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Abstract: Aflatoxin (AFT) contamination, commonly in foods and grains with extremely low content
while high toxicity, has caused serious economic and health problems worldwide. Now researchers
are making an effort to develop nanomaterials with remarkable adsorption capacity for the identi-
fication, determination and regulation of AFT. Herein, we constructed a novel hollow-structured
microporous organic networks (HMONs) material. On the basis of Fe3O4@MOF@MON, hydroflu-
oric acid (HF) was introduced to remove the transferable metal organic framework (MOF) to give
hollow MON structures. Compared to the original Fe3O4@MOF@MON, HMON showed improved
surface area and typical hollow cavities, thus increasing the adsorption capacity. More importantly,
AFT is a hydrophobic substance, and our constructed HMON had a higher water contact angle,
greatly enhancing the adsorption affinity. From that, the solid phase extraction (SPE-HPLC) method
developed based on HMONs was applied to analyze four kinds of actual samples, with satisfied
recoveries of 85–98%. This work provided a specific and sensitive method for the identification and
determination of AFT in the food matrix and demonstrated the great potential of HMONs in the field
of the identification and control of mycotoxins.

Keywords: food-safety inspection; solid-phase extraction; aflatoxins; HMONs; adsorbents

Key Contribution: Compared to the original Fe3O4@MOF@MON, the large specific surface and
hydrophobicity of both inner and outer bilayers enable HMONs to retrieve aflatoxin from different
grain extracts ultra-quickly and efficiently. The HMONs-SPE-HPLC was applied to analyze four
kinds of actual samples, with satisfied recoveries.

1. Introduction

Food is the basis of all human life activities. In recent years, the frequent occurrence
of malignant events caused by food safety problems, especially the biotoxin residues in
food, resulted in inestimable harm and loss [1]. In order to meet the social demand for food
safety risk control, the development and research of fast, sensitive and accurate detection
of food hazards has become very urgent. Recently, the major hazards to human health from
foods are mycotoxins, drug residues, food pathogens, heavy metal ions, food additives
and allergens. Among these, mycotoxins have attracted more and more attention from the
public due to their significant toxicity to humans and the fact that they are easily-produced
in the food matrix.

Countries around the world now are putting great effort into preventing mycotoxin
development in foods to ensure the commercial transit and the free movement of goods
because the food-borne pathogens along with the corresponding mycotoxins are of utmost
concern in society. The Food and Agriculture Organization of the United Nations (FAO)
concluded that over 25% of cereals hold the risk of contamination by mycotoxins over the
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world [2]. Mycotoxin pollution not only poses a huge threat to the food safety of citizens but
is also the biggest obstacle to China’s agricultural products export to the EU, causing huge
economic losses to China’s grain and oil processing and export enterprises. Aflatoxin (AFT)
is a difuran ring toxoid produced by fungi such as Aspergillus flavus [3]. AFG1, AFG2,
AFB1 and AFB2 are the four most basic types with acute and chronic toxicity [4,5]. Grains
are susceptible to mycotoxin contamination in the process of growth, harvest, storage and
transportation [6]. Among these, corn, rice, soybean and millet are the most common. With
the increase of people’s attention to food safety, the problem of aflatoxin contamination
is increasingly concerned and valued by governments all over the world, and countries
have developed aflatoxin sales standards to protect their food safety and trade interests.
The Commission Regulation (EC) 1881/2006 sets limits of 2.0 and 4.0 ppb for aflatoxin
B1 and aflatoxin totals for all cereals and all cereal derivatives, respectively [7]. The Food
and Drug Administration (FDA) stipulates that 20 ppb of aflatoxin is the upper limit for
human food and products [8]. China GB 2761-2017 National Standards for Food Safety
Limits of mycotoxins in food also set limits for five mycotoxins in grain and oil foods [9].
Mycotoxin limits in food are established on the basis of risk assessment, based on data
from food safety risk monitoring and dietary exposure of residents, as well as factors
such as existing regulations of trading partner countries and whether food demand can
be met under such regulations. In different countries and regions, due to the differences
in climate, environment and food types, the dietary structure and dietary exposure of
residents are not the same, so the limits of mycotoxins in food are also different to some
extent. In terms of mycotoxin controlling, the EU requires every operator in the food chain
to self-test for mycotoxins in the products they sell and acquire, while China organizes
national inspection through the grain department in order to investigate the harvest quality
of grain. At present, the basic work of risk analysis and hazard control of mycotoxins in
China still needs to be further strengthened so as to constantly improve the limit standards,
promote the relevant standards to be in line with the international standards and accelerate
the healthy development of China’s food import and export trade.

At present, common analytical methods for the determination of AFT are instru-
mental detection, such as HPLC and LC-MS, an enzyme-linked immunosorbent assay
(ELISA)-based immunoassay and the aptamer screening method [10]. Among them, the
enzyme-linked immunoassay has strict reaction conditions and is prone to false-positive
results due to enzyme instability [11], while the aptamer method is also affected by en-
vironmental variables such as salt concentration and pH value due to its high sensitivity.
Instrumental detection is a relatively robust and reproducible method. HPLC has the
advantages of wide application range, high separation efficiency, high speed, a wide se-
lection of mobile phase, a wide variety of stationary phases, high sensitivity, repeatable
chromatographic columns and safety [12–16]. Due to the extremely low-level presence in
the food matrix with the significantly high toxicity of AFT, there appears high standard
demand for the sensitivity and anti-interference ability of the developed methods [17,18].
Therefore, appropriate sample pretreatment procedures (enrichment or adsorption) com-
bined with HPLC are thought to be a promising choice for AFT determination in complex
food matrices (electrochemically active components, such as catechins, gallic acid, vitamins
and inactive components such as proteins, lipids, polysaccharides).

In recent years, with the rapid development of science and technology, functional
micro-/nano-materials have gradually entered people’s vision, especially in the field of
food safety [19–24]. Some porous morphologies, such as MOFs and microporous organic
networks (MONs), are widely utilized in food sample pretreatment. As conventional
porous-structured materials, MOF materials are 3D crystalline micro-materials with a high
surface area and tunable structure; however, their relatively poor chemical stability limits
their intensive application in food hazards adsorption [22]. Hybrid porous structures
usually provide improved enrichment performance. A novel type of hybrid materials,
Fe3O4@MOF@MON, was reported by Li et al. in 2019 [23]. It exhibited good magnetic
separation ability, which effectively simplified pretreatment steps and could be applied
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to determine the trace AFT in real food samples. In comparison, MONs, a subclass of
conjugated microporous polymers (CMPs), have much stronger chemical stability than
MOFs [25–28]. MONs are emerging porous materials consisting of aromatic alkynes and
halides via Sonogashira–Hagihara coupling [29]. The prepared MONs have high pore
intensity, but this mostly comes from the MONs surface pores, while the majority of interior
pores fail to function due to inaccessibility. In fact, this is a common problem faced by
MONs in many applications. With the gradual understanding of the growth mechanism
and microstructure of nanocrystals by researchers, hollow nanomaterials have become one
of the hot spots in modern nanoscience research [30–32]. To enhance the adsorption capacity
while increasing the utilization of interior pores, current research has become increasingly
focused on HMONs. The existence of macropores can reduce the diffusion resistance of
analytes in HMONs, shorten the diffusion pathway and increase the mass transfer rate so
that analytes molecules can easily access the interior [33–36]. Currently, HMONs have a
wide range of applications in the field of drug release, and further development is needed
for research in the field of food safety detection [37–42].

In this work, a simple and new method was introduced for HMONs preparation
using HF to remove the transferable MOF (green layer) and Fe3O4 (purple ball) core from
Fe3O4@MOF@MON, as shown in Figure 1. Due to the low content of AFT in actual samples
and large matrix interference, enrichment and extraction is a crucial step. Compared to
the original Fe3O4@MOF@MON, HMON gave improved surface area and typical hollow
cavities, thus increasing adsorption capacity. More importantly, AFT is a hydrophobic
substance, and our constructed HMON had a higher water contact angle, greatly enhancing
the adsorption affinity. The SPE-HPLC developed based on HMONs was applied to the
analysis of four kinds of actual samples, with satisfied recoveries of 85–98%. This work
provided a specific and sensitive method to AFT identification, determination and control
in the food matrix and demonstrated that HMONs have great potential in the field of
identification and control.
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Figure 1. Schematic illustration of the construction of the hollow structured HMONs materials for
SPE-based enrichment and determination of aflatoxins in foods.

2. Results and Discussion
2.1. Synthesis and Characterization of HMONs

In this work, a new HMONs structure was prepared using HF to etch Fe3O4@MOF from
Fe3O4@MOF@MON. (See detailed experimental procedures in the Supplementary Materials)
The large specific surface area and strong hydrophobicity made HMONs more qualified for
the detection of AFT compared with the original Fe3O4@MOF@MON. Chemical changes
of the surface properties of HMONs in comparison with the original Fe3O4@MOF@MON
were explored by water contact angle measurement. Different thicknesses of HMONs
produced different adsorption capacities and surface hydrophobicity. The thickness of
HMONs-1, HMONs-2, HMONs-3 and HMONs-4 increased in the order of 6.5, 11.4, 18.9



Toxins 2022, 14, 137 4 of 14

and 22.3 nm, respectively. With the change of material thickness, there was no significant
difference in water contact angle; all had strong hydrophobicity. As shown in Figure 2,
the water contact angles gradually increased from 132.1◦ (Fe3O4@MOF@MON) to 145.3◦

(HMONs-1) to 147.5◦ (HMONs-2), up to 148.5◦ (HMONs-4). From here, we see that the
prepared HMONs had stronger hydrophobicity. For the hydrophobic AFT, the HMONs
were ideal adsorbents. Meanwhile, as the thickness of the material increased, there was a
significant decrease in adsorption capacity. As we can see, Fe3O4@MOF@MON showed
poor adsorption (21.3 mg g−1) for AFT. In comparison, HMONs-1 showed better adsorp-
tion. The amount of AFT absorbed decreased gradually from HMONs-1 (89.4 mg g−1)
to HMONs-4 (39.2 mg g−1). This indicated the hollow structure of HMONs possessed a
larger specific surface area and higher adsorption capacity than Fe3O4@MOF@MON. In
the meantime, the thinner shell of hollow MONs would lead to better adsorption capacity.
Although the HMONs-1 had the best adsorption capacity and stronger hydrophobicity, we
chose the HMONs-2 as a follow-up experimental material. That is because the HMONs-1
thickness was too thin, resulting in poor stability; besides, it had lower density, which
required high centrifugation speed during analysis. All things considered, HMONs-2 were
chosen as the final materials used for the followed SPE-HPLC assay.
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Figure 2. The preparation of hollow structured MONs adsorbents via acid etching, and the compari-
son of HMONs adsorptive performance with different thicknesses in terms of adsorption capacity
(the average value of those to the four targeted aflatoxins) and surface hydrophobicity. The differ-
ence between two groups was considered statistically significant for * p < 0.1, very significant for
** p < 0.01.

As shown in Figure 3, the typical transmission electron microscopy (TEM) images
clearly showed the shape of Fe3O4@MOF@MON (Figure 3a–c) as well as the hollow struc-
tured HMONs (Figure 3d–f). According to TEM studies, it was seen that both of them
showed a glomerated sphere form and average particle sizes approaching 200 nm, which
is similar to the average hydrodynamic particle size obtained by dynamic light scattering
(Figure 3g–h). At least 150 randomly selected particles were measured from the TEM
images, the average diameter of Fe3O4@MOF@MON and HMONs was calculated as
198.9 ± 7.4 nm and 185.4 ± 9.7 nm, respectively. The above results showed, in comparison
with Fe3O4@MOF@MON, the particle size of HMON encountered no significant change as
well as the uniformity of particles.
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For the sake of confirming the large specific surface area and hollow structure of
HMONs, the specific surface area of BET (Brunauer–Emmett–Teller) and the pore size distri-
bution of BJH (Barrett–Joiner–Halenda) were analyzed by nitrogen adsorption–desorption
isotherm. Figure 4A,B show the N2 adsorption–desorption curve of Fe3O4@MOF@MON
and HMONs. This type of desorption–adsorption curve belongs to type II in the IUPAC
(International Union of Pure and Applied Chemistry) classification. Type II isotherms
reflect typical physical adsorption processes on microporous adsorbents. Figure 4C show
that the BET surface area of Fe3O4@MOF@MON was only 468.7 m2 g−1, while HMONs
increased to 897.3 m2 g−1. Generally speaking, a high specific surface area could offer
more active sites and thereby improve adsorption efficiency. The inset of Figure 4F show
that the total pore volume of Fe3O4@MOF@MON and HMONs is about 1.25 mL g−1 and
1.78 mL g−1, respectively. The results revealed that this kind of hollow material with high
specific surface area and high pore volume is very promising in its application to food-borne
hazard determination.

Besides high specific surface area, HMONs also showed excellent chemical stability.
Since the physicochemical properties of nanoscale materials depend on size, instability
refers to the increase or decrease in nanoparticle size that leads to significant changes in
the catalytic, optical, magnetic, mechanical, and thermal properties of the material. We
characterized the particle size and surface area change at pH 4, 7 and 10 for 48 h. According
to Figure 4D,E, HMON particle size and the surface area changed little, so it can be seen that
HMONs were very stable under different pH environments, which ensures the developed
HMONs materials could be applied for adsorption in various pH environments. Chemical
stability is the basis of HMON’s practical application in food substrate interference.
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All these results proved that HMONs had higher adsorption capacity and stronger
hydrophobicity than Fe3O4@MOF@MON and was more suitable as an adsorbent for AFT.

2.2. Adsorption Performance

The adsorption performance of HMONs for AFT was characterized by equilibrium
experiments and adsorption kinetics. (See detailed experimental procedures in the Sup-
plementary Materials Sections S1 and S2) As we can see from Figure 5A, the adsorption
capacity increased with the concentration in the range of 0–30 mg L−1, almost reaching
balance at the concentration of 20 mg L−1. Meanwhile, the adsorption capacity of HMONs
increased significantly in the first five minutes and almost reached the peak after 10 min.
The adsorption capacity of HMONs to AFT was 82.3 mg g−1 (Figure 5B). These results
indicated that as-prepared HMONs possessed the excellent advantages of efficient and fast
adsorption of AFT. Initial experiments were related to the comparison of the adsorption
features of prepared nanocomposite and its components. Both adsorbents were applied
to the extraction of AFTs from their solutions (20 mg L−1). After the desorption step in
acetonitrile, the amounts of extracted AFTs were evaluated. As we can see, the adsorption
efficiencies of HMONs (76.3, 67.1, 72.3, 81.8 mg g−1 for AFB1, AFB2, AFG1, AFG2, respec-
tively) were greatly equivalent to about four times those of the pristine Fe3O4@MOF@MON
(18.8, 17.7, 16.4, 17.4 mg g−1 for AFB1, AFB2, AFG1, AFG2, respectively). This is because
the hollow structure confirmed HMONs’ large specific surface area and more binding
cavities to AFTs. In general, a higher specific surface area indicated more active sites.
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2.3. Optimization of SPE-HPLC Conditions

As for the SPE-HPLC optimization experiments, several key factors, including the ad-
sorbent amount, sampling pH, elution volume, and eluent composition, on the adsorption
capacity of HMONs were evaluated using an AFT standard solution of 100 µg L−1. The
adsorbent amount used for the SPE assay was evaluated with an amount ranging from
10 to 50 mg. Results in Figure 6A demonstrated that increasing adsorbent amounts gave
similar recovery performance, revealing that 10 mg is a sufficient amount for this assay.
Moreover, 10 mg of adsorbents were applied for the following optimization experiments.

Toxins 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 6. Optimization of the experimental conditions of the developed SPE-HPLC analytical 
method: (A) adsorbent amount; (B) incubation pH; (C) eluent volume; (D) elution solvent. 

2.4. Method Validation 
To evaluate the specificity of HMON materials to aflatoxins, several other mycotox-

ins (sterigmatocystin (ST), Ochratoxin A (OTA), fumonisins, and patulin) are introduced 
as co-interference. As shown in Figure 7, the presence of the four other mycotoxins gave 
little effect to the adsorption capacity to HMONs for the four aflatoxins, possibly due to 
the co-interaction of the HMON hole with the molecular structure of aflatoxins, along with 
the hydrophobic effect. A series of standard analyte solutions with a concentration range 
of 0.1–100 μg L−1 were prepared to evaluate the practicability of the developed HMONs-
SPE-HPLC method for AFT detection. The correlation coefficient (R2), linearity, relative 
standard deviations (RSD) and limits of detection (LODs, S/N = 3) were obtained under 
optimal conditions (Table 1). The R2 values of AFB1, AFB2, AFG1 and AFG2 were all 
greater than 0.999 in the range of 0.1–100 μg L−1 and the LODs were lower than 0.05 μg 
L−1. Compared with Fe3O4@MOF@MON, the prosed HMONs-based SPE method had a 
lower LOD, indicating that AFT analysis was applicable to trace level. These results im-
plied that the HMONs adsorbent based on HPLC was a sensitive system for the extraction 
and detection of trace AFT. 

  

Figure 6. Optimization of the experimental conditions of the developed SPE-HPLC analytical method:
(A) adsorbent amount; (B) incubation pH; (C) eluent volume; (D) elution solvent.

As the pKa of AFT is 10.09 ± 0.20, the AFT in the grain sample remained neutral at pH
10. The recoveries gradually decreased when pH > 9.0, possibly because the deprotonation
would weaken the interaction between AFT and the HMONs adsorbent, causing the
efficiency of adsorption to be reduced. In addition, AFTs decompose in strongly acidic
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conditions at a pH lower than 3. The sample pH is a key factor affecting the AFT adsorption
process on an adsorbent. In consequence, the influence of sample pH on the adsorption
efficiency of the HMONs adsorbent was examined by sample pH from 3.0 to 9.0. Figure 6B
show the highest recovery was obtained at pH 6. The extraction efficiency of AFB1, AFB2,
AFG1 and AFG2 was increased when the pH value was less than 6.0 but decreased when it
was above 6.0.

The type of desorption solvent is also a crucial factor in achieving ideal recoveries.
The influence of the type of elution solvent with different polarities was evaluated using
acetonitrile, methanol, methanol + formic acid (FA) and acetonitrile + FA. Acetonitrile
was selected as the elution solvent since it offered higher extraction recoveries than others
(Figure 6D). Consequently, acetonitrile was employed to elute AFT from the adsorbent, and
the optimal volume of acetonitrile was then determined within the range of 1.0–10.0 mL.
Figure 6C show that as the volume of acetonitrile increased from 1 to 6 mL, the extraction
recovery increased gradually. When the volume of elution liquid exceeded 6 mL, the
recovery rate did not change, indicating that 6.0 mL of methanol was sufficient for the
elution of all AFT from the HMONs adsorbent.

2.4. Method Validation

To evaluate the specificity of HMON materials to aflatoxins, several other mycotoxins
(sterigmatocystin (ST), Ochratoxin A (OTA), fumonisins, and patulin) are introduced as
co-interference. As shown in Figure 7, the presence of the four other mycotoxins gave
little effect to the adsorption capacity to HMONs for the four aflatoxins, possibly due to
the co-interaction of the HMON hole with the molecular structure of aflatoxins, along
with the hydrophobic effect. A series of standard analyte solutions with a concentration
range of 0.1–100 µg L−1 were prepared to evaluate the practicability of the developed
HMONs-SPE-HPLC method for AFT detection. The correlation coefficient (R2), linearity,
relative standard deviations (RSD) and limits of detection (LODs, S/N = 3) were obtained
under optimal conditions (Table 1). The R2 values of AFB1, AFB2, AFG1 and AFG2 were all
greater than 0.999 in the range of 0.1–100 µg L−1 and the LODs were lower than 0.05 µg L−1.
Compared with Fe3O4@MOF@MON, the prosed HMONs-based SPE method had a lower
LOD, indicating that AFT analysis was applicable to trace level. These results implied
that the HMONs adsorbent based on HPLC was a sensitive system for the extraction and
detection of trace AFT.
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Table 1. Analytical performance of the proposed HMON-based SPE method for aflatoxins.

Analyte Retention
Time

Linear Range
(µg L−1) R2 LOD

(µg L−1)
RSD

(%, n = 11)

AFB1 4.83 0.1–100 0.9994 0.03 1.9
AFB2 9.76 0.1–100 0.9992 0.04 3.2
AFG1 4.23 0.1–100 0.9993 0.03 2.6
AFG2 7.99 0.1–100 0.9992 0.03 2.8

Additionally, to further demonstrate the stability and reusability of the HMONs, they
were repeatedly used to adsorb AFT, and the recoveries of AFT were investigated. Figure 8
show that the recoveries of AFTs remained above 90% post 20 cycles of reuse. Meanwhile,
previous studies verified that the Fe3O4@MOF@MON could be reused seven times. Thus,
the newly designed HMONs had better stability and applicability for the recovery of AFT,
which was greatly in line with the current concept of environmental protection.
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2.5. Application of Real Samples

After proving HMONs’ strong adsorption capacity and repeatability, we studied its
feasibility in real grain samples, including corn, soybean, millet and rice. The recoveries of
spiked samples were in the range of 90–98% for corn samples, 88–94% for soybean samples,
85–95% for millet samples and 86–94% for rice samples, respectively (Table 2). The proposed
HMONs displayed excellent adsorb performance for AFT in real grain samples. Generally
speaking, the developed HMONs-based SPE-HPLC method for detecting AFTs has good
linearity, low LOD and a high recovery rate. Compared with Fe3O4@MOF@MON, HMONs
has a larger specific surface area and double hydrophobic properties, which makes them
have higher adsorption efficiency and indicates they are more suitable for AFT analysis in
actual samples. At last, we summarized the methods of aflatoxin detection based on HPLC
in recent years in Table 3. Compared with the existing methods for detecting AFT based on
HPLC-SPE, the LODs of this method we reported were lower than average, indicating the
HMONs-SPE-HPLC is highly sensitive.
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Table 2. Analytical results of real food samples via the developed SPE method.

Analyte Spiked
(µg L−1)

Determined Value
(mean ± SD, n = 3)

(µg L−1)

Recovery
(%)

Corn

AFB1
1 0.93 ± 0.02 93
10 9.65 ± 0.02 96

AFB2
1 0.98 ± 0.04 98
10 9.66 ± 0.06 97

AFG1
1 0.96 ± 0.06 96
10 9.71± 0.05 97

AFG2
1 0.91 ± 0.08 91
10 9.01 ± 0.02 90

Soybean

AFB1
1 0.89 ± 0.04 89
10 9.11± 0.05 91

AFB2
1 0.89 ± 0.05 89
10 8.98 ± 0.03 90

AFG1
1 0.88 ± 0.07 88
10 9.17 ± 0.06 92

AFG2
1 0.93 ± 0.09 93
10 9.36 ± 0.04 94

Millet

AFB1
1 0.85 ± 0.05 85
10 8.78 ± 0.05 88

AFB2
1 0.92 ± 0.04 92
10 9.33 ± 0.07 93

AFG1
1 0.94 ± 0.07 94
10 9.51 ± 0.05 95

AFG2
1 0.92 ± 0.08 92
10 9.48 ± 0.07 95

Rice

AFB1
1 0.91 ± 0.03 91
10 9.36 ± 0.06 94

AFB2
1 0.88 ± 0.05 88
10 9.12 ± 0.04 91

AFG1
1 0.86 ± 0.02 86
10 8.97 ± 0.05 90

AFG2
1 0.87 ± 0.09 87
10 8.90 ± 0.03 89
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Table 3. Comparison of existing SPE methods for determination of aflatoxin in food samples.

Sorbent
Materials

Detection
Method Analytes Samples LODs

(µg/L) Ref

AuNPs@gelatin HPLC-UV AFB1 Saffron 0.004 11

AuNBPs@PAF-40-Fe RP-HPLC-
FLD AFB1 Milk 0.01 9

AuNSs HPLC AFB1 Corn flour 0.02 36

Fe3O4@MOF@MON HPLC-MSPE AFT
Corn
Rice

Millet
0.15 30

MIL53(Al)-SiO2@Fe3O4 HPLC-MSPE AFB1 Tea 0.5 10
Hydrogel HPLC AFB1 Peanut 0.94 8

HMONs HPLC-SPE AFT

Corn
Rice

Millet
Soybean

0.03 This
method

3. Conclusions

In conclusion, HMONs are well constructed using HF to remove Fe3O4@MOF core
from Fe3O4@MOF@MON. A larger surface area was detected for HMONs compared with
Fe3O4@MOF@MON, which increased from 468.7 to 897.3 m2 g−1. Meanwhile, the water
contact angles gradually increased from 132.1◦ (Fe3O4@MOF@MON) to 147.5◦ (HMONs).
The strong hydrophobicity improved the adsorptive affinity of HMONs to AFTs. Due to
the low content of AFT in actual samples and severe matrix interference, enrichment and
extraction are crucial steps. The HMONs were successfully applied as an SPE adsorbent
for analysis of AFT contamination in four different grains. The large specific surface and
hydrophobicity of both inner and outer bilayers enable HMONs to retrieve aflatoxin from
different grain extracts ultra-quickly and efficiently while achieving the “full recovery” of
biotoxins with recoveries of 85–98%. In addition, the reactivated HMONs can be reused at
least 20 times, which is in line with the current concept of environmental protection. This
work showed the specific adsorption capacity of trace aflatoxin in agricultural products,
and the hollow structure provided a new idea for the nanomaterials in the field of the
identification and control of mycotoxins. Considering the superior properties, hollow
structured micro-/nano-adsorbents exhibited considerable potential to detect a variety of
hazardous substances in the field of the identification and control of mycotoxins. As for the
further practical use of the developed SPE assay for AFT identification and determination
in food, future attention should be focused on the scale-up synthesis of HMONs materials
and cost-saving to make it affordable to use in practice.

4. Materials and Methods
4.1. Chemicals and Materials

Zirconium chloride (ZrCl4, 98%), N,N-Dimethylformamide (DMF, >99.9%), 2-aminoter-
ephthalic acid (NH2-BDC, >98%), sterigmatocystin (ST, >99.9%), Ochratoxin A (OTA,
>99.9%), fumonisins (>99%) and patulin (>99%) were obtained from Aladdin (Shanghai,
China). HPLC grade Acetonitrile and Methanol were acquired from Thermo Fisher (Mas-
sachusetts, MA, USA). HPLC-grade AFB1, AFB2, AFG1 and AFG2 (HPLC-grade) were
purchased from Sigma (Shanghai, China). Deionized water was used in all synthetic
experiments. All reagents were at least analytical reagent-grade.

4.2. Instrumentation

The water contact angles were measured on a DSA30 contact-angle system (KRÜSS,
Berlin, Germany) at room temperature. The N2 adsorption–desorption isotherms were
characterized to explore the surface area and porous nature using a surface area analyzer
(ASAP 2460). The microstructure and the morphology of as-prepared materials were
assessed via a transmission electron microscope (TEM, JEM1200EX, Tokyo, Japan). The
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contents analysis of AFT was measured with high-performance liquid chromatography
(HPLC, Shimadzu LC-20AT, Tokyo, Japan).

4.3. Synthesis of HMONs

The Fe3O4@MOF@MON were synthesized as reported previously (See detailed exper-
imental procedures in the Supplementary Materials) [23]. Briefly, Fe3O4@SiO2 (150 mg),
Zirconium (IV) chloride (300 mg, 1287 µmol) and water (75 µL) were dissolved in 20 mL N,
N-dimethylformamide (DMF) and stirred. A solution of 2-aminoterephthalic acid (235 mg,
1298 µmol) in 10 mL DMF was added to the above solution. Then, the mixture was trans-
ferred into Teflon-lined autoclaves and heated at 120 ◦C for 24 h. After cooling the system
at room temperature, the solution was thoroughly washed with water five times and then
dried under vacuum. Then, the Fe3O4@SiO2@UiO-66-NH2 was obtained.

As for the preparation of HMON-2 used in the final SPE assay, in a 100 mL three-necked
flask, the prepared Fe3O4@MOF (200 mg), CuI (1.0 mg, 5.2 µmol) and (PPh3)2PdCl2 (3.4 mg,
4.8 µmol) were dispersed with triethylamine (15 mL) and toluene (15 mL) under sonication
and mechanical stir and 1,4-diiodobenzene (80 mg, 0.24 mmol) and akis (4-ethynylphenyl)
methane (50 mg, 0.12 mmol) were added. Subsequently, the system was reacted at 90 ◦C
for 6 h. After cooling at room temperature, the acquired substance was separated using a
magnet, ultimately washed with methanol and dichloromethane several times to dispose of
the unreacted reactants and then dried in a vacuum to finally produce Fe3O4@MOF@MON.
HMONs were obtained by removing Fe3O4@MOF core from Fe3O4@MOF@MON by HF
solution (5%) treatment for 15 min, then washing with methanol and water. After stirring
for 2 h, the obtained product was centrifuged (12,000 rpm, 15 min). Finally, the prepared
HMONs were washed five times and dried in a vacuum.

As for the preparation of HMON-1, HMON-3 and HMON-4, the preparation proce-
dures were exactly the same as that of HMON-2 except for the MON reactant ratio in the
step of MON coating onto the Fe3O4@MOF core. The raw materials were CuI (3.9, 6.24,
7.8 µmol), (PPh3)2PdCl2 (3.6, 5.76, 7.2 µmol), 1,4-diiodobenzene (0.18, 0.288, 0.36 mmol)
and akis (4-ethynylphenyl) methane (0.09, 0.144, 0.18 mmol) for HMON-1, HMON-3 and
HMON-4, respectively.

4.4. Sample Preparation

Four grain samples, including corn, rice, soybean and millet, were purchased from the
local market. The samples were ground (<80 mesh) and stored at room temperature for
45 days. A total of 5.0 ± 0.1 g sample powder was dispersed in 25 mL of methanol/water
mixture (70:30, v/v) for full extraction under shaking for 30 min. As for the spiking-recovery
test, the aflatoxins were added into the sample powder in this stage to give the final
concentration, as shown in Table 2. After filtration, 15 mL of filtrate was removed and
it was diluted before passing through the membrane. All the corn samples were given a
pre-column derivatization process with trifluoroacetic acid and n-hexane and transferred
to HPLC vials. Each injection volume was 20 µL.

4.5. HPLC Analysis

The AFTs concentrations were measured by an HPLC system (Shimadzu) equipped
with LC-20AT FLD-detection (Excitation wavelength: 360 nm and emission wavelength:
440 nm). A Waters Symmetry-C18 column (4.6 mm × 250 mm, 5 µm) at a column tempera-
ture of 30 ◦C was used for the aflatoxin detection. The optimized mobile phase consisted of
acetonitrile and water (32:68, v/v). The flow rate was 1 mL min−1, and the injection volume
was 20 µL.

4.6. Statistical Analysis

The mean ± SD were determined for all the measured values. Statistical analysis
was performed by Student’s t-test. The difference between two groups was considered
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statistically significant for * p < 0.1, very significant for ** p < 0.01 and the most significant
for *** p < 0.001.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14020137/s1, Section S1: Experimental section; Section S2:
Adsorption kinetics.
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