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Abstract: Approximately one-third of humankind is chronically exposed to the carcinogenic aflatoxin
M1 contained in milk. As β-cyclodextrin is frequently used in the food industry, its effect on aflatoxin
M1 concentration was investigated during cholesterol removal from milk due to the similarity
among the physicochemical properties of aflatoxin M1 and cholesterol. Moreover, the elimination
of cholesterol using β-cyclodextrin has been successfully applied in many studies without any
substantial effect on the quality of the treated milk. Therefore, milk samples were spiked with
aflatoxin M1 within the range from 0.20 to 2.00 µg/kg, and cholesterol removal was carried out
by 2.0% (w/w) β-cyclodextrin addition, as this concentration is enough for the sufficient removal
of cholesterol. It was found that the mean cholesterol concentration decreased by 92.3%, while the
aflatoxin M1 concentration decreased to 0.53 ± 0.04 µg/kg, i.e., by 39.1% after treatment (n = 2). This
mitigation procedure itself is easy and inexpensive and thus is fully applicable with a high potential
for complete decontamination of aflatoxin M1 milk. This method will therefore considerably improve
the food safety issues associated with aflatoxin M1 presence in milk and dairy products.

Keywords: aflatoxin M1; milk; cholesterol; β-cyclodextrin; food safety; mitigation procedure

Key Contribution: During milk cholesterol removal, the concentration of aflatoxin M1 also decreases
due to its physicochemical interactions with β-cyclodextrin. This method is ready to use in milk
technology for decontamination purposes to improve milk safety issues.

1. Introduction

Mycotoxins are secondary metabolites produced naturally by molds, and they fre-
quently contaminate food and feed. It is expected that more than 25% of the world’s
agricultural production is contaminated with mycotoxins above the EU and Codex Alimen-
tarius limits [1]. One of the most dangerous mycotoxins is aflatoxin B1 (AFB1), which is
produced by the action of Aspergillus flavus and Aspergillus parasiticus during the production,
harvest, storage, and food processing, and it is considered by the US Food and Drug Admin-
istration (FDA) an unavoidable contaminant of foods with various serious adverse health
effects in humans, such as acute illness and death, liver cancer, nutritional interference [2],
and immunologic suppression [3]. After contaminated food/feed is consumed, AFB1 is
metabolized to aflatoxin M1 (AFM1) in the liver and subsequently excreted into the milk of
lactating humans/animals [4]. In vivo genotoxic tests in Drosophila melanogaster revealed
that AFM1 is three times less dangerous than AFB1 in its ability to damage DNA, but its
genotoxic effect is compatible with AFB1 [5]. Due to these adverse effects, some countries
have limited the maximum acceptable limits for AFM1 in milk; for example, the FDA sets a
limit of 0.5 µg/kg [6] in the USA, while the limit in the EU is 0.05 µg/kg for adults’ food
and 0.025 µg/kg for infants’ foods [7].

Milk is highly nutritious and contains many macro- and micronutrients that are
essential for the growth and maintenance of human health, especially infants, children,
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and older adults [8]. According to the Food and Agricultural Organization report, the
mean milk consumption per capita in the world is calculated at approximately 100 kg/year;
however, it is variable from country to country [9]. Dairy is expected to be the fastest
growing livestock sector in the next decade, with global milk production projected to
increase by 22%. Increased dairy production will be driven by expanding yields due to
the optimization of milk production systems, improved animal health, better genetics and
improved feeding efficiencies, and expansions in the inventory of milking animals. The
increase in production will be largely supported by the consumer demand for fresh dairy
products, particularly in Asian countries. India and Pakistan are expected to account for
more than 30% of global milk production by 2030 [10].

AFM1 is a frequent task of scientific activity, as it is the subject of many published
articles. For example, 779 records in the Web of Science Core Collection and 883 records in
Scopus databases can be found of research conducted in the last 10 years on findings, risk
assessment, and mitigation strategy of AFM1 presence in milk and dairy products [11–14].
To illustrate, some findings of AFM1 in milk around the world are briefly summarized in
Table 1. According to a worldwide systematic review and meta-analysis [12], the average
AFM1 concentration in raw and pasteurized milk was 0.057 µg/kg and 0.085 µg/kg,
respectively, while the lowest and highest concentrations of AFM1 in pasteurized milk were
in the goat and cow, respectively. According to Roila et al. [13], the study on the occurrence
of AFM1 in milk in Italy over the years 2014–2020 revealed that the mean concentration
of AFM1 in cow’s milk ranged from 0.009 to 0.015 µg/kg and in ewe’s milk from 0.009 to
0.013 µg/kg.

Table 1. AFM1 findings in milk in some countries around the world.

Sample
No. of

Samples/No. of
Positive Samples

Concentration
Range of AFM1

(µg/kg)
Country Source

Raw milk
Pasteurized milk

UHT milk

105/75
15/15
15/15

0.005–0.198
0.017–0.187
0.012–0.146

Bangladesh Sumon et al. [15]

Fresh milk 52/21 0.01–3.385 Brazil Goncalves et al.
[16]

Pasteurized and
UHT milk 242/178 0.001–0.352 China Xiong et al. [17]

Raw milk 1668/36 0.01–0.208 Italy Bellio et al. [18]

Bovine milk
Buffalo milk

375/154
170/70

0.01–9.18
0.01–6.41 India Pandey et al. [19]

Raw milk 290/145 Nd *–8.35 Mexico Carvajal et al. [20]

Bovine milk
Goat milk

29/29
87/41

up to 0.081
up to 3.108 Nigeria Akinyemi et al.

[21]

Fresh milk 107/76 0.004–0.845 Pakistan Iqbal et al. [22]

Raw milk 150/150 0.01–1.2 Serbia Kos et al. [23]

Raw milk 100/45 0.02–0.08 South Korea Lee et al. [24]

Fresh milk 44/42 0.22–6.90 Sudan Elzupir et al. [25]
Nd *—not detected.

It can be seen that, in addition to what is detected various types of milk, the results of
the ratios of the number of samples to the number of positive samples, as well as the AFM1
concentration range, vary among the countries where there are reported.

In line with the finding of AFM1 in food products, great effort has been devoted to the
procedures to eliminate AFM1 from food products. Considering that AFM1 contamination
of foods is a great threat to human health and national/international food trade, many
studies have been carried out to find efficient detoxification methods. Until now, physical
approach (e.g., thermal decomposition, cold plasma, and pulsed light), chemical procedures
(e.g., acid/alkali treatment, ozonation, and ammoniation) and biological degradations (e.g.,
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enzymatic degradation and biotransformation) are the three most important detoxification
strategies [26]. However, not all AFs can be truly eliminated, nor are all decontamination
procedures efficient enough. In addition, some of them are not even applicable in a
matrix due to the content of highly reactive and labile compounds. In such cases, the
decontamination effect is strongly diminished by the formation of serious nutritional,
organoleptic, and technological defects that considerably limit the acceptability of the
treated foods on the food market [27,28].

β-cyclodextrin (β-CD) is a torus-shaped oligosaccharide made up of α-(1,4) linked
seven glucose units, obtained from starch degradation by the enzyme cyclodextrin glucosyl-
transferase. The β-CD ring is a conical cylinder of an amphiphilic nature, with a hydrophilic
outer part (formed by the hydroxyl groups) and a predominantly lipophilic cavity. Both
inorganic and organic salts and neutral (nonpolar) molecules can form complexes with
β-CD so-called ‘inclusion complexes’. Today, β-CD is frequently used in the food industry
for various purposes, e.g., the stabilization of labile compounds, the controlled release of
volatile compounds, the elimination of undesirable tastes and odors, dietary fiber food en-
richment, and finally, the elimination of cholesterol (CHO) from milk during the production
of low cholesterol dairy products. It is notable that the elimination of CHO from milk by
β-CD is a ‘soft’ procedure, which means that it does not significantly affect the organoleptic
profile of the treated milk [29]. With original organoleptic profiles, these products are
therefore highly valued alternatives for consumers, as long-lasting over-limited intake of
CHO leads to the development of cardiovascular diseases (CVD), while the consumption
of low-cholesterol foods can decrease the total intake, resulting in a lowered incidence of
CVD, which brings considerable health benefits to consumers [30].

Since the physicochemical properties of AFM1 and CHO are similar, the same physico-
chemical interactions with β-CD can be expected. The most important characteristics that
are essential for the formation of an inclusion complex are the size, charge, and polarity of
the guest molecule, the effect of the reaction medium, and the temperature. As AFM1 and
CHO are neutral molecules with a similar molecular weight (328.27 g/mol and 386.7 g/mol,
respectively), which are both freely soluble in chloroform and methanol, the formation of
inclusion complex AFM1-β-CD can therefore be envisaged [31,32]. Hence, this study aimed
to investigate the possibility of the elimination of AFM1 from milk during CHO removal
by application of β-CD.

2. Results and Discussion

β-CD has special properties, which results in the formation of the so-called inclusion
complex, especially with nonpolar compounds. This means that the core of its blunted cone
structure forms a dimensionally stable hydrophobic cavity that can trap or encapsulate
predominantly nonpolar molecules, including CHO and AFM1. The structure of the
inclusion complex formation is shown in Figure 1.
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of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. Copyright © (2014) American Chemical Society. 
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solvent and is integrated into the hydration shell around the β-CD. Finally, the intermo-
lecular and intramolecular hydrogen bonds cause conformational changes that lead to a 
general thermodynamic stabilization of the inclusion complexes. This description is ap-
plicable only for inclusion complexes that are formed in solution [34]. One of the most 
frequent practical applications of the formation of inclusion complexes is the removal of 
CHO from milk when the formation of the CHO-β-CD inclusion complex provides a fun-
damental basis for the production of functional low-cholesterol food products to protect 
consumers’ health against long-lasting high daily intake of CHO from milk and dairy 
products [35]. The same situation was also observed in these experiments, as shown in 
columns A, B, and C of Table 2, when CHO concentrations effectively decreased in all 
treated samples and the average decrease in CHO concentration was 92.3%.  
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However, the data related to the removal of AFM1 are much more interesting, i.e., 
the data obtained when the concentrations of AFM1 also decreased during the experi-
ments in all samples and the average concentration decrease in AFM1 was 39.1%, as fol-
lows from the columns A*, B*, and C* of Table 3. In general, the measure of removal of a 
contaminant can be expressed by the distribution coefficient δ given by the ratio expressed 
in Equation (1) [36]. In this case, the higher the δ value, the more AFM1 was removed from 

Figure 1. Schematic illustration of the association of the free β-CD (‘host’) and the substrate (‘guest’)
to form a substrate—β-CD inclusion complex. Reprinted with permission from Crini, G. A history of
cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. Copyright © (2014) American Chemical Society.

In general, the formation of inclusion complexes includes five elementary steps [33]:
(I) the substrate approaches the β-CD molecule; (II) the guest molecule becomes released
from the layer of water; (III) the guest molecule enters the cavity, and the complex formed
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is stabilized by van der Waals forces and/or hydrogen bonds; (IV) the expelled water
molecules are rearranged and form hydrogen bonds between each other; and (V) the
structure of the water is restored around the part of the substrate that remains in contact
with the solvent and is integrated into the hydration shell around the β-CD. Finally, the
intermolecular and intramolecular hydrogen bonds cause conformational changes that
lead to a general thermodynamic stabilization of the inclusion complexes. This description
is applicable only for inclusion complexes that are formed in solution [34]. One of the
most frequent practical applications of the formation of inclusion complexes is the removal
of CHO from milk when the formation of the CHO-β-CD inclusion complex provides a
fundamental basis for the production of functional low-cholesterol food products to protect
consumers’ health against long-lasting high daily intake of CHO from milk and dairy
products [35]. The same situation was also observed in these experiments, as shown in
columns A, B, and C of Table 2, when CHO concentrations effectively decreased in all
treated samples and the average decrease in CHO concentration was 92.3%.

Table 2. Effect of β-CD treatment on the concentration of CHO in milk.

A B C D

Sample No.

Initial
Concentration
of Cholesterol

(mg/kg) a

Concentration
of Cholesterol
after Removal

(mg/kg) a

Measure of
Cholesterol

Removal
(%)

Distribution
Coefficient

δCHO

1 129.04 ± 2.13 10.36 ± 2.11 + 92.0 11.46

2 135.78 ± 6.01 6.47 ± 1.59 + 95.2 19.99

3 150.39 ± 0.64 5.25 ± 0.03 + 96.5 27.65

4 113.32 ± 6.30 8.92 ± 0.02 + 92.1 11.70

5 123.01 ± 2.21 1.43 ± 0.63 + 98.8 85.02

6 103.92 ± 0.43 9.47 ± 0.21 + 90.9 9.97

7 122.33 ± 1.45 23.49 ± 1.50 + 80.8 4.21

Average 125.40 ± 2.74 9.34 ± 0.87 + 92.3 24.28
a The results are expressed as mean ± standard deviation (n = 2). + Statistically significant difference at p < 0.05.

However, the data related to the removal of AFM1 are much more interesting, i.e., the
data obtained when the concentrations of AFM1 also decreased during the experiments in
all samples and the average concentration decrease in AFM1 was 39.1%, as follows from
the columns A*, B*, and C* of Table 3. In general, the measure of removal of a contaminant
can be expressed by the distribution coefficient δ given by the ratio expressed in Equation
(1) [36]. In this case, the higher the δ value, the more AFM1 was removed from milk by the
formation of the inclusion complex AFM1-β-CD. The values of δAFM1 are listed in column
D* of Table 3. When comparing the average value of δAFM1 with the average value of
δCHO (column D of Table 2), it can be seen that CHO was removed more than 18 times
more efficiently than AFM1. This could be due to the fact that experimental conditions
(amount of β-CD addition, time and speed of mixing, temperature, settling time, and
speed of centrifugation) were never optimized for the removal of AFM1. The values of the
distribution coefficients (D column of Table 2 and D* column of Table 3) were tested using
the Kolmogorov–Smirnov test to find the measure of the distribution of the calculated data.
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Table 3. Effect of β-CD treatment on the concentration of AFM1 in milk.

A* B* C* D*

Sample No.

Concentration
of AFM1 after

Spiking
(µg/kg)

Concentration
of AFM1 after

Removal
(µg/kg) a

Measure of
AFM1

Removal
(%)

Distribution
Coefficient

δAFM1

1 0.20 0.13 ± 0.06 + 35 0.54

2 0.40 0.25 ± 0.02 + 38 0.60

3 0.60 0.36 ± 0.02 + 40 0.67

4 0.80 0.47 ± 0.03 + 41 0.70

5 1.00 0.55 ± 0.04 + 45 0.82

6 1.20 0.80 ± 0.04 + 33 0.50

7 2.00 1.16 ± 0.06 + 42 0.72

Average 0.89 0.53 ± 0.04 + 39.1 0.68
a The results are expressed as mean ± standard deviation (n = 2). + Statistically significant difference at p < 0.05.

Although the test confirmed the normal distribution of the values in the case of δCHO,
in the case of δAFM1, the normal distribution of the values was not confirmed. This finding
can be associated with the fact that AFM1 concentration is, in general, five orders lower
than the CHO concentration, and at this AFM1 concentration level, optimal conditions of
AFM1-β-CD inclusion complex formation were not adjusted. In addition, the results of the
Kolmogorov–Smirnov test also suggest that the formation of the AFM1-β-CD inclusion
complex may be affected by the presence of other (unknown) compounds that appeared
accidentally in individual milk samples and were able to compete for β-CD molecules at
the µg/kg concentration level. In addition, the correlation analysis between distribution
coefficients (values in D and D* columns) confirmed a positive correlation with r = 0.83.
To find statistically significant differences in the changes in CHO concentration, one-way
analysis of variance (ANOVA) and the Tukey comparison test were used, while in the case
of AFM1 concentration, the nonparametric Wilcoxon test was applied. The tests confirmed
statistically significant differences between the initial and the final concentrations of both
CHO and AFM1 compounds. Therefore, the obtained results are a promising basis for
further adjustment and optimization of the AFM1 removal procedure parameters to achieve
complete AFM1 removal from the milk matrix. The application of the procedure itself
is easy, safe, effective, and low in cost and labor, with no substantial negative effects on
nutritional, organoleptic, or technological parameters of milk or dairy products, which
also confirms its current usage in the dairy industry, although for different purposes, that
is, for the removal of CHO [35,36]. In addition, the application of the procedure can
effectively prevent economic losses associated with frequent findings of overly limited
AFM1 concentrations in traded dairy products [37].

Compared to other approaches to AFM1 mitigation in milk, some studies have shown
the importance of the prevention of crop contamination in pre-harvest and post-harvest
stages, and other studies proposed direct methods to reduce AFM1 in milk [38]. For exam-
ple, Hassanpour et al. [39] described a procedure for the reduction of AFM1 concentration
in pasteurized milk using low-dose gamma irradiation. The average reduction rate of
AFM1 was 55.1 and 99% after 4 and 8 days, respectively. Recently, Chaudhary and Pa-
tel [40] presented an interesting approach to remove AFM1 from milk by isolated lactic
acid bacteria. In addition, Kuhari et al. [41] noticed that the efficiency of AFM1 decon-
tamination by lactic acid bacteria ranged from 21 to 95% and stated that this procedure
should not influence the final organoleptic properties of dairy products. However, the
use of microbial decontamination has also some limitations, e.g., the addition of microbial
agents to milk is acceptable only to a certain limit, so other additional treatment for their
removal/devitalization could be required. Moreover, microorganisms release enzymes, the
activity of which can negatively affect fat and protein quality or lactose content. Finally,
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the binding of AFM1 to microbial adsorbents is partially reversible [42]. Some other ab-
sorbents were also tested to mitigate AFM1 concentration in milk, e.g., sodium bentonite
(64.5% effectivity in reduction), calcium bentonite (31.4% effectivity in reduction), mycosorb
(58.5% effectivity in reduction), and activated charcoal (5.4% effectivity in reduction) [38].
However, the use of such compounds in food technology is questionable and can alter the
organoleptic and nutritional value of the final products. Therefore, the removal of AFM1 in
the dairy industry remains open due to a lack of a ‘fine and friendly’ procedure that does
not affect the nutritional, organoleptic, and technological parameters of dairy products [43].

3. Conclusions

Due to ingestion of AFB1-contaminated feed, lactating animals secrete its AFM1
metabolite into milk. Therefore, dairy products, such as milk, cheese, and yogurts, are
frequently contaminated with this toxin, presenting serious health implications for con-
sumers and economic losses in trading due to over-limited AFM1 concentrations. Therefore,
the effective removal of AFM1 from milk is a crucial factor that can positively affect food
safety issues and problems associated with the handling of contaminated products. In
this article, a method for the removal of AFM1 from milk has been developed based on
physicochemical interaction in which β-CD forms inclusion complex AFM1-β-CD, which
is then easily separated from milk by centrifugation. As shown in the experiments, the
average removal efficiency of AFM1 was observed at a level of 39.1%. The procedure of
removal of AFM1 with β-CD was not studied before, so these first findings show a great
possibility of a novel decontamination step. The procedure itself is instantly applicable,
since β-CD is currently used in the dairy industry for the removal of CHO. Therefore, this
method could help resolve the health problems associated with the chronic presence of
AFM1 in milk and dairy products around the world and the tasks associated with handling
over-limited concentrations of AFM1 in traded dairy products. Future work should focus
on optimizing the steps of the processing conditions for AFM1, as these were not evaluated.

4. Materials and Methods
4.1. Samples

Seven brands of commercial pasteurized cow’s milk (3.5% declared fat content in the
samples 1; 2; 4; 5; 6; and 7, sample no. 3—4.0% declared fat content) were bought in a local
market in Bratislava, Slovak Republic.

4.2. Chemicals

Beta-cyclodextrin was purchased from Wacker Chemie AG (Burghausen, Germany,
≥95.0%), and cholesterol of analytical standard grade and aflatoxin M1 (analytical standard
0.5 µg/mL in acetonitrile) of analytical standard grade were purchased from Merck, KGaA
(Darmstadt, Germany). Chloroform, n-hexane, ethanol 96%, and anhydrous Na2SO4 p.a.
grade were bought at Centralchem Ltd., (Bratislava, Slovak Republic). KOH p.a. grade
was supplied by Mikrochem Ltd., Pezinok, Slovak Republic), and both methanol and
acetonitrile of HPLC grade were provided by Fisher Chemical Ltd., (Loughborough, UK).

4.3. Instruments

HPLC system 1260 Infinity (Agilent Technologies, USA) was composed of a vacuum
degasser, quarterly pump, autosampler, UV-DAD detector, FD detector, analytical column
Zorbax Eclipse Plus C18 (2.1 × 50 mm, 5 µm particle size), and guard column Zorbax SB-C18
(4.6 × 12.5 mm, 5 µm particle size). PTFE filters with 0.2 µm membrane (Agilent, Santa
Clara, CA, USA) were used. For the purposes of sample preparation, a rotary vacuum
evaporator (Heidolph, Germany), centrifuge (Hettich Zentrifugen, Germany), magnetic
stirrer (Arex-6 Connect Pro, Velp Scientifica, Italy), and an analytical balance (Sartorius,
Goettingen, Germany) were applied.
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4.4. Experiments

The samples were divided into two groups. The first one was analyzed for CHO
and AFM1 concentrations. These analyses confirmed native AFM1 concentrations under
LOQ equal to 0.013 µg/kg. The second group was spiked with AFM1 to obtain initial
concentrations in milk of 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, and 2.00 µg/kg. Then, the samples
were treated with β-CD to remove CHO and AFM1. After the treatment procedure, the
samples were analyzed for CHO or AFM1 concentration.

4.5. Treatment of Milk for Removal of CHO and AFM1

The samples were treated with optimized conditions as described previously [30]:
250 g of milk was placed in a beaker, and 2.0% of β-CD was added. The mixture was stirred
at 840 rpm using a magnetic stirrer for 10 min at 25 ◦C, and then the treated milk was left
static for 120 min at 4 ◦C and centrifuged at 130× g for 20 min. After centrifugation, the
milk supernatant was analyzed for CHO and AFM1 concentration. The number of samples
for both groups was 7.

The measure of removal was calculated and expressed as distribution coefficients δ
according to the Equation (1)

δ =
c0 − c∞

c∞
(1)

where c0 is the initial concentration and c∞ is the equilibrium (final) concentration of the
contaminant [44].

4.6. Preparation of Milk for CHO Analysis

The samples (n = 7) were prepared [45,46] as follows. First, 5.0 g of milk was refluxed
with 15 mL of 1 mol/L methanolic solution of KOH for 15 min. Then, the cooled matter
was extracted twice with a mixture of n-hexane and chloroform (1:1, v/v) to obtain 15 mL of
total extract. To increase the polarity of the saponifiable residue, 10 mL of deionized water
was added. To avoid the formation of emulsion during extraction, 1 mL of ethanol (96%)
was added to the saponified matter. Then, the extract was filtrated through anhydrous
Na2SO4 and evaporated using a rotary vacuum evaporator until it was dry; the residue was
dissolved in 3 mL of methanol, filtered using syringe PTFE filter with 0.2 µm membrane,
and analyzed by HPLC.

4.7. HPLC Determination of CHO Concentration

HPLC was performed according to [45,46], using an isocratic elution at a flow rate
of 0.5 mL/min with a mobile phase composed of acetonitrile/methanol 60:40 (v/v). The
injection volume was 10µL, and the temperature was set at 30 ◦C. Zorbax Eclipse Plus C18
column (2.1 × 50 mm, 5 µm particle size, Agilent) was used as a stationary phase with
the guard column Zorbax SB-C18 (2.1 × 12.5 mm, 5 µm particle size, Agilent). At these
conditions, CHO was eluted within 2.2 min of the analysis, and the detector was operated
at 205 nm. Data were recorded and treated using the OpenLab CDS software, ChemStation
Edition for LC, and LC/MS systems (product version A.01.08.108). All determinations
were carried out in duplicate.

4.8. Preparation of Milk for AFM1 Analysis

A sample treatment (n = 7), based on the AOAC method [47] and modified by [18],
was carried out as follows: 50 g of milk, previously skimmed by centrifugation at 3700×
g for 15 min, was loaded on immuno-affinity chromatography column (R-Biopharm AG,
Darmstadt, Germany)) and washed with 50 mL water. Then, the analyte was eluted with 2
mL acetonitrile–methanol mixture (60:40 v/v), eluent evaporated to near dryness, residue
dissolved with 200 µL acetonitrile–methanol mixture (60:40, v/v) plus 200 µL water, and
finally, filtered on a 0.2 µm membrane filter.
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4.9. HPLC Determination of AFM1 Concentration

HPLC was performed according to [18] using an isocratic elution at a flow rate of
1 mL/min mobile phase composed of a water–acetonitrile–methanol mixture (65:15:20,
v/v/v). The injection volume was 10µL, and the temperature was set at 30 ◦C. In these
conditions, AFM1 was eluted in 4.5 min of analysis, and the fluorescence detector operated
at an excitation wavelength of 360 nm and an emission wavelength of 430 nm. Data
were recorded and treated using the OpenLab CDS software, ChemStation Edition for LC,
and LC/MS systems (product version A.01.08.108). All determinations were carried out
in duplicate.

4.10. Validation of Analytical Procedures

The method for the determination of the CHO concentration in milk and other dairy
products was validated using an in-house regime [45,46]. The method for the determination
of the AFM1 concentration met the validation criteria (LOD, LOQ, recovery, ruggedness,
repeatability, and linearity) set by European Commission [48].

4.11. Statistical Analysis

Results are expressed as mean ± standard deviation, n = 2. Statistical analysis was
performed using the XLSTAT tool of Microsoft Excel 365 (version 2012, Microsoft, Redmond,
Washington, USA). The obtained data were subjected to one-way analysis of variance
(ANOVA), and Tukey’s comparison test, and the values were considered significantly
different when p < 0.05. Additionally, Kolmogorov–Smirnov and Wilcoxon nonparametric
tests for data treatment were used.
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35. Kolarič, L.; Šimko, P. Application of β-cyclodextrin in the production of low-cholesterol milk and dairy products. Trends Food Sci.
Technol. 2022, 119, 13–22. [CrossRef]
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