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Abstract: The presence of ochratoxin A (OTA) in wines is a problem mainly due to the health damage
it can cause to frequent drinkers. A method for removing these toxic substances from wine is the
use of lactic acid bacteria with mycotoxin-adsorption capacities; however, their use is limited since
a matrix in which they can be immobilized, to remove them after use, is needed. In this study,
L. plantarum (LP) was encapsulated in a polymeric matrix composed of polyvinyl alcohol (PVA) and
alginate, forming alginate–PVA–LP (APLP) complexes. Then, these complexes were characterized,
and assays of OTA and phenol removal from wines were performed. As a result, it was observed
that the APLP complexes at a concentration of 0.5 g mL−1 removed over 50% of the OTA without
substantially affecting the concentration of total phenols. In addition, it was determined that the
presence of L. plantarum directly affected the ability to adsorb OTA from wines and did not decrease
the total phenols. In conclusion, an alginate–PVA matrix allows immobilizing LP, and the complexes
formed are an alternative for removing ochratoxin from contaminated wines.

Keywords: mycotoxins; ochratoxin A; lactic acid bacteria; polyvinyl alcohol; alginate

Key Contribution: (a) It was possible to immobilize Lactobacillus plantarum in an alginate-PVA
matrix, and (b) the use of complex APLPs enabled the adsorption of OTA from red wines without
substantially damaging their phenolic content.

1. Introduction

Ochratoxin A (OTA) is a mycotoxin produced mainly by Aspergillus carbonarius,
A. ochraceus, A. niger, Penicillium verrucosum, and P. nordicum [1]. Structurally, it consists of
a p-chlorophenolic group linked to a dihydroisocoumarin fragment linked by an amide
bond to an L-phenylalanine [2]. Additionally, it has been found as a contaminant in cereals,
beer, coffee beans, cacao, spices, dried wine fruit, grape juice, and wine, and human blood
and animal tissues [3].

The presence of OTA in wines was first reported in Switzerland in 1996 [4]. Since that
first report, this mycotoxin has been described in wines in several countries worldwide [5–7].

The contamination of wines with OTA should raise a public health alert worldwide for
frequent drinkers since these toxins can cause acute to chronic poisoning [8–10], and wine
is considered the second most important dietary source of OTA after cereals [11]. Thus,
the regulation 1881/2006 of the European Commission (EC) established a concentration of
2 µg kg−1 as the maximum tolerable level in wines destined for human consumption [12].

Many scientists have focused on studying different strategies (physical, chemical,
and biological) to remove mycotoxins from red wines [13–16]. Although many chemical
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strategies have been promising, their use is limited by possible side effects and is not
allowed within the EC for commodities destined for human consumption [3]. Therefore,
biological agents are an alternative, mainly due to the ability of lactic acid bacteria (LAB)
to adsorb mycotoxins in aqueous matrices [17–20]. The most versatile LAB seem to be
Lactobacillus species, which efficiently remove OTA [19,21].

Using free microbial cells can present tremendous stresses such as those regarding
survival, proliferation, mechanical disturbances, low adaptation, and competition from
indigenous microorganisms in natural environments [22]. Immobilization strategies emerge
as an alternative solution since immobilized bacteria can be shielded from the stress of high
pollutant concentrations, predators, and competition with indigenous microorganisms [23].

This study proposes a new system (APLP complex) composed of lactic acid bacteria
with known mycotoxin-adsorption activity encapsulated in a matrix composed of alginate
and polyvinyl alcohol (PVA) polymers as a strategy for mycotoxin removal from red wines.

2. Results and Discussion
2.1. Development and Characterization of Alginate–PVA–L. plantarum Complexes
2.1.1. Development of Alginate–PVA–L. plantarum Complexes

In the present study, a strain of Lactobacillus plantarum (LP) with known OTA-adsorbing
capacity was encapsulated in alginate–PVA (AP) polymers, forming alginate–PVA–L. plan-
tarum (APLP) complexes, to develop a handy and easily removable tool for adsorbing the
mycotoxin from red wines.

Alginate was used because it is a natural polymer (composed of D-mannuronic acid
and D-glucuronic acid), non-toxic, biocompatible, and biodegradable, and is exploited
in the food industry. Even in the wine industry, it is studied for encapsulating living
yeast cells to carry out controlled fermentation [24]. Thus, L. plantarum was encapsulated
in a polymeric matrix composed of PVA linked to boric acid (BA) and glutaraldehyde
(GA); and alginate (Alg)’s crosslinking with calcium ions and the microspheres presented a
sub-spherical shape measuring 1.5–2 mm in diameter (Figure 1). The complexes developed
and their compositions are detailed in Table 1.
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Figure 1. Macroscopic structure of (A) alginate, and (B) APLP complexes.

Table 1. Formulation of AP and APLP complexes.

Complexes PVA LP Concentration in Wet Weight

AP−1 5% Mowiol 6–98 -
APLP−1 5% Mowiol 6–98 1%

APLP−1b 5% Mowiol 6–98 2%
AP-2 5% Mowiol 10–98 -

APLP-2 5% Mowiol 10–98 1%
APLP-2b 5% Mowiol 10–98 2%

Note: AP: Alginate-PVA; APLP: Alginate-PVA-L. plantarum.
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The proposed mechanism for developing APLP complexes consisted of the following
steps: first, the BA acts as a crosslinker for PVA, forming dioxaborinane rings [25], followed
by hemiacetal formation between GA and the OH groups on PVA [26]. Second, the encap-
sulation of L. plantarum in calcium alginate networks, induced by the gelation resulting
from specific and strong ionic interactions between Ca2+ and G blocks of alginate, results
in the “egg-box” structure [27,28] (Figure 2).
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Figure 2. (A) APLP complex; (B1) formation of hemiacetal; (B2) PVA crosslinked with glutaraldehyde;
(C) gelation mechanism known as an egg-box model; (D1) formation of PVA–BA complex; and
(D2) hydrogen bonding between the diol complex and PVA.

Even though PVA can form spheres when crosslinked with boric acid, these tend
to agglomerate, mainly due to the relatively slow crosslinking. For this reason, a mixed
solution of PVA and sodium was used. In this way, it was thought that the PVA could
improve the durability and resistance of the pearls, while the calcium alginate could
improve the surface properties of the pearls, reducing the tendency to agglomeration [29].

On the other hand, it was also shown that the polymeric matrix prevented the release
of bacteria when the complexes were placed in contact with a model solution of wine at
pH 3.5. The prior allows us to suspect that these complexes have good stability and could
possibly be used in wine, given that no cells that could compromise wine composition were
being released. In any case, the prior requires further studies to confirm this observation
under different environmental conditions.

2.1.2. Characterization of Alginate–PVA–L. plantarum Complexes

The characterization of the alginate, AP, and APLP complexes by thermogravimetry
analysis (TGA) (Figure 3) showed that all the samples had the capacity for water absorption;
this result is observed in the regions of the TGA curves between 50 and 180 ◦C, which
is indicative of the loss of moisture and suggests either physically weakly or chemically
strongly bound water [30,31].

However, the formation of a crosslinker (boric acid) between the chain of PVA and
the gelation of alginate with calcium ions decreases the water absorption and increases
the thermal stability of the complex due to the interaction of PVA chains and the possible
ionic interactions between the hydroxyl groups of both chains (double-network hydrogels).
Additionally, the increase in the thermal stability of the complex may also be due to the
change in molecule between B(OH)3 and water [32].
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Figure 3. Thermal gravimetry curves of Alginate (Alg), AP−1, AP-2, APLP−1, and APLP-2 complexes.

Finally, the APLP−1 and APLP-2 curves indicate increased stability and decreased
water absorption, possibly due to the interaction of L. plantarum with the alginate and PVA
chains, which suggests the formation of the complex.

2.2. OTA Removal from Red Wines for APLP Complexes
2.2.1. Study of Effects of Complex Concentration on OTA and Phenol Removal

The kinetic curves showed that APLP−1 and APLP-2 at a concentration of 1 g mL−1

removed over 60% of the OTA. However, it also removed over 60% of the total phenols.
Therefore, to obtain a removal result of over 50% for OTA without substantially affecting
the concentration of total phenols, we concluded that the best concentration was 0.5 g mL−1

(Figure 4).
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2.2.2. Optimization of OTA and Phenol Removal by APLP Complexes

An optimization assay was performed to determine the best microcapsule formation
with affinity for OTA using a statistical model of 23 through a factorial analysis designed
in the Statgraphics Centurium XVI program. The values obtained for OTA removal while
phenols were not removed are shown in Table 2.
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Table 2. Matrix of the experimental design for the variables; coded and uncoded values of the factors.

Uncodified Codified Results

Complexes PVA (Mw) LAB (%) Time
(min)

Mw
PVA % LAB Contact

Time
OTA Removal

(%)
Unremoved
Phenols (%)

AP−1 47,000 0 15 −1 −1 −1 32.22 ± 0.71 72.23 ± 0.61
APLP−1 47,000 1 15 −1 0 −1 38.99 ± 0.12 67.50 ± 1.65

APLP−1b 47,000 2 15 −1 1 −1 40.40 ± 0.79 68.13 ± 1.20
AP-2 61,000 0 15 1 −1 −1 33.94 ± 0.43 64.53 ± 0.49

APLP-2 61,000 1 15 1 0 −1 40.52 ± 0.53 62.40 ± 1.41
APLP-2b 61,000 2 15 1 1 −1 44.92 ± 0.31 62.41 ± 0.78

AP−1 47,000 0 30 −1 −1 −0.66 39.46 ± 0.28 67.73 ± 0.97
APLP−1 47,000 1 30 −1 0 −0.66 45.45 ± 0.44 67.23 ± 1.26

APLP−1b 47,000 2 30 −1 1 −0.66 45.25 ± 0.26 66.43 ± 2.29
AP-2 61,000 0 30 1 −1 −0.66 34.69 ± 0.29 62.90 ± 0.70

APLP-2 61,000 1 30 1 0 −0.66 42.62 ± 0.40 59.17 ± 0.60
APLP-2b 61,000 2 30 1 1 −0.66 47.59 ± 0.36 59.03 ± 0.57

AP−1 47,000 0 60 −1 −1 1 45.64 ± 0.11 64.17 ± 0.45
APLP−1 47,000 1 60 −1 0 1 48.48 ± 0.38 65.03 ± 0.64

APLP−1b 47,000 2 60 −1 1 1 50.87 ± 0.65 64.77 ± 0.51
AP-2 61,000 0 60 1 −1 1 41.71 ± 0.82 61.83 ± 1.12

APLP-2 61,000 1 60 1 0 1 50.91 ± 0.68 58.00 ± 0.46
APLP-2b 61,000 2 60 1 1 1 55.53 ± 0.79 59.30 ± 0.82

Regarding the OTA and phenol removal by the AP and APLP complexes, the analysis
of the variance of the mathematical models obtained from the results yielded the coeffi-
cients of the response function for the dependent variables, which were determined using
Statgraphics Centurium XVI. Table 3 shows the statistically significant factors, and the
correlation of the models for the estimated responses.

Table 3. Analysis of variance (ANOVA) from mathematical model for OTA removal and Phenols
unremoved in wines.

Source Sum of Squares Degree’s Liberty Mean Square Razon-F Valor-P

OTA
removal

A: Factor A 762.057 1 762.057 418.34 0.0000
B: Factor B 965.55 1 965.55 530.05 0.0000
C: Factor C 5.12154 1 5.12154 2.81 0.1008

AA 39.215 1 39.215 21.53 0.0000
AB 0.00207382 1 0.00207382 0.00 0.9732
AC 85.3931 1 85.3931 46.88 0.0000
BB 53.0585 1 53.0585 29.13 0.0000
BC 0.00192448 1 0.00192448 0.00 0.9742

Blocks 0.0981739 2 0.0490869 0.03 0.9734
Total error 78.3301 43 1.82163

Unremoved
phenols

A: Factor A 33.611 1 33.611 21.86 0.0000
B: Factor B 145.203 1 145.203 94.45 0.0000
C: Factor C 426.116 1 426.116 277.17 0.0000

AA 18.2533 1 18.2533 11.87 0.0013
AB 7.47136 1 7.47136 4.86 0.0329
AC 3.48444 1 3.48444 2.27 0.1395
BB 32.7231 1 32,7231 21.28 0.0000
BC 6.11208 1 6.11208 3.98 0.0525

Blocks 4.77778 2 2.38889 1.55 0.2231
Total error 66.108 43 1.5374
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For OTA, different response functions are described in Equation (1) for the response sur-
face plot, which shows the complete regression model (R2 = 93.38; standard error = 1.349)
obtained for the removal. Based on the regression coefficient, this model explained 93% of
the responses observed in the assays.

OTA removal (%)= 48.8701 + 4.744449A + 5.17880B + 0.317578C − 1.80774A2 + 0.0086863AB
+1.54014AC − 3.98695B2 + 0.00683227 B

(1)

The analysis of the capture of phenols, expressed as non-captured phenols, was
performed based on Equation (2) from the response surface plot, producing the complete
regression model (R2 = 91.51; standard error = 1.239). Based on the regression coefficient,
this model explained 92% of the responses observed in the assays.

Phenols not catched (%)= 60.2384 − 0.996408 − 2.0083B − 2.8967C + 1.23333A2 + 0.52137AB
−0.31111AC + 3.13105B2 + 0.385037 BC

(2)

The optimization for the capture of OTA and the conservation of the phenols in
solution (Table 2) revealed the combination of the levels of the factors that maximized the
responses for the parameters studied. For the capture and removal of OTA, it was found
that the most important factors were time and concentration (Figure 5).
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For L. plantarum, it is shown that its presence directly affects absorption, increasing the
ability to remove OTA from wine by approximately 8%; these data agree with the studies
reported by de Prete et al. (2007) [33], who studied different strains of Lactobacillus, which
were capable of removing 8 to 28% of the OTA from wine depending on the strain. The
theoretical analysis showed that an exposure time of 52 min was necessary to maximize the
removal. These data are complemented by the thermograms (Figure 3), in which it was
observed that the presence of LAB increased the system’s stability.

The mechanism by which lactic acid bacteria are capable of adsorbing OTA is believed
to be the adsorption of these toxins to the surface structures of the cell wall, where peptido-
glycan and exopolysaccharides would play an important role [34]. These interactions could
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be promoted by the hydrophobic properties of the cell wall and electron donor–acceptor
and Lewis’s acid–base interactions [35].

Furthermore, the inclusion of LP in the complex facilitates OTA removal without
significantly affecting phenol removal. Thus, for example, it was observed that the removal
of phenols by the complex without LP at one hour of contact using AP−1 (PVA Mw
∼47,000) and AP-2 (PVA Mw ∼61,000) was 64.17 and 61.87, respectively; however, when
BAL (APLP−1 and PLP-2) were added to the complexes, the removal of phenols only
increased by 0.5% and 2.53%, respectively. Additionally, more thermally stable complexes
were generated.

Finally, there is no doubt that the best strategy is the prevention of contamination of
raw materials with fungi. However, to date, total management in the field is not possible,
and removal strategies are an alternative to mitigate the final problem, as long as they go
hand in hand with adequate detection strategies [36].

3. Conclusions

The APLP complexes were efficient in removing OTA from wines without substantially
affecting their phenolic quality, and theoretically, a time of only 52 min was necessary to
achieve the objective of removing over 50% of the OTA. Additionally, the presence of
L. plantarum in the complexes increased the OTA-removal capacity without affecting the
phenolic composition of the wine.

It should be considered that this was a screening study, and future studies should
consider evaluating the removal of phenols individually to determine how this process
affects each of them. Finally, the possibility of immobilizing lactic acid bacteria in polymeric
matrices that are approved for use in the food industry is an important aspect to consider
in advancing these strategies for removing mycotoxins from wines and obtaining safer
beverages that do not cause damage to health.

4. Materials and Methods
4.1. Chemicals and Medium

Sodium alginate, mowiol™ 6-98 (PVA 6-98; polyvinylalcohol, Mw ∼47,000,
98% hydrolyzed), mowiol™ 10-98 (PVA 10-98; polyvinylalcohol, Mw ∼61,000, 98% hy-
drolyzed), calcium chloride anhydrous (CaCl2, ≥96.0%), gallic acid (≥95.0%), and boric
acid (B(OH)3, ≥99.5%) were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Glutardialdehyde (GA, 50% solution in water), absolute ethanol, L(+)-tartaric acid
(≥99.5%), sodium hydroxide (NaOH, ≥99%), chloride acid (HCl), De Man Rogosa Sharpe
(MRS) medium, solvents for HPLC analysis of chromatographic grade (ultra-pure water,
H2O; acetonitrile, ACN; acetic acid, CH3COOH), Folin-Ciocalteu’s phenol reagent (≥99.5%;
2 N), and PTFE membrane filters (0.45 µm) were purchased from Merck KGaA (Darmstadt,
Germany). Deionized water from a Millipore Milli-Q-P Plus system was used for preparing
the aqueous solutions and for HPLC analysis.

QuEChERS extraction kits (salts—1 g of sodium citrate, 0.5 g of disodium citrate
sesquihydrate, 4 g of magnesium sulfate (MgSO4), and 1 g of sodium chloride—and
dispersive solid-phase extraction tubes, 900 mg of MgSO4, and 150 mg of primary secondary
amine (PSA) sorbent) were purchased from Agilent Technologies (Santa Clara, CA, USA).

Ochratoxin A (from Petromyces alberiensis, ≥98%), was obtained from Sigma-Aldrich
(St. Louis, MO, USA), and the stock solution (1 mg mL−1 in absolute ethanol) was stored
at −20 ◦C.

4.2. Bacterial Strain and Culture Condition

The Lactobacillus plantarum 299v (LP) strain was obtained commercially from BION,
Merck. Prior to use, the LP was stored frozen in MRS broth with 15% (v/v) glycerol. For
testing, the LP were activated in MRS broth under incubation at 37 ◦C for 24 h in a 5% CO2
incubator, subculturing in MRS agar. Then, to obtain wet cells, L. plantarum were incubated
in 500 mL Erlenmeyer flasks containing 300 mL of MRS broth at 37 ◦C in anaerobic condi-
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tions. After incubation for 24 h, the wet cells were collected by centrifugation at 10,000 rpm
at 4 ◦C for 10 min [37], and the cell pellet was collected and immediately washed thrice
with 0.9% sterilized sodium chloride solution [22].

4.3. Immobilization of L. plantarum in Alginate-PVA and Bacterial Delivery Assay

Alginate–PVA–L. plantarum (APLP) complexes were prepared according to the mod-
ified methodologies used by Long et al. (2004) [29] and Many et al. (2019) [38]. First,
a 2% alginate (Alg) solution with 5% PVA (Mw ∼47,000 or ∼61,000) was prepared by
dissolving alginate in hot distilled water and autoclaving it at 121 ◦C for 15 min. Then,
the cell suspension containing wet cells (1 or 2 g) was added to 100 mL of Alg–PVA (AP)
solution and stirred for 10 min to produce a homogeneous slurry. The mixture obtained
was taken into a sterile syringe and extruded dropwise into a sterile solution composed of
10% boric acid and 2% CaCl2 (crosslinking agent) to form complexes. In order to complete
the gelation, these complexes were kept in a 5% BA solution for 24 h at 4 ◦C. Finally,
the complexes were removed and washed with distilled water. The formulation of the
synthesized complexes is detailed in Table 1.

In order to determine the bacteria released from the polymeric matrix, 1 g of APLP−1
and APLP-2 complexes with 1 mL of a model wine solution (consisting of 12.5% ethanol
solution (v/v), adjusted to pH 3.5 using tartaric acid (5.0 g L−1) and a 1 mM solution
of sodium hydroxide) were put in contact during 60 min. After that contact time, serial
dilutions were made and seeded on count agar plates to count colonies.

4.4. Complex Characterization for Thermal Analysis by Thermogravimetry (TGA)

The alginate, AP−1, AP-2, APLP−1, and APLP-2 complexes were characterized
using a thermogravimetric analyzer: STD 650 TA-instruments. The samples were heated
at a constant heating rate of 10 ◦C min−1. Heating from room temperature to 900 ◦C
was realized in air, a reactive gas, with a mass flow of 50 mL min−1. Additionally, N2
(50 mL min−1) was used as a protection gas in the electronic balance. A 5 mg amount of
the mixture was placed into a Pt crucible for each analysis.

4.5. OTA Removal from Red Wines by AP and APLP Complexes

The first OTA-removal assay was carried out to determine the concentration of com-
plexes that would allow at least 50% of the OTA to be removed without the total phenol
concentration being substantially impaired. For this, 0.25, 0.5, and 1.0 g of AP−1, AP-2,
APLP−1, and APLP-2 were weighed into 12 mL glass tubes; then, 1.0 mL of red wine
(Cabernet Sauvignon 2019, OTA free), spiked with 5000 ng L−1 of OTA, was added. The
samples were mixed and agitated for 60 min at room temperature (20 ◦C), using a rock
motion agitator, operating at 100 rpm. Then, the complexes and wines were separated, and
the concentration of free OTA in the red wine was analyzed (see Section 4.6).

For the second OTA-removal assay, a factorial design (33) with two variables and three
levels was established. Runs were performed randomly to optimize the time, bacterial
concentration, and molecular weight for the PVA. The nine designed experiments were
carried out in triplicate; the experimental factors (uncoded units) were transformed into
coded units and coded as −1, 0, and +1. The response was expressed as the percentage
of OTA removal. The data were analyzed by the analysis of variance (ANOVA), with a
significance level of 95% (p ≤ 0.05).

For this, 0.5 g of each complex (Table 1) was weighed into 12 mL glass tubes, fol-
lowed by adding 1.0 mL of red wine (Cabernet Sauvignon 2019, OTA free), spiked with
5000 ng L−1 of OTA. The samples were mixed and agitated for different times (15, 30,
and 60 min) at room temperature (20 ◦C, 100 rpm). Then, the complexes and wines were
separated, and the concentration of free OTA in the red wine was analyzed (see Section 4.6).
The controls used were control 1 (1% LP), control 2 (2% LP), control 3 (Alg complex), control
4 (Alg–1% LP complex), and control 5 (Alg–2% LP complex).
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In addition to the OTA analyses, the total phenolic concentration was determined
using the Folin–Ciocalteu method [39], using a Spectroquant Pharo 300 UV–Visible
spectrophotometer. The total phenolic concentration was estimated based on a standard
curve of gallic acid (0–500 mg L−1).

4.6. Analysis of OTA
4.6.1. OTA Extraction and Purification from Red Wine

For extraction and purification of the OTA from the wine, we used the methodology
used by Carrasco-Sánchez et al. (2018) [40]. Briefly, 1 mL of red wine samples were extracted
and partitioned with 2 mL of acetonitrile/acetic acid (99/1) and 0.5 g of QuEChERS
extraction salts. The mixture was stirred (10 s) and centrifuged at 1500× g for 5 min. Then,
the supernatant was extracted and cleaned using 900 mg of MgSO4 and 150 mg of PSA
sorbent. The mixture was then stirred and centrifuged for 2 min at 1500× g, and the
supernatant was filtered through PTFE membrane filters (0.45 µm), prior to OTA analysis
by high-performance liquid chromatography with a fluorescence detector (HPLC-FLD).

4.6.2. Analysis of OTA by HPLC-FLD

The OTA concentrations in the extracts obtained from the red wine samples were
analyzed using an HPLC-FLD system (Agilent Technologies 1260 Infinity) equipped with
a quaternary pump and autosampler. The separation was performed using a reverse-
phase LiChrocart® 250-4 RP−18 (250 mm × 4 mm ID × 5 µm) column (Merck), under the
following conditions: a mobile phase consisting of H2O:ACN:CH3COOH (49.5:49.5:1, v/v),
operated in isocratic mode, at a flow rate of 0.9 mL min−1. The injection volume was 40 µL,
and the analyte detection was performed at Ex: 334 nm and Em: 460 nm [40].
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