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Abstract: Immunotherapy against cancer and infectious disease holds the promise of high efficacy
with minor side effects. Mucosal vaccines to protect against tumors or infections disease agents that
affect the upper airways or the lung are still lacking, however. One mucosal vaccine candidate is the B-
subunit of Shiga toxin, STxB. In this review, we compare STxB to other immunotherapy vectors. STxB
is a non-toxic protein that binds to a glycosylated lipid, termed globotriaosylceramide (Gb3), which
is preferentially expressed by dendritic cells. We review the use of STxB for the cross-presentation
of tumor or viral antigens in a MHC class I-restricted manner to induce humoral immunity against
these antigens in addition to polyfunctional and persistent CD4+ and CD8+ T lymphocytes capable
of protecting against viral infection or tumor growth. Other literature will be summarized that
documents a powerful induction of mucosal IgA and resident memory CD8+ T cells against mucosal
tumors specifically when STxB-antigen conjugates are administered via the nasal route. It will
also be pointed out how STxB-based vaccines have been shown in preclinical cancer models to
synergize with other therapeutic modalities (immune checkpoint inhibitors, anti-angiogenic therapy,
radiotherapy). Finally, we will discuss how molecular aspects such as low immunogenicity, cross-
species conservation of Gb3 expression, and lack of toxicity contribute to the competitive positioning
of STxB among the different DC targeting approaches. STxB thereby appears as an original and
innovative tool for the development of mucosal vaccines in infectious diseases and cancer.

Keywords: glycolipid-lectin; GL-Lect; endosomal escape; cross-presentation; tissue resident memory
T cells; TRM; immune checkpoint; radiotherapy; chemotherapy; cytotoxic CD8+ T lymphocyte

Key Contribution: STxB is a vector for the delivery of antigenic peptides and proteins to dendritic
cells. STxB-based vaccines induce cellular and humoral immunity in mucosal and periphaeral
locations, including combinations with immune checkpoint inhibitors, chemo- and radiotherapy.

1. Shiga Toxin and Its Intracellular Trafficking

The bacterial Shiga toxin belongs to the family of AB5 toxins [1]. These are composed
of a catalytic A-subunit and a homopentameric B-subunit which is made from five identical
B-fragments. The B-subunits of AB5 toxins bind to glycans of cellular protein or lipids [2].
The cellular receptor of the B-subunit of Shiga toxin (abbreviated as STxB) is the glycosph-
ingolipid globotriaosylceramide (Gb3 or CD77) [3]. Of note, STxB is needed not only for
toxin binding to cells, but also for the trafficking of the catalytic A-subunits inside the
cells [4] (Figure 1). With the help of STxB, the A-subunit of Shiga toxin is delivered into
the cytosol where it inhibits protein biosynthesis by modifying ribosomal RNA. This leads
to cell death and contributes to the overall pathology that is associated with Shiga toxin
producing enterohemorrhagic Escherichia coli bacteria, which bring about hemolytic-uremic
syndrome, the leading cause of pediatric renal failure [5,6], but which also poses health
risks to adults [7].
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Figure 1. STxB trafficking into cells. Left: Shiga holotoxin molecules are composed of a STxB homo-
pentamer (green) and a catalytic A-subunit (red), which are non-covalently associated. STxB binds 
to the plasma membrane of target cells via the glycosphingolipid Gb3 (not shown). STxB induces an 
increment of spontaneous curvature, which upon membrane-mediated clustering of several toxin 
molecules leads to the formation of endocytic pits from which clathrin-independent carriers are 
generated for toxin trafficking to early endosomes. From there, the holotoxins are transported via 
the retrograde trafficking route to the endoplasmic reticulum (ER), via the Golgi apparatus. The 
catalytic A-subunit is then translocated to the cytosol where it inhibits protein biosynthesis by mod-
ifying ribosomal RNAs (not shown). Right: In STxB (green)-based vaccines, antigens (blue) are 
linked via covalent bonds to the vector. The endocytic process then operates as for Shiga holotoxin 
molecules. While STxB-antigen conjugates also undergo retrograde trafficking (not shown), a small 
fraction of them escapes from the lumen of endosomes to reach the cytosol (endosomal escape). 
Here, proteasomes process the antigens to generate antigenic peptides, that are then imported into 
the lumen of the ER (or of endo/phagosomal processing compartments; not shown) for loading onto 
MHC class I molecules and subsequent presentation at the plasma membrane to CD8+ T cells. 

The endocytic and intracellular trafficking of STxB has been analyzed in some detail 
(Figure 1). At the plasma membrane, STxB reorganizes lipids, including its receptor gly-
colipid Gb3, in a way such that narrow tubular endocytic pits are formed [8] by exploiting 
a specific geometry of Gb3 binding sites on STxB [9] and its capacity to induce an asym-
metric compressive stress onto the membrane leaflet to which it binds [10]. STxB-Gb3 
complexes are then clustered by membrane-mediated mechanism, likely involving lipid 
fluctuation forces [11]. This mechanism of building endocytic pits without the need for 
the conventional clathrin machinery has been termed the glycolipid-lectin (GL-Lect) hy-
pothesis [12,13]. This GL-Lect mechanism has been suggested to apply also for the struc-
turally related glycolipid-binding B-subunit of cholera toxin [14–16]. 

The toxin-induced tubular endocytic pits then detach by scission from the plasma 
membrane to form clathrin-independent endocytic carriers [17]. This scission reaction in-
volves the conventional pinchase dynamin [8] and also actin-driven domain boundary 
forces [18] and a mechanism that has been termed friction-driven scission in which the 
pulling of the molecular motor dynein on tubular endocytic pits that are scaffolded by the 
BAR domain protein endophilin leads to the thinning of their necks and to subsequent 

Figure 1. STxB trafficking into cells. Left: Shiga holotoxin molecules are composed of a STxB
homopentamer (green) and a catalytic A-subunit (red), which are non-covalently associated. STxB
binds to the plasma membrane of target cells via the glycosphingolipid Gb3 (not shown). STxB
induces an increment of spontaneous curvature, which upon membrane-mediated clustering of
several toxin molecules leads to the formation of endocytic pits from which clathrin-independent
carriers are generated for toxin trafficking to early endosomes. From there, the holotoxins are
transported via the retrograde trafficking route to the endoplasmic reticulum (ER), via the Golgi
apparatus. The catalytic A-subunit is then translocated to the cytosol where it inhibits protein
biosynthesis by modifying ribosomal RNAs (not shown). Right: In STxB (green)-based vaccines,
antigens (blue) are linked via covalent bonds to the vector. The endocytic process then operates as
for Shiga holotoxin molecules. While STxB-antigen conjugates also undergo retrograde trafficking
(not shown), a small fraction of them escapes from the lumen of endosomes to reach the cytosol
(endosomal escape). Here, proteasomes process the antigens to generate antigenic peptides, that
are then imported into the lumen of the ER (or of endo/phagosomal processing compartments; not
shown) for loading onto MHC class I molecules and subsequent presentation at the plasma membrane
to CD8+ T cells.

The endocytic and intracellular trafficking of STxB has been analyzed in some detail
(Figure 1). At the plasma membrane, STxB reorganizes lipids, including its receptor glycol-
ipid Gb3, in a way such that narrow tubular endocytic pits are formed [8] by exploiting
a specific geometry of Gb3 binding sites on STxB [9] and its capacity to induce an asym-
metric compressive stress onto the membrane leaflet to which it binds [10]. STxB-Gb3
complexes are then clustered by membrane-mediated mechanism, likely involving lipid
fluctuation forces [11]. This mechanism of building endocytic pits without the need for the
conventional clathrin machinery has been termed the glycolipid-lectin (GL-Lect) hypothe-
sis [12,13]. This GL-Lect mechanism has been suggested to apply also for the structurally
related glycolipid-binding B-subunit of cholera toxin [14–16].

The toxin-induced tubular endocytic pits then detach by scission from the plasma
membrane to form clathrin-independent endocytic carriers [17]. This scission reaction
involves the conventional pinchase dynamin [8] and also actin-driven domain boundary
forces [18] and a mechanism that has been termed friction-driven scission in which the
pulling of the molecular motor dynein on tubular endocytic pits that are scaffolded by the



Toxins 2022, 14, 202 3 of 20

BAR domain protein endophilin leads to the thinning of their necks and to subsequent
detachment [19,20]. The thereby generated clathrin-independent endocytic carriers are
then targeted in a SNARE protein-dependent manner to early endosomes [21].

From early endosomes, STxB is delivered by retrograde transport to the endoplasmic
reticulum, via the Golgi apparatus (reviewed in [22–24]) (Figure 1). From there, the catalytic
A-subunit is translocated to the cytosol using the cellular retrotranslocation machinery [25].

2. Gb3 Expression and Membrane Translocation of STxB

In the healthy organism, the Gb3 glycolipid is found to be expressed in a limited
number of tissues. In agreement with the fact that renal pathology is the most striking
clinical manifestation that is associated with Shiga toxin, cells of microvascular glomeruli
and proximal tubules have high Gb3 levels [26,27]. Gb3 is also found on microvascular
endothelial cells, and in individuals who are infected with Shiga toxin producing E. coli
strains, vascular endothelia of colon and brain are affected [28–30]. Platelets and erythro-
cytes also express Gb3 [31,32], as much as some immune cells such as germinal center B
lymphocytes [33], monocytes, macrophages, and dendritic cells (DCs) [34].

DCs are key cells for the induction of primary immune responses, and notably also
of CD8+ cytotoxic T lymphocytes (CTL) through the cytosolic processing and the cross-
presentation of exogenous antigens (see below). It was therefore of interest when it was
found that STxB (in some studies covalently coupled to cargo proteins such as antigens),
in addition to reaching the retrograde trafficking route, also has the propensity to escape
from the lumen of endosomes to reach the cytosolic compartment of DCs [34–36] (Figure 1).
Using a quantitative assay, it was measured that roughly 0.5% of cell-associated STxB was
translocated to the cytosol within 4 h incubation at 37 ◦C [37], which is in the range of
the numbers that were described for other delivery systems [38]. The exact mechanism
underlying this endosomal escape capacity remains very little understood.

3. Targeting of DCs: A Competitive Approach for Vaccine Development
3.1. A Brief History

Today’s marketed preventive vaccines induce antibodies that block different pathogens
from infecting host cells. Prior to the success of RNA vaccines, most of these prophylactic
vaccines were based on the administration of recombinant proteins. In other clinical
situations such as chronic infections or cancer, other immune effectors such as CD8+ T
lymphocytes must be mobilized for the development of therapeutic vaccines. At the end of
the 1990s, apart from live attenuated vaccines and recombinant viruses which pose safety
issues, there were no inactivated vaccines capable of inducing CD8+ T cells. Indeed, the
recombinant proteins used for immunization were internalized in the endosomal pathway
and processed peptides were presented to CD4+ T lymphocytes activating a humoral
response. Different groups have therefore become interested in toxins because of their
capacity to undergo endocytic trafficking and to deliver their catalytic subunits into the
cytosol [39,40]. Access to the cytosol is indeed a prerequisite for the targeting of exogenous
antigens into the HLA class I-restricted presentation pathway (cross-presentation) for their
recognition by CD8+ T cells.

The teams of Claude Leclerc and Daniel Ladant were the first to show that a recombi-
nant toxin derived from adenylate cyclase A produced by the bacterium Bordetella pertussis
and incorporating a peptide derived from the lymphocytic choriomeningitis virus (LCMV)
nucleoprotein triggered antigen cross-presentation to CD8+ T cells [41]. These teams also
demonstrated that administration of recombinant cyclase A with a model peptide anti-
gen was able to induce CD8+ T cells in mice [42]. Similarly, Pseudomonas exotoxin and
anthrax toxin were then also shown to target antigens into the MHC class I presentation
pathway [43] and to induce cytotoxic CD8+ T cells in mice [44–47].

In 1998, our teams published a first study showing that also the non-toxic STxB could
be used to target antigens to the MHC class I-restricted pathway in human mononuclear
cells and DCs [48]. Importantly, this presentation was shown to follow the proteasomal
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and transporter associated with antigen processing (TAP)-dependent pathway ensuring
that with this vaccine strategy naturally occurring peptides are presented [34] (Figure 1).

Professional antigen presenting cells such as DCs express costimulatory molecules [49].
When cells that do not express these costimulatory molecules present HLA class I-restricted
antigens to CD8+ T cells, this often leads to tolerance [50]. It was therefore of primary
importance when we showed that Gb3 is preferentially expressed by DCs, and that STxB
functions as a delivery tool for the in vivo targeting of antigens to DCs and for the im-
provement of immune responses, in particular by CD8+ T cells [34]. Consistently, we also
demonstrated the role of DCs in the vaccine function of STxB [51].

3.2. Which DCs and Which Receptors to Target

In mice, DCs include DC1 (also known as Batf3-dependent, CD103+ tissue resident and
CD8α+ lymphoid resident DCs), myeloid CD8α negative CD11b+DC2, and plasmacytoid
DCs (B220+, Bst2+ and SiglecH+). In humans, a correspondence with this classification has
been found with DC1 defined as CD141(BDCA-3)+ Clec9A (DNGR1)+CXR1+ DCs, DC2
identified as CD1c/BDCA-1+ DCs, and plasmacytoid DCs expressing BDCA2 (CD303+). For
the skin, Langerhans cells and dermal DCs (CD14+) need to be added to this listing [52,53].

Initial studies showed that CD8α+DC in mice and BDCA3+ in humans had a higher
cross-presentation capacity than the other subpopulations, thereby explaining their ability
to preferentially induce CD8+ T cells [54,55]. On the contrary, CD8α negative DCs and
Langerhans cells preferentially induce humoral responses [56]. Targeting DC2 via DCIR2
in mice [56,57] and Langerhans cells via langerin was more effective in activating follicular
helper T cells and a humoral response than targeting DC1 [58,59].

In the light of these findings, targeting highly specific DC1 markers such as Clec9a
and XCR1 appeared as the most promising strategy for CD8+ T-cell induction (Figure 2).
However, converging evidence has since accumulated that has challenged this idea on
a functional dichotomy of DCs. It was indeed shown that all DCs are capable of cross-
presentation in humans, especially when antigens are targeted to early endosomes [60–62].
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Figure 2. Optimization of vaccines by delivering antigens to dendritic cells. Different vaccine delivery
systems preferentially target antigens to dendritic cells, which are known for their capacity to prime
naive T cells: Vectors derived from toxin subunits such as the non-toxic STxB, which binds to the
glycosphingolipid Gb3, or adenylate cyclase A, which binds to CD11b; antibodies targeting lectins
(DEC-205, DC Sign) or other surface markers (mannose receptor, XCR1, Clec9a) of which some are
specifically expressed on DC subpopulations. See text for details.
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In mice, STxB does not specifically target only CD8α+DCs [51], and adenylate cyclase
A binds to the myeloid DC-specific CD11b [63]. Yet, both vectors potently induce CD8+ T
cells. Other studies have also shown that engagement of different DC subpopulations as
observed with STxB and other vectors is more effective for the induction of potent immune
responses than targeting single DC subpopulations [64–66].

For the development of immunotherapy strategies, the structural homology and
similarity of tissue expression patterns between humans and mice of the targeted DC
surface markers also are important criteria to consider. For example, while in humans and
mice DEC-205 is expressed at relatively high levels on myeloid blood DCs, the protein is,
only in humans, also present on monocytes, B lymphocytes, NK cells, plasmacytoid blood
DCs, and T lymphocytes [67–69]. Another example is the DC inhibitory receptor 2 (DCIR2,
33D1, Clec4A, CD367), which in mice is exclusively expressed by CD8-negative resident
splenic DCs [56,70–72], while the protein is found on all blood DC subsets, monocytes, and
granulocytes in humans [70,73,74]. It is therefore of note that the globotriose glycan to
which STxB binds is structurally the same in all species, and that according to the current
state of knowledge the expression pattern of the Gb3 glycolipid on DC populations is
similar between species.

Considerations of differences between species also apply in the choice of adjuvants.
For example, it has been reported that TLR9 is found on all major murine DC subsets, while
the protein is only expressed by pDC in humans [75].

3.3. DC Maturation and Role of Adjuvants

Among the DC targeting vectors, some are known to induce DC maturation (e.g., anti-CD40,
adenylate cyclase A, anti-Dectin-1) [76–78], while others do not (e.g., anti-DEC-205, anti-
CD11c, anti-Clec9a, anti-Siglec H) [79–82]. When used without adjuvants or associated
inflammatory stimuli, some of the latter, such as anti-DEC-205, even induce tolerance
rather than activation of immune cells [80,81]. With anti-DEC-205, this has been used
in mouse models to prevent the onset of diabetes [83] or of experimental autoimmune
arthritis [84]. An anti-Siglec H antibody coupled to a Mog peptide similarly inhibits
T-cell dependent autoimmune reactions in a murine EAE model when it is administered
without adjuvant [85].

Other vectors like adenylate cyclase A that trigger DC maturation via the TLR4/TRIF
pathway [77] induce CD8+ T cells without adjuvants. Vectors capable of inducing DC matura-
tion, e.g., anti-CD40 or anti-dectin-1, have themselves been used as vaccine adjuvants [86,87].

One group reported a role for STxB in the maturation of DCs in the spleen and
nasal-associated lymphoid tissue (NALT) [88,89]. However, this has not been seen by
another team [90], and we did not observe any effect of endotoxin-free STxB on DC
maturation [51]. Furthermore, we found that antigens must be conjugated to STxB for the
induction of immune responses in mice [34]. If antigens and STxB are co-administrated, no
immunomodulation is observed [34].

Unlike for anti-DEC-205, STxB-antigen conjugates induce cellular and humoral im-
mune responses without the need for adjuvants [34,51,91]. Adjuvants such as αGalCer,
CpG or poly(I:C) (a TLR3 ligand) nevertheless significantly improve specific CD8+ T-cell
responses against antigens that are delivered via STxB, as one would expect for a delivery
tool that does not itself activate DCs [92].

From a clinical perspective, the optimal combination of these vectors with adjuvants
will result in specific immune response profiles. Thus, antigenic targeting by anti-Clec9A
without associated adjuvant promotes proliferation and induction of antigen-specific reg-
ulatory CD4+ T cells, while coadministration of poly(I:C) or curdlan (Dectin-1 ligand)
promotes the generation of antigen-specific Th1 or Th17 cells, respectively [93].

3.4. Systemic Immune Responses Induced by STxB and Other DC Targeting Vectors

DC targeting vectors are developed for the induction of CD8+ T cells (Figure 2). Indeed,
many vectors (anti-CD40, anti-Clec9a, anti-DEC-205, adenylate cyclase A, anti-Dectin-1,
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anti-mannose receptor...), when coupled to different antigens have been shown to be more
efficient than the non-vectorized antigens for the generation of CD8+ T cells in mouse
models [78,94–101]. Some of these vectors (i.e., anti-CD40, anti-Clec9a, anti-Dec-205) have
even been shown to induce CD8+ T cell in non-human primates [102–106].

In wild-type mice of different genetic backgrounds and in humanized mice, conju-
gates of STxB with antigenic peptides or proteins induce antigen-specific CD8+ T cells,
which are detectable ex vivo and persistent over time [34,51,91,92,107]. Of note, only a
few micrograms of STxB-antigen vaccine are required per mouse to induce CD8+ T cells
when adjuvants are used, as opposed to the situation with non-vectorized antigens [92].
Similar observations have been reported for strategies that are based on targeting DEC-205
or XCR1 [97,108].

Most of these vectors also drive the presentation of antigen-derived peptides by HLA
class II molecules to CD4+ T cells, thereby inducing antibodies with titers that are higher
when compared to those obtained by vaccination with non-vectorized antigens. Some
vectors (STxB, anti-XCR1, adenylate cyclase A) cause TH1 polarization with the production
of IgG2a isotype antibodies [91,99,109], while others (anti-DEC-205, anti-Dectin 1) result
in a mixed TH1/TH17 polarization [110–112]. Some vectors (anti-Lox-1, anti-Clec9a, anti-
DCIR2) appear to be particularly effective in promoting antibody induction, which might
be linked to their ability to activate follicular CD4+ T cell [103,113–115]. These mixed
humoral and cellular responses provide additional arguments to suggest that the attempt
to match the targeting of given types of DC with specific types of immune responses might
be an oversimplification.

3.5. Protection against Viral Infection and Tumor Growth

In different preclinical models of wild-type or humanized mice it was shown that
systemic administration of STxB-antigen conjugates inhibits tumor growth both in the
context of prophylactic or therapeutic vaccination [51,107,116]. In most of these models,
protection was conferred by CD8+ T cells. STxB-antigen conjugates also protect against
infection caused by a smallpox-derived virus [92] or against bacterial infection caused by
Boretella pertussis [117]. Interestingly, coupling of a STxB-related toxin, STx2b, to a clostrid-
ium perfringens-derived enterotoxin enhances the humoral response against enterotoxin
and provides protection against this pathogenic product [118]. It was also found that vec-
tors targeting DEC-205, Clec9a, XCR1, CD11b (via adenylate cyclase A), or CD40 conferred
protection against infectious disease [109,119–123] and tumor growth [96–98,124–130].

4. STxB Functions as a Mucosal Delivery Vector
4.1. The Mucosal Immune System and Its Specific Effectors

The mucosal immune system, also called MALT (mucosa-associated lymphoid tissue),
is an integrated and well-organized architecture covering the lung, head and neck, digestive
and genital mucosa. It is made of lymphoid follicles that are associated with a layer of T, B,
and antigen presenting cells. These immune cells, which are close to the epithelium and
M cells, represent between 10 and 20% of the epithelial barrier. M cells play an important
role in the internalization and transfer of antigens to DCs [131]. A first priming of immune
responses takes place at this follicle-associated epithelium (FAE), which is also called
mucosal inductive site. Thereby induced immune cells reach the adjacent lymph nodes
upon which they return to the very mucosa in which they had been generated [132,133].

Compared to the immune response induced by peripheral lymph node priming, the
mucosal immune response is characterized by two immune effectors that are specifically
found in mucosal tissues: secretory IgA and resident memory T cells [134]. In contrast to
IgA in serum, secretory (s)-IgA antibodies are produced locally in the mucosa and are more
resistant to bacterial enzymes. sIgAs are the key immune effector molecules in the mucosa.
After binding to polymeric immunoglobulin (Ig) receptors (pIgRs), sIgAs are transported
across mucosal epithelial cells to the intestinal lumen or other mucosa. Only mucosal
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and not systemic immunization pathways can generate them [135,136]. Their presence in
mucosal sites is associated with optimal vaccine protection against viral infections [137,138].

More recently, a new non-recirculating lineage of T cells has been described in mucosal
tissues, which were termed tissue resident memory (TRM) T cells [139,140]. TRM specifically
differentiate in the mucosal tissue and are not found in the blood. They express the CD103
marker which binds to epithelial cell-specific E-cadherin. TRM are thought to play an
immunosurveillance role in the mucosa. Their presence in the vicinity of the epithelium
allows them to act rapidly in the event of infection and to promote the swift recruitment
of new effectors without the need for a lengthy T-cell differentiation process in lymph
nodes [141]. TRM have also been found in tumors especially in mucosal localization and
are associated with a favorable prognosis [142,143]. As for sIgAs, mucosal routes of
immunization are more efficient in inducing TRM than conventional systemic routes [144].

4.2. STxB—The First Non-Live Mucosal Delivery Vector That Induces TRM

We showed that intranasal immunization with conjugates between STxB and the E7
protein from human papilloma virus 16 (HPV16) is more effective in inducing mucosal IgAs
and anti-E7 CD8+ T cells in the lung than intramuscular immunization [145]. Intranasal
STxB-E7 immunization promotes intratumoral CD8+ T cell recruitment and the regression
of E7-expressing tumor in the lung or head and neck mucosa. In contrast, intramuscular
immunization with STxB-E7 induces CD8+ T cells in blood and spleen, but not in the
lung and has no significant effect on the growth of a tumor xenograft in the tongue. The
intranasally induced CD8+ T cells express CD103 and CD49a and have a TRM phenotype.
Of note, these cells are not induced when STxB-E7 is injected via the intramuscular route of
immunization [145,146].

In a series of experiments based on the elimination of TRM, the blocking of their
differentiation or migration, or their isolation by parabiosis, we have clearly shown their
role in the inhibition of tumor growth after immunization of mice with different STxB-
antigen conjugates [146]. More recently, we have shown that TRM preferentially express the
chemokine receptor CXCR6, when compared to effector CD8+ T cells [147]. Immunization
via the intranasal route and not the intramuscular route allows to induce the chemokine
CXCL16 in the lung, which could explain the recruitment of TRM [147].

These studies demonstrate for the first time that a protein-based vector targeting DCs
induces TRM, and that the nasal immunization route is required for this. Earlier work had
already pointed to the possibility that STxB might act as a mucosal delivery vector. Indeed,
a STxB fusion protein with a rotavirus NS4 polypeptide was shown to increase intestinal
IgA concentrations and serum IgG when administered orally, and to protect breastfeeding
pups against diarrhea after an infectious challenge [148].

4.3. Other Mucosal Vaccination Strategies

Preparations based on vesicular stomatitis virus (VSV), adenovirus 26 (ADV26), or
modified vaccinia virus Ankara have enabled the commercialization of vaccines against
Ebola virus [149,150]. Intranasal administration of recombinant preparations based on
cytomegalovirus (CMV)-derived viruses, influenza virus, ADV, VSV have been shown
to induce IgA and TRM in different mucosal locations [151–154]. In a preclinical model
of infection with SARS-CoV-2, a recombinant chimpanzee ADV (ChAdOx1)-encoding
SARS-CoV-2 Spike administered nasally or subcutaneously was shown to protect against
lung infection after a viral challenge, but only intranasal administration of the vaccine
protects against upper airway infection. This protection is associated with the preferential
induction of local mucosal IgA and TRM [155].

Few non-live vectors have been tested for their ability to deliver antigens via the
mucosal route. For example, conjugates between the non-toxic B-subunit of cholera toxin
and bacterial or viral antigens increase antigen-specific IgA compared to non-vectorized
antigen when they are administered nasally or sublingually [156,157]. Upon nasal or
subcutaneous administration, a scFv directed against DEC-205 and coupled to a parasite
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antigen increases IgA concentrations in nasal washings as well as a CD4+ T-cell response in
the spleen, allowing partial protection against a parasite challenge [158].

More generally, two main mucosal delivery tools are developed for vaccine:

(i) Lactic acid bacteria (LAB) that include Lactobacillus spp., Lactococcus spp., and
Streptococcus spp. LAB are generally recognized as safe and considered as transiting
and non-invasive bacteria [159,160].

(ii) Nanoparticles, i.e., (a) polysaccharide-based natural polymers such as chitosan, pullu-
lan, alginate, inulin, hyaluronic acid, maltodextrin; (b) lipid-based delivery systems
(i.e., cationic liposomes, virions, archaeological bodies, small cochlea, and immunos-
timulating complexes); (c) synthetic polymeric nanoparticles (poly(lactic-co-glycolic
acid), polycaprolactone, polyahydrides, polyphosphazene). These polymers have the
advantage of being biodegradable.

After mucosal administration, LABs and nanoparticles generate mucosal responses
against entrapped antigens [161–164]. To improve their efficacy, LABs such as lactobacillus
have been coupled with DC targeting peptides; alternatively, complement C3d3, anti-
CD205, anti-CD11c, or neonatal Fc receptors (FcRn) have been expressed at their sur-
face [165–168]. Nanoparticles such as poly(lactic-co-glycolic acid) and liposomes have also
been functionalized with anti-DEC-205 [169], anti-CD40 [170], anti-mannose receptor [171],
or anti-CD11c [172] antibodies to target them to DCs. These elegant strategies, which
combine mucosal delivery, DC targeting, and the possibility to incorporate multiple cargo
molecules are up until now limited by issues related to reproducibility of their synthesis
and scale up for clinical application.

Regarding RNA vaccines, their direct intranasal administration without encapsula-
tion does not lead to the induction of a mucosal immune response [173]. Some studies
show that their encapsulation as nanoparticles, cationic liposome/protamine complexes
(LPC), or mannose-conjugated lipid nanoparticles generate cellular responses that in-
hibit tumor growth [173–175]. Xun Sun’s group demonstrated that cationic cyclodextrin-
polyethylenimine 2k conjugates (CP 2k) which are complexed with anionic mRNA-encoding
HIV gp120 induce strong systemic and mucosal anti-HIV immune responses [176]. Never-
theless, toxicity problems have been reported with polyethyleneimine and lipid nanoparti-
cles when these are injected via the nasal route [177–179]. Improving the benefit-risk balance
and the efficacy of these mucosal RNA vaccines is the subject of numerous ongoing studies.

5. STxB in Combination with Other Cancer Treatment Modalities

Apart from a few positive clinical signals of therapeutic HPV vaccines in pre-neoplastic
cervical lesions, no therapeutic vaccine has demonstrated sufficient efficacy in patients
with advanced cancer or chronic infection (e.g., HIV) to change clinical practice [140].
An in-depth investigation of the tumor microenvironment has revealed the existence of
immunosuppressive mechanisms that likely explain the failure of therapeutic vaccines in
advanced stage cancers [180]. Indeed, T cells that migrate into tumors quickly become ex-
hausted and express inhibitory receptors like PD-1. Blocking the interaction between PD-1
and PD-L1 has led to the success of immunotherapy in many clinical indications [181,182].
Second generation immunotherapy protocols are therefore developed in which an inhibition
of the PD-1/PD-L1 pathway is combined with vaccines or conventional treatments [183].

In preclinical models, we were one of the first teams to show that this combinato-
rial approach might indeed be successful [184]. In mice with HPV E7-expressing tumors,
administration of either a STxB-E7 vaccine or an anti-PD-1 antibody led to only a partial
therapeutic response. In contrast, the combination of both induced total tumor regres-
sion [184]. The value of combining a STxB-based vaccine with anti-PD-1 antibodies (and
the local injection of IFNα) was also confirmed by another group [185,186].

Regulatory T cells are another type of the immunosuppressive cells in the tumor
microenvironment that counteract vaccine efficacy. We have shown that the combination of
a Treg inhibitor targeting the CCR4 pathway with a vaccine composed of STxB coupled
to self-antigens overcomes tolerance and allows to eliminate tumors that express these
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self-antigens [187]. This combination proved to be effective in inhibiting the growth of
numerous tumors (i.e., melanoma, colon cancer, and lung cancer). A similar synergistic
effect was observed in the presence of a mTor pathway inhibitor [188].

In many clinical indications, a therapeutic vaccine would need to be combined with
conventional treatments such as radiotherapy or chemotherapy. In collaboration with
Eric Deutsch’s group, we have shown in a head and neck cancer model that radiotherapy
increases the effect of a STxB-E7 vaccine by making endothelial cells more permissive to
infiltration by CD8+ T cells [189].

As summarized above and also in other studies [190,191], the STxB vector has been
used reproducibly by independent groups for the preclinical development of immunother-
apy applications. These studies support the design of clinical trials including STxB-based
vaccines in 2nd generation immunotherapy strategies.

6. Potential Limitations of STxB
6.1. Intrinsic Immunogenicity and Toxicity

One of the potential problems with the use of a vector derived from an exogenous
protein is the presence of pre-existing antibodies or the development of a neutralizing
immune response against the vector. For STxB, we have addressed these aspects in mice.
Upon immunization of mice with STxB-antigen conjugates, an antibody response is ob-
served against STxB, which is 100-fold lower than the one directed against the antigen
itself, however [92]. Moreover, anti-STxB antibodies do not interfere with the induction
of a CD8+ T-cell response against the antigen. Indeed, the intensity of the CD8+ T re-
sponse increases in the same animal with repetitive immunizations, and if an animal is
pre-immunized with non-antigen-coupled STxB at high doses, the CD8+ T-cell response
is not diminished upon vaccination with STxB-antigen conjugates, compared to mice that
were not pre-immunized [92].

The low immunogenicity of STxB is also observed in humans. Indeed, in serum
samples from 30 patients with hemolytic-uremic syndrome (HUS), caused by Shiga toxin
producing E. coli strain O157:H7, no antibodies against the toxin could be detected [192].
In other studies, on clinical samples, antibodies against Shiga toxin were present, but
not against STxB, or only with a very low frequency of 1.3% [193,194]. We also detected
the presence of anti-STxB antibodies in only 2 out of 30 serum samples of patients with
HUS. Furthermore, our teams also did not find antibodies against STxB in sera of healthy
subjects [192], and the frequency of antibodies directed against holotoxin was found to be
about 1.8% in healthy subjects [195]. These studies demonstrate the low immunogenicity
of STxB and the absence of pre-existing antibodies against this protein in humans. This low
intrinsic immunogenicity gives STxB an important advantage over viral vectors.

Different approaches have been used to address a potential toxicity of STxB. Using a
classical screening test for toxicity, i.e., the rabbit reticulocyte lysate system, no inhibition of
globin synthesis was observed with up to 100 µg per reaction of Shiga toxin that by mutation
was rendered devoid of enzymatic activity [196]. Mice treated intraperitoneally with toxoids
of STx1 or STx2 whose catalytic sites were mutated at protein concentrations equivalent to
more than 100 times the ones used for immunization showed no ill effects [197]. In another
study, mice were given STxB doses as high as 200 mg/kg [198] or 220 µg per mouse [88]. Yet,
no signs of clinical toxicity were observed, including mucosal sites. In our immunization
experiments, mice were given three doses of up to 80 µg of STxB at 3-week intervals, which
corresponds to 8 mg of STxB per kg of mouse weight. These mice did not exhibit any signs
of clinical morbidity with a follow-up of 6 months (Ref. [51] and unpublished).

6.2. Production

For all studies that have been discussed above on STxB as an antigen delivery tool, the
protein was purified from bacteria, which are its natural hosts. STxB is obtained in amounts
that are typical for proteins which are expressed in the periplasmic space. STxB has recently
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also been chemically synthesized and refolded in vitro [199]. Whether this type of material
can also be used to obtain functional vaccine conjugates remains to be tested.

Antigenic peptides and proteins can in principle be genetically fused or chemically
coupled to STxB (Figure 3). Even if successful in a few cases [48,148], genetic fusions in
most cases fail to be found at significant levels in the bacterial periplasm. A chemical
coupling approach was therefore favored in most studies (Figure 3).
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Figure 3. Vaccine strategies. (a) Chemical coupling. In this procedure, vector and antigen are
produced in parallel and then chemically coupled to generate the vaccine. This approach has been
extensively used for STxB. (b) Genetic fusion. Vector and antigen are genetically fused at the cDNA
level, and then expressed in and purified from prokaryotic or eukaryotic cell systems. In some cases,
this approach has been used for STxB, but often corresponding fusion proteins could not be obtained.
(c) Nucleic acid vaccines. Fusion proteins between vectors and antigens are expressed from DNA or
mRNA molecules that are directly injected into the organism. These vaccine molecules are thereby
produced by the cells of the organism receiving the vaccine. The main advantages and disadvantages
of the different strategies are listed to the right.

For chemical crosslinking, a variant was designed in which a cysteine was added to
the C-terminus of each B-fragment. It turns out that despite this supernumerary cysteine,
the intrachain disulfide bond at the level of each B-fragment still forms with high specificity.
This variant, termed STxB/Cys, is expressed and purified with similar efficiency as wild-
type STxB, conserves the Gb3 binding and intracellular transport characteristics of the
wild-type protein, and lacks toxicity. It has been conjugated to a large variety of molecular
entities from fluorophores [200] and radioelements [201,202] to peptides [145], full-size
proteins [36,91] and liposomes [203].
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7. Conclusions

STxB appears to be a competitive DC-targeting vector for CD8+ T-cell induction, which
remains a challenge in vaccinology. Other vectors such as adenylate cyclase A from Bor-
detella pertussis or anti-CD40 antibodies have also demonstrated their ability to induce
CD8+ T cells. However, in a randomized phase II clinical trial no significant difference
compared to placebo was observed in viral clearance in women with HPV16/18 cervi-
cal lesions vaccinated with the GTL001 vaccine composed of a recombinant HPV16–18
adenylate cyclase vaccine [204]. The use of anti-CD40 antibodies has been hampered by
clinical toxicity [205,206]. Other recent data have positioned STxB as the first non-live
mucosal vector capable of inducing mucosal IgA immunity and mucosal TRM, which play
key roles in controlling pathogens and in anti-tumor immunosurveillance [145,146]. In
contrast, other non-live vectors such as DEC205 ligands, nanoparticles, and mRNAs, when
administered via the mucosal route, fail to induce mucosal immunity. Furthermore, the
expression of DEC205 differs depending on species; it is less specific of cDC1 in humans,
and ligands of DEC205 as delivery vectors induce tolerance [67,81]. Regarding functional-
ized nanoparticles, problems have been observed concerning the reproducibility of their
synthesis and the feasibility of their industrial scale up, while mucosal administration of
mRNA encapsulated in lipid nanoparticle appears to be toxic [173,177,207]. Finally, the low
immunogenicity of STxB, its lack of toxicity, binding to a receptor that is conserved across
species, and the reproducibility of vaccine efficacy that was obtained with this vector by
different independent groups [91,185,186,190,191] make it an attractive antigen delivery
tool, particularly for the development of mucosal vaccines in infectious diseases and cancer.
Its potential use in the context of nucleic acid vaccines awaits further exploration (Figure 3).
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