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Toxic cyanobacteria in freshwater bodies constitute a major threat to public health
and aquatic ecosystems [1]. Cyanobacterial blooms are increasing in frequency, magnitude
and duration globally, while eutrophication, rising CO, and climate change promote their
global expansion [2,3]. Toxic cyanobacteria metabolites, known as cyanotoxins, comprise
a wide range of compounds, including cyclic peptides (microcystins, nodularins) and
alkaloids (cylindrospermopsins, anatoxins, saxitoxins) that can be hepatotoxic, cytotoxic,
genotoxic or neurotoxic. In response to the risks associated to known cyanotoxins, the
World Health Organization (WHO) has published guidelines for their monitoring and
management, including provisional guideline values for exposure via drinking water and
recreational activities [4]. Nevertheless, the high metabolic potential of cyanobacteria yields
a plethora of secondary metabolites that are largely understudied. A recently developed
database of cyano-metabolites reported in the literature (CyanoMetDB) contains more than
2000 molecules, including more than 300 microcystin congeners [5]. Still, research so far on
the occurrence and impacts of cyano-metabolites has mostly focused on a small number of
cyanotoxins, particularly on a few microcystin congeners.

This Special Issue aims to present novel research results on the presence and structural
diversity of cyanotoxins and cyano-metabolites in freshwater bodies worldwide. We
welcomed research and review papers that showcase the expanding global geographical
spread of cyanotoxins, including reports from less-studied areas and on understudied
cyanotoxins and cyano-metabolites. We particularly encouraged advances and novelties
in the areas of cyanotoxin analysis and monitoring, structural elucidation of new cyano-
metabolites, biotic and abiotic factors linked to cyanotoxin production and the role of
benthic cyanobacteria as cyanotoxin producers.

A number of published papers reported the presence of toxic cyanobacteria and cyan-
otoxins using diverse monitoring techniques, in freshwater bodies encompassing Central
and South European, Mediterranean, Southeast Asian and North American regions. Van
Hassel et al. [6] reported results from monitoring of cyanobacterial blooms in lakes of Wal-
lonia, Flanders and Brussels, Belgium, using LC-MS/MS, PCR and sequencing techniques,
to assess the risks associated to recreational waters. More than 20% of samples exceeded the
WHO guideline value for microcystins, while the mcyE gene was detected in 76% of sam-
ples. Fournier et al. [7] investigated the deep-water, red-pigmented biomass occurrences
in Lake Constance, which is the third largest lake in Central-Western Europe that bor-
ders Germany, Austria and Switzerland. Using 16S rRNA gene-amplicon sequencing and
LC-MS/MS they showed that these blooms were contributed by microcystin-producing
Planktothrix spp. A one-year monitoring study of Slovenian waterbodies using qPCR
(mcyE, cyr], sxtA genes) and LC-MS/MS (microcystins, cylindrospermopsin, saxitoxin) was
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conducted by Zupancic et al. [8]. Potentially toxic Microcystis and Planktothrix cells were
detected by qPCR and microscopic analysis and a positive correlation between the numbers
of mcyE gene copies and microcystin concentrations was observed. Furthermore, potential
cylindrospermopsin and saxitoxin producers were detected by qPCR, showing the potential
of molecular techniques to complement chemical and microscopic analysis in freshwater
monitoring programs. Zervou et al. [9] reported the results of a 3-year monitoring of Lake
Vegoritis in Northwestern Greece, which is used for irrigation, fishing and recreational
activities. LC-MS/MS analysis showed the co-occurrence of cyanotoxins (seven microcystin
congeners and cylindrspermopsin, at low levels, <1 pug/L) with other cyanobacterial pep-
tides (anabaenopeptins, microginins). An investigation for the presence of cyanotoxins in
Lake Karaoun, the largest artificial lake in Lebanon that serves multiple purposes, was con-
ducted by Hammoud et al. [10], using complementary analytical techniques (LC-MS/MS,
gqPCR, ELISA and in vitro bioassays). A total of 11 microcystin congeners were detected in
concentrations up to 211 and 199 ug/L for MC-LR and MC-YR, respectively. In addition,
typical volatile and odorous cyanobacteria compounds were detected by GC-MS. Using a
polyphasic approach, Ballot et al. [11] characterized cyanobacterial strains isolated from
Meiktila Lake, a shallow reservoir close to Meiktila city in central Myanmar. The strains
were classified morphologically and phylogenetically as R. raciborskii, and Microcystis spp.
Cylindrospermopsins were detected by ELISA and LC-MS in 3 of the 5 Raphidiopsis strains,
while Microcystis strains produced a wide range of microcystins, including 22 previously
unreported congeners. Zastepa et al. [12] characterized nearshore deep chlorophyl layers
from two embayments of Lake Huron, Canada. These layers were shown to be dominated
by Planktothrix cf. isothrix. Microcystins, anabaenopeptins and cyanopeptolins were de-
tected through the water column, along with the corresponding genes. The results also
indicated that intersecting gradients of light and nutrient-enriched hypoxic hypolimnia are
key factors in supporting deep chlorophyl layers in these embayments.

A serious incident involving dog deaths in Mandichosee, a mesotrophic reservoir of the
River Lech, Germany, was investigated by Bauer et al. [13]. Anatoxin-a and dihydroanatoxin-
a (dhATX) from benthic Tychonema sp. were detected by LC-MS/MS in the stomachs of two
dogs in concentrations up to 1207 pg/L, while up to 68,000 ng/L anatoxins were present
in lake samples containing large amounts of mat material. The findings of this study are
extremely important as they underscore the role of less-studied benthic cyanobacteria in
the production of potent toxins, such as the neurotoxic anatoxins.

Several studies reported results on new or less common cyanobacteria metabolites and
cyanotoxin producers. Kust et al. [14] applied a molecular networking and dereplication
approach in high-resolution mass spectrometry data using the open global natural product
social networking (GNPS) web platform to putatively identify a wide range of cyanopep-
tides from eutrophic fishponds in the Czech Republic. Forty peptides belonging to the
groups of anabaenopeptins, microcystins, cyanopeptolins, microginins, cyanobactins, radio-
sumins, planktocyclins and epidolastatins were identified. Zervou et al. [15] reported the
occurrence and structural variety of anabaenopeptins in cyanobacterial blooms and cultured
strains from Greek freshwaters using LC-MS/MS. Thirteen structures of anabaenopeptins
were annotated based on interpretation of fragmentation spectra, including three structures
not reported before. Cordeiro et al. [16] screened 157 strains from the Azorean Bank of
Algae and Cyanobacteria (BACA) for cyanotoxin production (microcystins, saxitoxins
and cylindrospermopsins) using qPCR, LC-MS/MS and 16S rRNA phylogenetic analysis.
Cyanotoxin-producing genes were amplified in 13 strains, and 4 were confirmed as toxin
producers by LC-MS/MS. Two nostocalean strains, possibly belonging to a new genus,
were identified as new cylindrospermopsin producers, as they were positive for cyrB and
cyrC genes and the presence of cylindrospermopsin was further confirmed by LC-MS/MS.

Two papers reported effects of nutrient and climate factors on the proliferation of
cyanobacteria and the production of cyanotoxins. Barnard et al. [17] investigated the
role of phosphorus and nitrogen limitation on microcystin and anatoxin production from
Microcystis spp. and Planktothrix spp. in Western Lake Erie. The results showed the
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importance of reducing both nitrogen and phosphorus to limit cyanotoxin and cyanobac-
terial biomass production. Le Moal et al. [18] analyzed 13 years of eutrophication and
climatic data of Lac au Duc, one of the largest shallow water bodies in Brittany, Western
France, which is used as recreational and drinking water reservoir. Analysis showed in-
terannual variability of cyanobacterial composition, with dominant species shifting from
Planktothrix agardhii towards Microcystis sp. and then Dolichospermum sp. due to climatic
pressures and nitrogen limitation.

Paleolimnological studies based on analysis of sediment cores for cyanobacteria and
cyanotoxins, can contribute historic data on the prevalence of toxic cyanobacterial blooms.
Weisbrod et al. [19] explored the spatial variability and historical cyanobacterial composi-
tion in sediment cores from Lake Rotorua in the South Island of New Zealand, focusing
on the abundance of Microcystis, mcyE gene copy numbers and microcystins. The results
showed that toxin producing Microcystis blooms are a relatively recent phenomenon in
Lake Rotorua, initiated after the 1950s. In addition, results indicated that a single sediment
core sampling used by most paleolimnological studies in small to medium-sized lakes can
capture dominant microbial communities.

The Special Issue includes three review papers that present emerging areas of toxic
cyanobacteria and cyanotoxins research. Metcalf and Codd [20] reviewed and discussed
cases were cyanobacteria and cyanotoxins co-occurred with additional hazards such as
algal toxins, microbial pathogens, metals, pesticides and microplastics. The authors dis-
cussed challenges in assessment of toxicity in such cases and identified further research
needs in this field. Sundaravadivelu et al. [21] reviewed the current methodologies for
the analysis of freshwater cyanotoxins and prymnesins with emphasis in samples other
than water. The authors discussed their limitations, especially with respect to accurate
quantitation and structural confirmation of various cyanotoxins, where mass spectrometric
techniques are advantageous as they can potentially be applied for detection and unam-
biguous identification of multiple toxins. Lastly, Monteiro et al. [22] reviewed the existing
knowledge on the less-studied, structurally diverse cyclic hexapeptides anabaenopeptins
that are increasingly detected in freshwaters in elevated concentrations and possibly play
important roles in aquatic ecosystems.
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