - - 0.28 - - - 0.26 0.76

20 16 June 2020 - - - - - 0.11 - 0.38 0.49

21 16 June 2020 - - - - - 0.11 - 0.25 0.36

22 16 June 2020 0.63 - - - - - - 4.77 5.40

23 16 June 2020 0.21 - - - - - - 1.98 2.19

24 16 June 2020 - - - - - - - 0.74 0.74

25 16 June 2020 1.48 - - - - - - 4.55 6.03

26 16 June 2020 0.22 - - - - - - 0.32 0.54

27 16 June 2020 0.62 - - - - - - - 0.62

28 16 June 2020 - - - - - - - 1.35 1.35

29 16 June 2020 - - - - - - - 0.74 0.74

30 16 June 2020 0.64 - - - - - - - 0.64

31 16 June 2020 - - - - - - - 0.76 0.76

32 16 June 2020 0.47 - - - - - - 0.27 0.74

33 16 June 2020 0.23 - - - - - - 0.88 1.11

34 16 June 2020 - - - - - - - 1.16 1.16

35 16 June 2020 - - - - - - - 1.46 1.46

36 16 June 2020 - - - - - - - 0.42 0.42

-: not detected.

3. Discussion

According to the results of HPLC–MS/MS, the total concentration of TTXs in C. cf.
simula, having a mean value of 1685.17 ± 1938.80 µg/g of nemertean body weight, varies
by several orders of magnitude, from 85.75 to 7108.26 µg/g (Table 1), which fits within the
range of toxin concentrations reported for this species [10,11]. The TTX concentration in the
extracts of K. alborostrata is 1.96 ± 2.18 ng/g (with a range from 0.35 to 8.11 ng/g), i.e., sig-
nificantly lower than that in the extracts of C. cf. simula (Tables 1 and 2). Therefore, the level
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of toxins in both C. cf. simula and K. alborostrata, within and between separate populations,
can vary by several orders of magnitude. The high difference in the toxin concentration
within the same species is typical for most TTX-bearing animals, like pufferfish, mollusks,
newts, etc. [13–19].

The toxins TTX, monodeoxy TTX analogue 1, and 5,6,11-trideoxy-TTX in the C. cf. simula
individuals, analyzed in the present study, have the highest percentages, from 11.78 to 78.08%
for TTX (from 27.11 to 2677.51 µg/g), from 0.25 to 56.85% for monodeoxy TTX analogue 1
(3.03 to 1340.96 µg/g), and from 14.74 to 80.73% for 5,6,11-trideoxy-TTX (from 13.35 to
5737.72 µg/g). Despite the wide variation in toxin concentrations between individuals, the
total proportion of the three toxins in all specimens made up 96.78 ± 3.09% of the total amount
of TTXs. The percentages of TTX, monodeoxy TTX analogue 1, and 5,6,11-trideoxy-TTX
in the extracts of seven C. cf. simula specimens, collected from the same locality (Peter the
Great Bay, Sea of Japan) in previous years, were similar [12,20]. In the study of 2018, the TTX
percentage amounted to 21.85%; monodeoxy TTX analogue 1, 32.33%; and 5,6,11-trideoxy-
TTX, 39.93% (with the total proportion of 94.11%) [12]. In 2020, the TTX percentage amounted
to 33.63 ± 15.48%; monodeoxy TTX analogue 1, 17.37 ± 15.86%; and 5,6,11-trideoxy-TTX,
44.97 ± 14.72% (with the total of 97.36 ± 1.75%) [20]. A different pattern of TTX analogues
was recorded from a C. simula caught in England: the content of TTX was 64%, followed
by 6,11-dideoxyTTX (21%), the total proportion of 5-deoxyTTX (11-deoxyTTX) and 5,6,11-
trideoxyTTX was 9.9% [11], and 11-oxoTTX amounted to 5%. Since only one specimen was
investigated, it was impossible to draw any conclusions regarding toxin profiles of different C.
cf. simula populations. Nevertheless, several studies carried out on pufferfish Lagocephalus
sceleratus, collected off North Lebanon [21] and along the Greece coast [22], as well as Arothron
nigropunctatus from two different localities, Okinawa, Japan, and the Solomon Islands [23]
have shown that neither qualitative nor quantitative TTX compositions can be considered
stable characteristics of the species.

TTXs have an exogenous origin in TTX-bearing animals, that accumulate directly
from marine bacteria, the primary TTX producers, and/or through the food web [24,25].
Since no biotransformation of TTX and its non-equilibrium analogues has been observed
in living organisms [26], the intraspecies difference in qualitative and quantitative TTX
profile, between specimens from different localities, may indicate its correlation with the
source of toxins, which is supposed to be unique in each region. The characteristic toxin
profile of each locality can originate from spectra of free-living bacteria and the microbiome
of animals inhabiting it. The final TTX profile of consumers, including nemerteans, is
presumably determined by their microbiome, or diet preferences (the TTX profiles of their
prey items), or both. To date, there have been no studies considering the correlation between
microbiome and TTX profile. However, the observations on the microbiomes of C. simula
from England and C. cf. simula from the Sea of Japan have revealed differences in the most
representative bacteria, even on the phylum level.

An interspecies comparison of the TTX profiles of C. cf. simula and K. alborostrata have
shown that some of the major toxins were the same. All the nemertean individuals were
divided into six groups, based on the toxins which comprised 60% of all toxins recorded
from them: (1) TTX; (2) 5,6,11-trideoxyTTX; (3) TTX + 5,6,11-trideoxyTTX; (4) TTX + mon-
odeoxy TTX analogue 1; (5) 5,6,11-trideoxyTTX + monodeoxy TTX analogue 1; and (6)
5,6,11-trideoxyTTX + 11-norTTX-6-ol 2. Four groups were common for C. cf. simula and
K. alborostrata, while both species were represented by five groups each (Figure 3). The
comparable compositions of the major toxins may result from similar accumulation path-
ways of TTX and its analogues for the two species, including obtainment from their own
microbiomes and/or preferred diet. Recently, it has been reported that the microbiomes of
C. cf. simula and K. alborostrata differ significantly [27] and, although the role of microbiome
cannot be ruled out, it is probable that the levels of TTXs within both species may also
include contributions from consumed prey. The effect of prey toxins profiles on predator
ones has already been demonstrated by several researchers. Thus, Ito et al. [28] have shown
that the TTX / 5,6,11-trideoxyTTX ratio in pufferfish (Chelonodon patoca) and toxic goby
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(Yongeichthys criniger) can result from this ratio in their presumable prey, the flatworm
Planocera multitentaculata. In another study on Octopus vulgaris fed shellfish, containing
another group of guanidinium toxins, paralytic shellfish toxins (PSTs), the similar PSTs
prevailed as a result [29]. Since in most individuals of C. cf. simula and K. alborostrata
from the same locality the major toxins are similar, TTX and 5,6,11-trideoxyTTX (Tables 1
and 2), which presumably suggests that their toxification have common sources. This
suggestion is supported by data from articles describing similar nemerteans’ dietary prefer-
ences as predators. Thus, members of the family Lineidae (which includes K. alborostrata)
prefer mostly polychaetes, from several families (Nereidae, Phyllodocidae, Polynoidae, and
Terebellidae) [30–35]. Prey preferences of the Cephalothrix species are poorly known, but
several feeding experiments have revealed their diverse diet that includes a wide range of
taxonomic classes of prey: polychaetes [36], oligochaetes, nematodes [33], and crustaceans
(amphipods and isopods) [37]. Therefore, it can be assumed that several prey items, com-
mon for both nemertean species, were the sources of the same toxins in them. Nevertheless,
this assumption should be further verified through dietary investigations, using DNA
metabarcoding and determination of toxin profiles of the presumed prey. Additionally,
the contribution of the microbiomes of C. cf. simula and K. alborostrata to their toxification
should not be ignored, and remains an important issue to address.
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Figure 3. The dominant toxins in 32 specimens of Cephalothrix cf. simula and 36 specimens of Kulikovia
alborostrata.

4. Conclusions

In the present study, a wide variation in TTXs concentrations have been observed
in extracts of C. cf. simula and K. alborostrata. The overlaps of the TTXs compositions
of the two species may indicate that both accumulate (at least some part of) toxins from
several common sources, including their own microbiomes and/or preferred diet. The
obtained TTXs profiles and those reported in the literature have been compared; and as
a result, the assumption has been made that TTXs profiles are specific for each region.
Further investigations of toxin profiles of different organisms are expected to elucidate the
migration pathways of TTXs and its analogues in ecosystems.

5. Materials and Methods
5.1. Sample Collection

Cephalothrix cf. simula (32 specimens) and Kulikovia alborostrata (36 specimens) were
obtained from rhizoids of the biennial brown alga Saccharina sp., collected at a depth of
0.5–1.5 m in Spokoynaya Bay, Peter the Great Bay, Sea of Japan (42.7090◦ N, 133.1809◦ E),
in May–August 2020 (Figure 4). After collection, the rhizoids were moved to the Vostok
Marine Biological Station of the A.V. Zhirmunsky National Scientific Center of Marine
Biology, Far Eastern Branch, Russian Academy of Sciences (Vladivostok, Russia) and placed
in tanks with seawater at 20 ◦C, and kept there until nemerteans came out of them. The
nemertean species were identified based on morphological characters, by Dr. Alexey V.
Chernyshev, an expert in nemertean biology from the A.V. Zhirmunsky National Scientific
Center of Marine Biology. Before extraction, the animals were kept in tanks, with aerated
seawater at 17 ◦C.
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Figure 4. Sampling location (a) of Cephalothrix cf. simula, and (b) Kulikovia alborostrata. (c) The images
of nemerteans were taken with a reflex camera in a macro mode.

5.2. Materials

All chemicals used were of analytical grade and were used as received, without any
further purification and were supplied by Sigma-Aldrich, St. Louis, MO, USA. TTX solution
was supplied by Alomone Labs Ltd., Jerusalem, Israel.

5.3. Extraction of TTX and Its Analogues

The nemertean extracts were prepared by the following procedure. The samples were
homogenized in a 0.1% solution of acetic acid in 70% methanol (the sample/solution ratio
was 1:10 v/v) for 5 min, using a hand-held homogenizer, and then ultrasonicated using a
Sonopuls HD 2070 homogenizer (Bandelin, Berlin, Germany) for 10 min (at a frequency
of 20 kHz; amplitude, 228 µm; working cycle, 0.8 s; and interval, 0.2 s). The homogenates
were centrifuged (14,000 × g, 10 min, 4 ◦C), and the supernatants were collected. The
remaining precipitates were extracted twice more, in a 0.1% solution of acetic acid in 70%
methanol (the sample/solution ratio was 1:2 v/v), and the supernatants were pooled. The
extracts were evaporated in a rotary evaporator (Labconco, Kansas City, MO, USA) at 60 ◦C.
The dry precipitates were dissolved in a 0.1% aqueous solution of acetic acid, at 1 mL/g
of nemertean tissue, and concentrated by ultrafiltration on a Vivaspin turbo concentrator
(nominal cutoff molecular weight of 5 kDa (Sartorius, Goettingen, Germany)). The resulting
samples were stored at –20 ◦C for further analysis.

5.4. Analysis of TTX and Its Analogues by HPLC–MS/MS

TTX and its analogues were identified by HPLC–MS/MS. The HPLC system included
two pairs of LC-30 pumps, a SIL-30AC autosampler, a CTO-20A thermostat, an SCL-20A
system controller, and a triple quadrupole mass spectrometer LCMS-8060 (ShimadzuEu-
ropa, Duisburg, Germany), with electrostatic spray ionization (ESI). Separation was carried
out on a SeQuant ZIC HILIC column (150 × 2.1 mm, 5 µm) (Merck, Darmstadt, Germany)
at 40 ◦C and a flow rate of 0.2 mL/min. A binary gradient was used: mobile phase A,
ammonia (5 mM) and formic acid (8 mM) in 94:6 acetonitrile/water; and mobile phase
B, ammonia (10 mM) and formic acid (20 mM) in water. A gradient profile was used
as follows: (a) 0–4.3 min, 15% B; (b) 4.3–16 min, 25% B; and (c) 16–20 min, 50% B. The
sample volume was 1 µL. A SeQuant ZIC-HILIC guard column (20 × 2.1 mm, 5 µm)
(Merck, Darmstadt, Germany) was installed in line, before the analytical column through
a two-position 6-port valve. At 4.4 min, the valve was switched, and the guard columns
were backflashed with isopropanol (4.4–9 min) and water (9–15 min), at a flow rate of
0.3 mL/min. At 16 min, the valve was switched back. The mass spectrometer was operated
in the scan (m/z 200–1,000) at multiple reaction monitoring (MRM) modes. The ion source
parameters were as follows: interface temperature, 380 ◦C; desolvation line temperature,
250 ◦C; nebulizing gas (N2) flow, 3 L/min; drying gas (N2) flow, 3 L/min; and heating gas
(dry air) flow, 17 L/min. Collision energy was 41 eV for precursor transition and 25 eV for
fragment transitions. The TTX concentration was calculated using the calibration curve of
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a standard TTX solution series. The toxins detection criteria included a precursor MRM
transition peak S/N ratio > 3, and a relative intensity of the fragment ion peak > 4%. TTX
analogues were detected without using the standards, according the order of toxins elution,
similar to that described by Bane et al. [4], where the same SeQuant ZIC-HILIC guard
column was used. The concentrations of TTX analogues were calculated following the
procedure of Chen et al. [38], using the TTX standard as a reference peak. The method was
validated using standard TTX solutions in the MRM mode. The linearity range was from
0.6 to 100 ng/mL; the recovery range from 1 to 100 ng/mL of TTX was 98.4%; the limit of
quantification was determined as S/N = 10 and was 0.6 ng/mL; the LOD was determined
as S/N = 3 and was 0.2 ng/mL; and the relative SD was 4.5–14.6%.
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