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4 Shirley Ryan AbilityLab, Northwestern Feinberg School of Medicine, 355 E. Erie St, Chicago, IL 60611, USA
5 Rady Children’s Hospital, 3030 Children’s Way MC 5062, San Diego, CA 92123, USA
6 Division of Paediatric Neurology and Developmental Medicine, LMU Center for Children with Medical

Complexity, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University of Munich,
Lindwurmstrasse 4, 80337 Munich, Germany

7 Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany
8 Beaumont Pediatric Physical Medicine & Rehabilitation–Royal Oak, 3535 W 13 Mile Rd #307,

Royal Oak, MI 48073, USA
* Correspondence: michaela.bonfert@med.uni-muenchen.de (M.V.B.);

florian.heinen@med.uni-muenchen.de (F.H.); Tel.: +49-89440057851 (F.H.)

Abstract: IncobotulinumtoxinA, a pure botulinumtoxinA formulation, is free of accessory proteins.
This analysis provides pooled safety data from phase 3 trials of children/adolescents (2–17 years),
investigating incobotulinumtoxinA for the treatment of spasticity associated with cerebral palsy (at
doses ≤20 U/kg (max. 500 U) per injection cycle (IC) for ≤6 ICs; three trials) or sialorrhea associated
with neurologic disorders (at total doses of 20–75 U per IC for ≤4 ICs; one trial) for ≤96 weeks. Safety
endpoints included the incidences of different types of treatment-emergent adverse events (TEAEs)
and immunogenicity. IncobotulinumtoxinA dose groups were combined. Of 1159 patients (mean
age 7.3 years, 60.4% males) treated with incobotulinumtoxinA, 3.9% experienced treatment-related
TEAEs, with the most common being injection site reactions (1.3%) (both indications), muscular
weakness (0.7%) (spasticity), and dysphagia (0.2%) (sialorrhea). Two patients (0.2%) experienced a
treatment-related treatment-emergent serious adverse event, and 0.3% discontinued the study due to
treatment-related TEAEs. No botulinumtoxinA-naïve patients developed neutralizing antibodies
(NAbs) after incobotulinumtoxinA. All children/adolescents with known pre-treatment status and
testing positive for Nabs at final visit (n = 7) were previously treated with a botulinumtoxinA other
than incobotulinumtoxinA. IncobotulinumtoxinA was shown to be safe, with very few treatment-
related TEAEs in a large, diverse cohort of children/adolescents with chronic conditions requiring
long-term treatment and was without new NAb formation in treatment-naïve patients.

Keywords: botulinum toxin; incobotulinumtoxinA; muscle spasticity; all movement disorders; all
pediatric; sialorrhea; safety; immunogenicity; antibodies

Key Contribution: Repeated injections of incobotulinumtoxinA, given for up to 96 weeks, were asso-
ciated with very few treatment-related adverse events in a large, diverse cohort of children/adolescents
with either spasticity related to cerebral palsy or sialorrhea associated with neurologic conditions.
Additionally, no botulinumtoxinA-naïve patients developed neutralizing antibodies after incobo-
tulinumtoxinA, indicating a lack of immunogenicity of incobotulinumtoxinA.
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1. Introduction

BotulinumtoxinA (BoNT-A) is used to treat several conditions affecting children/
adolescents, such as spasticity, chronic sialorrhea (drooling), overactive bladder, and strabis-
mus [1–5]. Since many of these conditions require repeated and long-term interdisciplinary
therapy (including with BoNT-A) [2,3,6], which may need careful adjustment over time to
fit the patient’s development and needs [7,8], both safety and long-term treatment response
are paramount considerations when treating pediatric populations with BoNT-A.

As with other biologic drugs, long-term treatment with BoNT-A can be associated
with immunogenicity that limits the usefulness of established treatments, may lead to
higher required treatment doses, or can be the reason for secondary nonresponse to
treatment [6,9,10]. However, not all BoNT-A formulations have the same potential for
immunogenicity [6,11–13]. The relative immunogenicity of each BoNT formulation is
determined by both the amount of core neurotoxin protein (the active component) and the
amount of accessory clostridial proteins (the nontherapeutic component) [6,10]. Although
only neutralizing antibodies (Nabs) against the core neurotoxin can interfere with the
therapeutic effect and result in clinical nonresponsiveness [14], activation of the immune
response by the accessory proteins, particularly the hemagglutinin-1 protein, can facilitate
this unwanted NAb development [10,13,15]. Thus, one approach to reducing the risk of
developing NAbs is to choose a BoNT-A formulation that contains only active neurotoxin
proteins with no accessory protein content [6,10,12].

IncobotulinumtoxinA is an approved, highly purified BoNT-A formulation contain-
ing only the active neurotoxin [16]. While other BoNT-As on the market contain varying
amounts of accessory proteins, all accessory proteins and other bacterial substances, such
as flagellin, are removed from incobotulinumtoxinA during manufacturing [6,10]. These
reasons are thought to explain the low risk of immunogenicity seen with incobotulinum-
toxinA [6,11].

In the current report, pooled analyses of safety and immunogenicity data from four
phase 3 clinical trials investigating incobotulinumtoxinA for the treatment of lower limb
(LL) and/or upper limb (UL) spasticity associated with cerebral palsy (CP) (Treatment
with IncobotulinumtoxinA in Movement (TIM) [17]; Treatment with IncobotulinumtoxinA
in Movement Open-label (TIMO) [18]; incobotulinumtoXinA in aRm treatment in cere-
bral pAlsy (XARA) [19]) or sialorrhea associated with neurological disorders (Sialorrhea
Pediatric Xeomin Investigation (SIPEXI) [20]) in children/adolescents (aged 2–17 years)
are presented. This large database, which includes findings from more than 1100 chil-
dren/adolescents treated for up to 96 weeks, provides insights into both the safety and
immunogenicity profiles of incobotulinumtoxinA.

2. Results
2.1. Demographics

This pooled trial analysis included 1159 patients who received at least one injection
cycle (IC) of incobotulinumtoxinA for either spasticity (n = 907) or sialorrhea (n = 252).
The overall mean age was 7.3 years, and 60.4% were males. Overall, 44.3% of patients
were ambulatory without the need for a hand-held walking device (Gross Motor Function
Classification System [GMFCS] levels I–II [21]), and 28.3% had severe motor impairments
(GMFCS levels IV–V [21]) (Table 1).

Table 1. Demographics of pediatric patients in phase 3 studies of incobotulinumtoxinA by indication
and overall.

Indication Spasticity a Sialorrhea b Overall

n 907 252 1159
Male sex, n (%) 541 (59.6) 159 (63.1) 700 (60.4)
Age, years, mean (SD) 6.7 (4.2) 9.4 (3.7) 7.3 (4.3)
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Table 1. Cont.

Indication Spasticity a Sialorrhea b Overall

Weight, kg, mean (SD) 23.3 (13.9) 27.6 (11.8) 24.2 (13.6)
GMFCS-E&R levels c

I–II 452 (49.8) 61 (24.2) 513 (44.3)
III 206 (22.7) 25 (9.9) 231 (19.9)
IV–V 249 (27.5) 79 (31.3) 328 (28.3)
missing 0 (0.0) 87 (34.5) 87 (7.5)
Number of ICs (Mean, SD) 3.59 (1.31) 3.55 (0.73) 3.58 (1.21)
Pre-treatment with BoNT d

(Yes), n (%)
462 (50.9) Missing e 462 (39.9)

Location of spasticity:
LL 849 (93.6%) n/a n/a
UL 454 (50.1%) n/a n/a
Affected body side
Left 138 (15.2) n/a n/a
Right 168 (18.5) n/a n/a
Bilateral 601 (66.3) n/a n/a

a Patients enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17], TIMO (Treatment with
IncobotulinumtoxinA in Movement Open-label) [18], and XARA (incobotulinumtoXinA in aRm treatment in
cerebral pAlsy) [19]. b Patients enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20]. c GMFCS
levels [21] were determined in patients in the spasticity trials and in patients with sialorrhea who had CP. d Pre-
treated was defined as treatment with BoNT for any indication at any time prior to the study. e Information
concerning pre-treatment with any BoNT for any indication was not routinely assessed in the SIPEXI study. BoNT,
botulinumtoxin; CP, cerebral palsy; GMFCS-E&R, Gross Motor Function Classification System–Expanded and
Revised; ICs, injection cycles; LL, lower limb; n/a, not applicable; SD, standard deviation; UL, upper limb.

The mean number of ICs was 3.6 for both patients treated for spasticity (maximum
6 ICs) or sialorrhea (maximum 4 ICs). Overall, 975 (84.1%) children/adolescents completed
their respective trial (753 (83.0%) treated for spasticity and 222 (88.1%) for sialorrhea).

2.2. Safety: Pediatric Spasticity and Sialorrhea

At least one treatment-emergent adverse event (TEAE) was reported at any time
during repeated cycles of incobotulinumtoxinA for 481 of 1159 (41.5%) children. A total of
45 (3.9%) participants experienced events considered treatment-related by investigators,
all but one of which were mild or moderate in severity. A total of 23 participants (2.0%)
experienced at least one TEAE of special interest (TEAESI), potentially indicative of toxin
spread, the vast majority of whom experienced events that were mild to moderate in
intensity (n = 22). A total of 15 (1.3%) TEAESIs were considered treatment-related by the
respective investigator (Table 2).

Overall, 58 (5.0%) children/adolescents reported treatment-emergent serious adverse
events (TESAEs), two of whom had events considered treatment-related by investigators;
both patients were being treated for spasticity (Table 2). There was no difference in the
frequency of TESAEs by age: 5.1% of 922 children aged 2–11 years developed a TESAE
versus 11 (4.6%) of 237 children aged 12–17 years. The events were considered treatment-
related in 3 (0.3%) of 12 patients with spasticity and 1 (0.4%) of 6 patients with sialorrhea
who discontinued treatment because of TEAEs (Table 2). There were no fatal TEAEs.

The proportions of children/adolescents reporting TEAEs with incobotulinumtoxinA
by indication (for the treatment of spasticity or sialorrhea; 40.0%, 46.8%, respectively) were
similar to those of the overall treated population (41.5%) (Table 2).
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Table 2. TEAEs by indication and overall in children/adolescents with spasticity or sialorrhea
receiving repeated doses of incobotulinumtoxinA.

n (%) Subjects with: Spasticity a (n = 907) Sialorrhea b (n = 252) Overall (n = 1159)

Any TEAE 363 (40.0) 118 (46.8) 481 (41.5)
TR TEAE 33 (3.6) 12 (4.8) 45 (3.9)
Any TEAESI 18 (2.0) 5 (2.0) 23 (2.0)
TR TEAESI 10 (1.1) 5 (2.0) 15 (1.3)
Any TESAE 49 (5.4) 9 (3.6) 58 (5.0)
TR TESAE 2 (0.2) 0 (0.0) 2 (0.2)
Any TEAE leading to discontinuation 12 (1.3) 6 (2.4) 18 (1.6)
TR TEAE leading to discontinuation 3 (0.3) 1 (0.4) 4 (0.3)
Any fatal TEAE 0 (0.0) 0 (0.0) 0 (0.0)

a Patients enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17], TIMO (Treatment with
IncobotulinumtoxinA in Movement Open-label) [18], or XARA (incobotulinumtoXinA in aRm treatment in
cerebral pAlsy) [19]. b Patients enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20]. TEAE,
treatment-emergent adverse event; TEAESI, treatment-emergent adverse event of special interest (potentially
indicative of toxin spread); TESAE, treatment-emergent serious adverse event; TR, treatment-related.

2.3. TEAEs by IC

Figure 1 presents the overall incidence of TEAEs by IC for patients treated with
incobotulinumtoxinA. The incidence of TEAEs per IC was <22% and tended to decrease
over subsequent injection cycles, with the highest numbers occurring in IC1 and the fewest
occurring in IC5. Treatment-related TEAEs occurred infrequently in each IC (with <2.0%
incidence). No treatment-related TEAEs occurred during the fifth and sixth ICs.
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Figure 1. The incidence of TEAEs by IC for pediatric patients with spasticity or sialorrhea treated
with incobotulinumtoxinA a. a All patients with spasticity were enrolled in TIM (Treatment with
IncobotulinumtoxinA in Movement) [17], TIMO (Treatment with IncobotulinumtoxinA in Movement
Open-label) [18], or XARA (incobotulinumtoXinA in aRm treatment in cerebral pAlsy) [19], and
patients with sialorrhea were enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20].
IC, injection cycle; TEAE, treatment-emergent adverse event; TEAESI, treatment-emergent adverse
event of special interest (potentially indicative of toxin spread); TESAE, treatment-emergent serious
adverse event; TR, treatment-related.
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The pattern of decreasing TEAE incidence with repeated dosing across all six ICs
was seen specifically in children/adolescents treated for spasticity together with a low
incidence of treatment-related TEAEs (≤2%) (Figure 2). In children/adolescents treated for
sialorrhea, the TEAE and treatment-related TEAEs were reported with similar frequency
across all four ICs; again, the incidence of treatment-related TEAEs was low across all ICs
(<3.0%; Figure 3).
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Figure 2. The incidence of TEAEs by IC for pediatric patients with spasticity treated with incobo-
tulinumtoxinA a. a All patients were enrolled in TIM (Treatment with IncobotulinumtoxinA in
Movement) [17], TIMO (Treatment with IncobotulinumtoxinA in Movement Open-label) [18], or
XARA (incobotulinumtoXinA in aRm treatment in cerebral pAlsy) [19]. IC, injection cycle; TEAE,
treatment-emergent adverse event; TEAESI, treatment-emergent adverse event of special interest
(potentially indicative of toxin spread); TESAE, treatment-emergent serious adverse event; TR,
treatment-related.

Toxins 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 3. The incidence of TEAEs by IC for pediatric patients with sialorrhea treated with incobot-

ulinumtoxinA a. a All patients enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20]. 

IC, injection cycle; TEAE, treatment-emergent adverse event; TEAESI, treatment-emergent adverse 

event of special interest (potentially indicative of toxin spread); TESAE, treatment-emergent serious 

adverse event; TR, treatment-related. 

2.4. Most Common TEAEs by Indication 

TEAEs reported during repeated incobotulinumtoxinA ICs generally showed some 

relation to indication. For instance, 13 (1.4%) of those treated for spasticity reported mus-

culoskeletal and connective tissue disorders as treatment-related TEAEs, but none were 

reported in the group treated for sialorrhea. Gastrointestinal disorders, including dyspha-

gia and dry mouth, were more common in those treated for sialorrhea. 

2.4.1. Spasticity 

The most common TEAEs reported in children/adolescents with spasticity during up 

to six ICs of incobotulinumtoxinA were as would be expected in this young population. 

The most frequent events (in >2.0% of children/adolescents) were nasopharyngitis (8.7%), 

bronchitis (4.6%), upper respiratory tract infection (3.9%), pharyngitis (3.6%), viral respir-

atory tract infection (2.8%), pyrexia (2.8%), and pain in the extremity (2.1%), with >95% of 

each event being mild or moderate in severity. 

All treatment-related TEAEs, the most common of which are shown in Table 3, were 

mild or moderate in severity, except for one case of seizure that was also considered a 

TESAE and led to discontinuation of incobotulinumtoxinA. The other reported treatment-

related TESAE was an influenza-like illness that led to discontinuation of incobotuli-

numtoxinA. One case of eyelid ptosis, considered treatment-related by the investigator 

but not serious, led to discontinuation of treatment. 

Table 3. Most common treatment-related TEAEs (≥2 subjects) in 907 children/adolescents with spas-

ticity during up to six ICs of incobotulinumtoxinA a. 

Event n (%) with Event 

Muscular weakness 6 (0.7) 

Pain in extremity 4 (0.4) 

Myofascial pain syndrome 2 (0.2) 

Injection site pain 5 (0.6) 

Injection site erythema 3 (0.3) 

Influenza-like illness 2 (0.2) 

Pyrexia 2 (0.2) 

Figure 3. The incidence of TEAEs by IC for pediatric patients with sialorrhea treated with incobo-
tulinumtoxinA a. a All patients enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20].
IC, injection cycle; TEAE, treatment-emergent adverse event; TEAESI, treatment-emergent adverse
event of special interest (potentially indicative of toxin spread); TESAE, treatment-emergent serious
adverse event; TR, treatment-related.
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2.4. Most Common TEAEs by Indication

TEAEs reported during repeated incobotulinumtoxinA ICs generally showed some
relation to indication. For instance, 13 (1.4%) of those treated for spasticity reported
musculoskeletal and connective tissue disorders as treatment-related TEAEs, but none
were reported in the group treated for sialorrhea. Gastrointestinal disorders, including
dysphagia and dry mouth, were more common in those treated for sialorrhea.

2.4.1. Spasticity

The most common TEAEs reported in children/adolescents with spasticity during up
to six ICs of incobotulinumtoxinA were as would be expected in this young population.
The most frequent events (in >2.0% of children/adolescents) were nasopharyngitis (8.7%),
bronchitis (4.6%), upper respiratory tract infection (3.9%), pharyngitis (3.6%), viral respira-
tory tract infection (2.8%), pyrexia (2.8%), and pain in the extremity (2.1%), with >95% of
each event being mild or moderate in severity.

All treatment-related TEAEs, the most common of which are shown in Table 3, were
mild or moderate in severity, except for one case of seizure that was also considered a TESAE
and led to discontinuation of incobotulinumtoxinA. The other reported treatment-related
TESAE was an influenza-like illness that led to discontinuation of incobotulinumtoxinA.
One case of eyelid ptosis, considered treatment-related by the investigator but not serious,
led to discontinuation of treatment.

Table 3. Most common treatment-related TEAEs (≥2 subjects) in 907 children/adolescents with
spasticity during up to six ICs of incobotulinumtoxinA a.

Event n (%) with Event

Muscular weakness 6 (0.7)
Pain in extremity 4 (0.4)
Myofascial pain syndrome 2 (0.2)
Injection site pain 5 (0.6)
Injection site erythema 3 (0.3)
Influenza-like illness 2 (0.2)
Pyrexia 2 (0.2)

a All patients were enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17], TIMO (Treatment
with IncobotulinumtoxinA in Movement Open-label) [18], or XARA (incobotulinumtoXinA in aRm treatment in
cerebral pAlsy) [19]. ICs, injection cycles; TEAE, treatment-emergent adverse event.

TEAESIs reported during up to six incobotulinumtoxinA ICs in children/adolescents
with spasticity were most commonly (in ≈2.0% of children/adolescents) muscular weak-
ness (n = 6; 0.7%) (Table 3), dyspnea, constipation, and dysphagia (n = 3; 0.3%), respectively.

2.4.2. Sialorrhea

TEAEs in this patient group again reflected their age, with nasopharyngitis (7.5%),
pharyngitis (7.5%), pyrexia (4.8%), respiratory tract infection (4.4%), headache (3.6%), upper
respiratory tract infection (3.2%), cough (3.2%), respiratory disorder (2.8%), viral respiratory
tract infection (2.4%), viral upper respiratory tract infection (2.4%), and viral infection (2.4%)
being most frequently reported in >2.0% of participants. All these most common TEAEs
were mild or moderate in severity.

Only two treatment-related TEAEs were reported in two or more children/adolescents
receiving incobotulinumtoxinA for sialorrhea (dysphagia, n = 5 and dry mouth, n = 2). All
treatment-related TEAEs were mild or moderate in severity„ and none were considered
serious. Dysphagia, altered saliva, and choking, all considered treatment-related, led to
discontinuation of treatment by one adolescent.

The only TEAESI reported during up to four incobotulinumtoxinA ICs in patients
with sialorrhea was dysphagia (n = 5; 2.0%).



Toxins 2022, 14, 585 7 of 16

2.5. Immunogenicity

Overall, 520 patients treated with incobotulinumtoxinA were eligible for antibody
testing at screening, but, ultimately, fluorescence immunoassay (FIA) testing was achievable
in 423 (81.3%). At the last visit, 613 patients treated with incobotulinumtoxinA were eligible
for antibody testing, and FIA results were achievable for 393 (64.1%) (Table 4). Overall,
there were patients for whom no hemidiaphragm assay (HDA) tests were performed, either
at screening (n = 25) or the last visit (n = 22), after a positive FIA result. These HDA
results were set to “missing” and were recorded as deviations from the trial protocol. BoNT
pre-treatment status was routinely assessed only in trials of patients with spasticity.

Table 4. Immunogenicity finding in children/adolescents with spasticity or sialorrhea receiving
repeated doses of incobotulinumtoxinA, a overall, and by BoNT pre-treatment status.

Study Screening Last Study Visit b

Indication N Eligible c N Tested
Positive
FIA Test,

n (%)

Positive
HDA Test,

n (%) d
N Eligible c N Tested

Positive
FIA Test, n

(%)

Positive
HDA Test,

n (%) e

Overall 520 423 60 (14.2) 10 (2.4) 613 393 54 (13.7) 10 (2.5) f

Sialorrhea 163 80 10 (12.5) 3 (3.8) 197 75 8 (10.7) 3 (4.0) f

Spasticity 357 343 50 (14.6) 7 (2.0) 416 318 46 (14.5) 7 (2.2)
Treatment-

naïve 141 139 13 (9.4) 0 (0.0) 164 125 14 (11.2) 0 (0.0)

Pre-treated g 216 204 37 (18.1) 7 (3.4) 252 193 32 (16.6) 7 (3.6)
a All patients with spasticity were enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17],
TIMO (Treatment with IncobotulinumtoxinA in Movement Open-label) [18], or XARA (incobotulinumtoXinA in
aRm treatment in cerebral pAlsy) [19], and patients with sialorrhea were enrolled in SIPEXI (Sialorrhea Pediatric
Xeomin Investigation) [20]. Only children with a body weight ≥30 kg (SIPEXI) or ≥21 kg (TIM, TIMO, XARA)
were eligible for antibody testing due to the comparatively large blood volume needed. b Last visit refers to an
individual’s last visit, meaning that at least one post-baseline antibody measurement was available. c Number of
children/adolescents for whom antibody assessments could have been performed. d HDA results were missing
for 25 children/adolescents overall, 3 with sialorrhea, 22 with spasticity overall, 6 who were BoNT-naïve, and 16
who were pre-treated with positive FIA results. e HDA results were missing for 22 children/adolescents overall,
0 with sialorrhea, 22 with spasticity, 9 who were BoNT-naïve, and 13 who were pre-treated and had positive
FIA results. f One additional child/adolescent had a borderline HDA result. g Pre-treatment was defined as
pre-treatment with BoNT for any indication at any time prior to study entry. FIA, fluorescence immunoassay;
HDA, hemidiaphragm assay.

Across the four pediatric trials, 60 of 423 tested (14.2%) children/adolescents had a
positive FIA test at screening and 54 of 393 tested (13.7%) were FIA-positive at the last visit
(Table 4). Using the HDA, 10 of 423 (2.4%) children/adolescents tested positive for NAbs
at screening and 10 of 393 (2.5%) were NAb-positive at the last visit (Table 4). Analysis of
the subpopulation with known pre-treatment status showed that no BoNT-naïve patients
developed NAbs after incobotulinumtoxinA injections; all children with positive NAb tests
had previously been treated with a BoNT other than incobotulinumtoxinA (Table 5).

Overall, no cases of secondary nonresponse due to NAb formation were identified in
the course of the four trials. Most subjects with positive HDA or FIA results, without further
determination of NAbs, as assessed at any time during the study, responded to treatment
based on the investigator’s Global Impression of Change of Plantar Flexor Spasticity Scale
assessment. One subject with spasticity in the TIM trial, who was HDA-positive at screening
but negative at the end of the trial, showed limited or no change in function. In SIPEXI, of
the three subjects with positive results in the HDA test (all were positive at screening and
at last visit), two showed a clear response to treatment with incobotulinumtoxinA despite
the presence of antibodies against BoNT-A. The other subject had received a placebo in the
main period (MP) and discontinued the trial at the end of the second IC due to withdrawal
by the subject. In this subject, the response to treatment was on the same level for both
placebo and incobotulinumtoxinA.
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Table 5. Listing of subjects with positive HDA results: TIM, TIMO, XARA, and SIPEXI studies
pooled a.

Patient Indication Pre-
Treated/Naïve

HDA Result at
Screening Visit b

HDA Result at
Individual

Final Visit b

1 Spasticity Pre-treated Positive Positive
2 Spasticity Pre-treated Missing Positive
3 Spasticity Pre-treated Positive Positive
4 Spasticity Pre-treated Missing Positive
5 Spasticity Pre-treated Missing Positive
6 Spasticity Pre-treated Positive Positive
7 Spasticity Pre-treated Missing Positive
8 Spasticity Pre-treated Positive Missing
9 Spasticity Pre-treated Positive Negative

10 Spasticity Pre-treated Positive Missing
11 Spasticity Pre-treated Positive Missing
12 Sialorrhea Undetermined Positive Positive
13 Sialorrhea Undetermined Positive Positive
14 Sialorrhea Undetermined Positive Positive

a All patients with spasticity were enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17],
TIMO (Treatment with IncobotulinumtoxinA in Movement Open-label) [18], or XARA (incobotulinumtoXinA in
aRm treatment in cerebral pAlsy) [19], and patients with sialorrhea were enrolled in SIPEXI (Sialorrhea Pediatric
Xeomin Investigation) [20]. Only children with a body weight ≥30 kg (SIPEXI) or ≥21 kg (TIM, TIMO, XARA)
were eligible for antibody testing due to the comparatively large blood volume needed. b The seven children with
spasticity who had positive NAb tests at screening and the seven with positive results at the final visit had all
received prior treatment with a BoNT other than incobotulinumtoxinA (four with onabotulinumtoxinA, one with
abobotulinumtoxinA, and two with both onabotulinumtoxinA and abobotulinumtoxinA). However, the three
children with positive HDA test results in SIPEXI, all of whom were positive both at screening and last visit, had
not previously received BoNT for sialorrhea, according to their caregivers. HDA, hemidiaphragm assay.

3. Discussion

This large pediatric CP population encompassed very young children (2–5 years old)
as well as those aged up to 17 years and patients with all levels of motor impairment,
including those with severe motor impairments (GMFCS levels IV–V). In addition, these
study data are closer to replicating the real-world use of botulinumtoxin in children than
are previous clinical trial data. Children/adolescents received consecutive incobotulinum-
toxinA injection treatments for spasticity and sialorrhea for a mean of 3.6 ICs and for a
maximum period of 96 weeks. IncobotulinumtoxinA was well tolerated, as indicated by a
high patient retention rate (overall, 84.1% of the children/adolescents completed their trial,
across all trials). Results of the current analyses indicate that, over the utilized multiple ICs,
incobotulinumtoxinA has a favorable safety and tolerability profile when administered re-
peatedly to children/adolescents for spasticity (at doses of up to 20 U/kg (maximum 500 U)
per IC for up to six ICs) or sialorrhea (at total doses of 20–75 U per IC for up to four ICs).
Only 3.9% (n = 45) of 1159 children/adolescents treated with repeated incobotulinumtoxinA
ICs developed a treatment-related TEAE. Treatment-related TEAESIs, TESAEs, and TEAEs,
leading to discontinuation, occurred infrequently. The findings indicate that the frequency
of TEAEs and treatment-related TEAEs generally decreased with repeated injections. Most
TEAEs were considered mild or moderate in intensity, and the most common were, as
would be expected in predominantly young children, respiratory disorders and pyrexia.

Treatment-related TEAEs were generally associated with the indication (muscle weak-
ness for spasticity and dysphagia for sialorrhea) or route of administration (injection site
reactions). Two patients experienced a TESAE, which was considered by the respective
local investigator to be treatment-related: one was a seizure and the other was a flu-like
illness; both led to discontinuation of treatment.

Seizure was also reported with onabotulinumtoxinA in a study of 381 children with
LL spasticity; in this study, 4 (1.6%) of the 254 patients treated with onabotulinumtoxinA
had a seizure [22]. These authors noted that seizure is a common CP comorbidity and that
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many of their patients (19%) had a medical history of seizure, including the four mentioned
here. Indeed, Szpindel and colleagues [23] found an elevated risk of epilepsy in two cohorts
of children with CP (42.1% using registry data (n = 302) and 43.2% using administrative
data (n = 370) compared to 1.39% in controls (n = 6040)), with the prevalence of epilepsy
doubling in those with the highest versus the lowest GMFCS level of disability. It should
be noted here that the clinical trials described in the current report included participants at
all GMFCS levels (I–V), in whom an additional two generalized tonic–clonic seizures (0.2%)
and one report of epilepsy were identified but not considered to be treatment-related.

The current findings represent the largest prospectively collected database available to
date on the use of incobotulinumtoxinA in children and confirm the findings of a smaller
real-world study that found this BoNT to have a good safety profile in pediatric patients [24].
Studies in adults have reported that incobotulinumtoxinA is associated with few treatment-
related adverse events (AEs) when administered for a variety of indications, including
cervical dystonia [25], spasticity [26], blepharospasm and other neurologic conditions [27],
and aesthetic indications [28].

Antibody testing is an important assessment in studies of BoNT-A, although it is
burdensome due to the additional required blood samples from patients and, therefore,
was only allowed in all incobotulinumtoxinA trials for patients with higher body weights
(≥21 kg in TIM, TIMO, and XARA and ≥30 kg in SIPEXI). Overall, the rates of HDA positiv-
ity were similar in those with available data prior to treatment (at screening) compared with
those with available data after incobotulinumtoxinA treatment (at the last study visit) (2.4%
vs. 2.5%). Importantly, among 318 patients with spasticity, known BoNT pre-treatment
status, and available antibody testing results, no BoNT-naïve patients developed new NAbs
during treatment with incobotulinumtoxinA (i.e., tested negative at the screening visit but
tested positive at the individual’s final visit). The seven children with spasticity who had
positive NAb tests at screening and the seven with positive results at the final visit had
all been pre-treated with a BoNT other than incobotulinumtoxinA. Of clinical importance,
pre-existing NAbs did not prevent successful treatment with incobotulinumtoxinA, and no
cases of secondary nonresponse due to NAb formation were identified during any of the
four trials included in this analysis. In patients with sialorrhea, all three who tested positive
at the individual’s final visit had also tested positive at the screening visit; in these cases,
whether the patients had been pre-treated with BoNT-A could not be verified. Additionally,
information necessary for final determination of the cause of NAb was incomplete for the
four pre-treated patients with spasticity who had missing screening results.

There are some data available about the immunogenicity of other BoNT-A formula-
tions in children/adolescents. In a prospective, open-label clinical trial of 207 children
with CP-related spasticity treated with onabotulinumtoxinA (average treatment duration
1.46 years), 28% had newly developed NAbs (using the mouse protection assay; MPA)
and 6% had detectable NAbs with clinical nonresponse [29]. In a small study of children
aged 2 to 6 years with CP-related spasticity, Oshima and colleagues [30] reported a 0%
rate of blocking-antibody formation using the MPA after 26 months of treatment with
onabotulinumtoxinA administered once a year (n = 20), but the rate increased to 11% in
those treated three times a year (n = 18). Immunogenicity data have also been reported for
abobotulinumtoxinA. In a prospective, repeat-treatment, open-label extension (OLEX) of a
double-blind study, 207 children aged 2–17 years were treated with abobotulinumtoxinA
for CP-related LL spasticity (maximum total dose per IC: 30 U/kg or 1000 U). After up
to four injections of abobotulinumtoxinA over the course of 1 year, NAbs were detected
in 2.1% (4/193) of patients; all those positive for NAbs had received prior treatment with
BoNT-A, although the prior formulation and method for detecting NAbs were not specified
in the report [31]. Delgado and colleagues [32] reported a similar rate of NAb formation
(2.3%) using the MPA in children with CP treated with abobotulinumtoxinA (8 U/kg or
16 U/kg) for UL spasticity for up to four ICs; all had been pre-treated with BoNT-A. It
should be noted that the MPA is a considerably less sensitive assay than the HDA used in
the current study [33]. For clinicians, these reports highlight the importance of considering
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the immunologic differences in accessory protein content among BoNT-A formulations, as
the presence of NAbs can result in secondary nonresponse to treatment [34].

Most insights with regard to the potential for immunogenicity and risk of secondary
nonresponse with BoNTs have come from the longer established adult indications. The
recent evidence regarding BoNT-A treatment in adults does indeed indicate that the risk
of provoking an immune response differs among BoNT-A formulations [11], with higher
levels of antibodies produced by BoNT-A formulations with higher protein loads [6,9,12].
Preclinical and clinical studies data suggest that incobotulinumtoxinA carries less risk of
inducing an immunogenic response relative to other BoNT-As because of its high degree of
purity, reflecting the removal of BoNT-A accessory proteins [35,36]. For example, a cross-
sectional analysis of antibody prevalence across indications and BoNT-A formulations
found NAb prevalence was similar for abobotulinumtoxinA and onabotulinumtoxinA but
absent with incobotulinumtoxinA [14]. A meta-analysis of 43 studies involving 8833 pa-
tients over the period 2000–2020 reported that abobotulinumtoxinA produced the highest
incidence of NAbs (7.4%) versus <0.003% for incobotulinumtoxinA and onabotulinumtox-
inA (p < 0.003) [37].

While many studies have found BoNT-A treatment to be safe in children [38], not all
BoNT-A formulations are the same, and, in fact, they may be considered distinct medica-
tions. While the 150 kDa (ng protein/100 U) neurotoxin molecules in each formulation are
equally active, different formulations contain different quantities of neurotoxin. Units of
BoNT-A for each formulation are not necessarily bioequivalent, influencing effectiveness,
dosing, and safety, and thus should not be treated as interchangeable [13]. An emerging
body of evidence emphasizes the dual goals of minimizing the immune response and
maximizing patient responsiveness when treating a child/adolescent with BoNT-A [6]. In
response, both the United States Food and Drug Administration [39] and the European
Medicines Agency [40] now recommend evaluating and mitigating adverse immunologi-
cally related responses associated with therapeutic protein products and support taking
actions to reduce risk. Choosing a BoNT-A formulation that offers a high degree of purity
can be one of those steps and should be considered as first-line BoNT-A therapy to avoid
possible future treatment failure [11,41].

Strengths and Weaknesses

The strength of this report is the availability of safety and antibody data from a large
population of children/adolescents treated with incobotulinumtoxinA for two different
indications. The participants represented a broad age range (2–17 years) and all levels
of spasticity disease severity (GMFCS-Expanded and Revised levels I–V). Participants
received an average of 3.6 ICs of incobotulinumtoxinA (with a maximum of four ICs for
those treated for sialorrhea and six for those treated for spasticity) and were followed for
up to 96 weeks, with 84.1% completing the trials. Although the investigated exposure time
of up to 96 weeks is similar to that of other research (12 to 26 months [29–32]), real-world
use beyond this time is something that warrants further research for this chronic condition.

The lack of a placebo control in one of the sialorrhea cohorts and all the spasticity
trials may be viewed as a limitation. However, the administration of one or more placebo
injections to very young children (2–5 years old) was considered unethical. Similarly,
antibody data were not available for some children, reflecting in part the weight restrictions
placed to make sure the participants could tolerate the blood sampling procedure; even so,
sampling was not always practical for all eligible patients, such that, for some, the volume
obtained was too low for analysis. In addition, information regarding BoNT pre-treatment
was not available for all patients.

Another potential limitation was the pooling of incobotulinumtoxinA doses. The
decision to pool dose groups was made for two reasons. First, we were able to maximize
the sample size by pooling the data, which was feasible because the trials shared many
enrollment criteria. Second, although improvements in spasticity can differ for the investi-
gated dose groups [17], useful levels of improvement in spasticity can also be achieved with
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lower dose regimens [17,18]. By pooling data from each dose group, larger sets of TEAEs
could be analyzed, allowing the interpretation to be closer to the real-world situation of
clinical decision-making when caring for children with CP than has previously been seen
in clinical trials.

4. Conclusions

Choosing a BoNT-A with a good safety and immunogenicity profile is a critical
consideration when treating children/adolescents with chronic conditions requiring long-
term therapy. The results of the current analysis show that incobotulinumtoxinA, given in as
many as six ICs for up to 96 weeks, was associated with very few treatment-related TEAEs
in more than 1100 children/adolescents representing a broad range of age and disability
levels. Moreover, these data confirm that incobotulinumtoxinA in treatment-naïve patients
lacks an immunologic response and does not induce new NAb formation during extended
use. These findings in children/adolescents add to the growing body of evidence from
studies in adults that the highly purified composition of incobotulinumtoxinA makes it a
preferred choice for chronic conditions that require BoNT treatment.

5. Materials and Methods
5.1. Participants

All participants were enrolled in one of four phase 3 clinical trials of incobotulinum-
toxinA. The TIM, TIMO, and XARA trials enrolled children/adolescents 2–17 years of age
with unilateral or bilateral LL and/or UL spasticity associated with CP. Participants had
an Ashworth Scale [42] score of ≥2 at baseline in clinical patterns for treatment and GM-
FCS [21] scores of I–V. In these trials, patients were excluded if they had previously received
BoNT treatment within ≤14 weeks before screening or during the screening period.

The fourth phase 3 clinical trial was SIPEXI, in which the main cohort consisted
of participants aged 6–17 years with chronic sialorrhea (≥3 months prior to screening)
associated with neurologic disorders (e.g., CP or traumatic brain injury) and/or intellectual
disability. A second cohort consisted of a younger age group (2–5 years) with sialorrhea.
All patients had severe drooling, as determined by the investigator’s Modified Teacher’s
Drooling Scale (rating ≥ 6) [43]. Patients were required to have no prior BoNT treatment
for any body region in the year preceding screening or within the screening period and no
clinically relevant concurrent conditions.

5.2. Trial Designs and Treatment

Full details of the designs and methodologies of the four trials have been
published [17–20] and are summarized in Figure 4.

5.2.1. Spasticity

The three phase 3 trials that investigated incobotulinumtoxinA for the treatment of
spasticity in children/adolescents (aged 2–17 years) with CP (Figure 4) were TIM, TIMO,
and XARA.

TIM (NCT01893411) was a randomized, double-blind, parallel-group trial in pedi-
atric LL spasticity treatment. Patients received total body incobotulinumtoxinA doses
of up to 4–16 U/kg body weight (maximum 100–400 U) per cycle in two controlled ICs
every 12–36 weeks. Two clinical patterns were treated: bilateral or unilateral pes equinus
was mandatory; if unilateral, the second pattern was ipsilateral flexed knee or adducted
thigh [12].

TIMO (NCT01905683) was an open-label, long-term trial of children/adolescents
with LL or combined LL and UL spasticity. TIMO included eligible patients who com-
pleted TIM and newly recruited patients. Patients received four ICs, each with total body
incobotulinumtoxinA doses of up to 16–20 U/kg body weight (maximum 400–500 U),
every 12–16 weeks. Two clinical patterns were treated: pes equinus was mandatory, with
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flexed knee or adducted thigh as options for ipsilateral treatment and/or ULs for unilat-
eral/bilateral treatment [18].
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Figure 4. Simplified overview of the study designs of the four phase 3 pediatric studies TIM, TIMO,
XARA, and SIPEXI a. a Full methodologic details can be found in: TIM [17], TIMO [18], XARA [19],
and SIPEXI [20]. b Maximum duration of treatment was 96 weeks for those from the TIM study who
entered TIMO. AB: For TIM patients who did not progress to TIMO, AB was performed at the SV
and the EOS visit (e.g., after two ICs). For those enrolled in TIM and who progressed to TIMO, AB
was performed at the TIM SV and the TIMO EOS visit (e.g., after up to six ICs). For patients newly
enrolled in TIMO and for patients in XARA and SIPEXI, AB was performed at the SV and the EOS
visit (e.g., after four ICs). AB was restricted to patients weighing ≥21 kg body weight in the spasticity
studies and ≥30 kg body weight in the sialorrhea study to reduce the burden of further blood sample
requirements on smaller, younger patients. AB, antibody testing; BW, body weight; EOS, end of study;
IC, injection cycle; LL, lower limb; MP, main period; OLEX, open-label extension; SIPEXI, Sialorrhea
Pediatric Xeomin Investigation; SV, screening visit; TIM, Treatment with IncobotulinumtoxinA in
Movement; TIMO, Treatment with IncobotulinumtoxinA in Movement Open-label; U, unit; UL,
upper limb; XARA, incobotulinumtoXinA in aRm treatment in cerebral pAlsy.

XARA (NCT02002884) was a randomized phase 3 trial of children/adolescents with
unilateral or bilateral spasticity (UL or combined UL/LL spasticity) that had a double-blind
MP and an OLEX. In the MP, patients received four ICs of incobotulinumtoxinA into the
UL(s) of up to 2–16 U/kg body weight (maximum 50–400 U) every 12–16 weeks, with
optional LL injections to a maximum total body dose of 20 U/kg body weight (500 U).
In the OLEX, patients received three further ICs at the highest MP dose (total body dose
8–20 U/kg body weight, maximum 200–500 U based on dose group and baseline GMFCS
score) [19]. At least one primary clinical pattern (flexed wrist and/or flexed elbow) was
treated, with the option of three additional possible UL patterns (clenched fist, thumb in
palm, pronated forearm), and if clinically required, LL unilateral/bilateral injections could
be added in four possible clinical patterns (adducted thigh, flexed knee, pes equinus, or
extended great toe).

5.2.2. Sialorrhea

SIPEXI (NCT02270736) was a prospective, multicenter, phase 3 trial in children/
adolescents (aged 2–17 years) with chronic sialorrhea due to neurologic disorders (CP [65%],
traumatic brain injury [4%], other [31%]), and/or intellectual disability (89%) [20]. Patients
received bodyweight-dependent doses of incobotulinumtoxinA (20–75 U) administered
in a 3:2 ratio into all submandibular and parotid glands. An MP with one IC (placebo-



Toxins 2022, 14, 585 13 of 16

controlled, double-blind in those aged 6–17 years) was followed by an OLEX with up
to three further ICs. An additional cohort of participants aged 2–5 years received active
treatment throughout the trial. The trial lasted 72 weeks, with a 16-week follow-up period
after each injection.

5.3. Standard Protocol Approvals, Registrations, and Patient Consent

All four trials were conducted in accordance with Good Clinical Practice and the ethical
principles of the Declaration of Helsinki and registered on clinicaltrials.gov (NCT01893411,
NCT01905683, NCT02002884, NCT02270736). The trial protocol, informed consent forms,
and other appropriate trial-related documents were reviewed and approved by the local
independent ethics committees and institutional review boards. Parent(s)/guardian(s) of
all patients provided written informed consent, and patients provided assent (if applicable).

5.4. Assessments
5.4.1. Safety

Safety data were pooled across all trials, by indication, and by incobotulinumtoxinA
dose. The safety endpoints were the proportions of patients with TEAEs, TEAESI (those
events potentially indicative of toxin spread), TESAEs and TEAEs leading to discontinu-
ation from the trial, and events that were treatment-related. TEAEs were assessed for all
subjects at each trial visit.

Data from all consecutive ICs were analyzed from the TIM, TIMO, and XARA trials.
TIMO data were analyzed together with TIM data, namely, for subjects already treated in
TIM and continued in TIMO, the last incobotulinumtoxinA IC with TIM was x and the first
in TIMO was x + 1. For newly recruited subjects in TIMO, the first incobotulinumtoxinA IC
in TIMO was injection 1.

For SIPEXI, which was placebo-controlled, data from all ICs were analyzed. The
first injection in the incobotulinumtoxinA arm of the MP was analyzed as the first IC.
For subjects who received placebos in the MP and received their first treatment with
incobotulinumtoxinA during the second IC of the trial (i.e., first OLEX injection), this
injection was considered the first injection and was analyzed together with data from the
incobotulinumtoxinA arm from the MP. Note, subjects who discontinued after the first
incobotulinumtoxinA injection in the MP and did not participate in the OLEX of the trial
were included in the analysis.

5.4.2. Antibody Measurements

Immunogenicity assessments were conducted only for participants weighing ≥21 kg
in TIM, TIMO, and XARA due to the comparatively large blood volume needed. For
SIPEXI, immunogenicity assessments were performed only in children weighing ≥30 kg.
These weight thresholds were implemented to reduce the burden for younger patients
from additional blood sample collection in addition to the mandatory standard laboratory
samples.

Antibody samples were always collected before the first treatment injection at the
screening visit (spasticity trials) or baseline visit (SIPEXI) and at the final individual visit of
each trial. As an exception, for those patients who enrolled in TIM and who progressed to
TIMO, the first collection was performed at the TIM screening visit and the second one at
the TIMO final visit, usually after up to six ICs of the two trials combined.

Blood samples for immunogenicity testing were screened in a first step using an FIA
to detect any antibodies against BoNT. In case of a positive FIA finding, further testing
with the highly sensitive mouse ex vivo HDA for the final confirmation of NAb presence
and respective determination of titers was performed as a second step.

5.4.3. Statistics

The primary objective of this trial was to report on the safety and lack of immuno-
genicity of repeated incobotulinumtoxinA injections in children/adolescents. As such, only
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standard descriptive analyses were performed. Continuous variables for the analysis of
demographics were summarized by mean and standard deviation. For qualitative variables,
absolute and percent frequencies (n, %) were displayed. Percentages were calculated using
the denominator of subjects in the respective analysis set.
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