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Abstract: Aflatoxin contamination in corn is a significant issue, posing substantial health threats to
humans and animals. Aflatoxin testing protects consumer health, ensures the safe global trade of
corn, and verifies compliance with legislation; however, effective sampling procedures are essential to
ensure reliable results. While many sampling procedures exist, there is no evidence to indicate which
is the best approach to ensure accurate detection. Using scientific and gray literature sources, this
review analyzed sampling procedures to determine an optimum approach to guide the development
of standard practices. Results revealed that sampling is the major source of error in the accurate
assessment of aflatoxin levels in food and crucial for obtaining reliable results. To guarantee low
variability and sample bias-increased sample size and sampling frequency, the use of automatic
dynamic sampling techniques, adequate storage, and homogenization of aggregate samples for
analysis are advised to ensure a representative sample. However, there is a lack of evidence to
support this or indicate the current utilization of the reviewed procedures. Inadequate data prevented
the recommendation of sample sizes or frequency for optimum practice, and thus, further research is
required. There is an urgent need to make sampling procedures fit-for-purpose to obtain accurate
and reliable aflatoxin measurements.

Keywords: aflatoxin; corn; representative sample; sampling procedure; sample frequency;
sample size

Key Contribution: This systematic review revealed there are various kinds of sampling procedures
for aflatoxin detection. Sampling is the major source of error in the accurate assessment of aflatoxin
levels in corn due to the heterogeneous distribution of this toxin and is the most important factor for
obtaining reliable results. There is a lack of evidence to support these sampling factors or indicate the
current utilization of the reviewed procedures. There is an urgent need to make sampling procedures
fit-for-purpose to obtain accurate and reliable aflatoxin measurements. This report summarizes the
key principles to consider when choosing a fit-for-purpose sampling method.

1. Introduction

In 2021, Mars Incorporated brought together a Food Safety Coalition of experts from
industry, academia, and international organizations to drive food safety insights and
standard practices at pace, starting with aflatoxins, due to the serious health threat they
pose. Work was undertaken in four areas: sampling and testing, risk assessment and
communication, prediction, and risk communication. This publication forms part of the
work focused on sampling.
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Mycotoxins are naturally occurring toxins [1] and are of major concern in the food
industry worldwide, as contamination occurs regularly in food and feed commodities [2].
Approximately 25% of the global food supply is significantly contaminated [2]. Many
hundreds of different mycotoxins have been identified, including aflatoxin(s) (AF(s) [3].
AFs are secondary metabolites, produced by fungi such as Aspergillus flavus, Aspergillus
parasiticus, and Aspergillus nomius, that grow on agricultural products, including cereals,
peanuts, rice, and dried fruit [4]. The four main AFs that pose a particular risk to humans,
include aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2
(AFG2). Among these toxins, AFB1 is considered the most harmful and prevalent in
corn [2]. AF contamination occurs during crop development and maturation, and thus
increases due to inadequate post-harvest conditions, including insufficient storage and
drying treatments [4]. AF contamination is increasing markedly due to the impact of climate
change [5]. Climate change causes variation in environmental temperatures and water
activity (aw), and therefore affects fungal growth and AF production in crops [5]. Aspergillus
flavus is highly adaptable to climate change, and consequently dominates various non-toxic
fungal species [5]. Moreover, AFs are heat stable, and thus it is difficult to completely
eradicate AF contamination in crops [5]. Decontamination processes including thermal
processing have reduced contamination [6]. Moreover, novel-processing methods (pulsed
light) have shown significant advances in AFs’ degradation [6].

AF exposure results from either direct consumption of AF-contaminated food or in-
directly from food-producing animals, which have consumed AF-contaminated feed [7].
AF consumption can lead to serious health implications, as they are carcinogenic and
highly toxic [8]. High AF exposure through grain consumption may cause immunosup-
pression, liver cirrhosis, and acute aflatoxicosis; a condition depicted by liver damage,
which can possibly result in death [9]. Low levels of AF exposure over a long period of
time can cause impaired growth in children [9]. Furthermore, AF consumption in ani-
mals can result in toxic effects such as chronic diseases [10], including liver damage and
immunosuppression [10].

The toxic potential of AF consumption highlights the importance of testing and moni-
toring AF contamination in the food supply chain. Robust mycotoxin sampling procedures,
coupled with the fit-for-purpose mycotoxin analysis, are essential for complying with
established food safety standards and regulatory limits to confirm food is safe for trade,
and human and animal consumption [11]. Many countries have established common
regulations and maximum levels for AFs, and these must be supported by reliable testing
data [12]. The development of effective sampling and testing methods for AF analysis is
a continuing issue, as it is highly challenging to estimate the true AFs’ concentration in a
batch lot due to the diverse nature of AF contamination within corn kernels [11].

The challenges associated with sampling include the fact that AFs’ concentration
distributions are generally highly heterogeneous throughout a batch of bulk kernels [13].
Therefore, bulk sampling of corn may not represent the true AF contamination across an
entire lot [2]. Hence, obtaining a sample that is representative of the entire batch lot is
extremely difficult [2]. Variances can also occur during sampling, as minimal portions of
kernels are highly contaminated, whereas the majority of the lot can be mycotoxin-free
or contain negligible levels of AF contamination [13]. This can cause serious discrepan-
cies of AF contamination being reported, including false positives and false negatives in
terms of maximum residue limit (MRL) breaches, resulting in the misclassification of corn
batches [2]. Therefore, these ambiguities within sampling variances threaten food safety
and international trade [13].

An effective sampling procedure has a crucial role in minimizing the impact of the
heterogeneous distribution of AFs in corn [11]. The key steps to obtaining an accurate
measurement of AFs’ content in a lot consists of incremental sampling, sample prepara-
tion, and sample analysis via detection methods [14]. The importance of the sampling
procedure is highly underestimated, but it is the most crucial component of managing
AF-contaminated food safety risks [13]. Various sampling strategies have been proposed,
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including random and stratified [9]. Randomized sampling is more extensively utilized;
however, the effects of this method in obtaining a representative sample are limited to
theoretical analysis, failing to consider the heterogeneous and spatial clustering of AF
contamination [9]. However, as further discussed in this review, obtaining a larger number
of incremental samples at various random locations within a lot can minimize the impact of
AFs’ heterogeneity, reduce sample variation, increase the reliability of results, and provide
a more accurate analysis of AFs’ contamination of corn.

This review aims to provide a comprehensive overview of sampling procedures for
aflatoxin analysis that have been published by governmental, non-governmental sources,
and businesses (Table 1), in addition to the regulatory limits set for aflatoxins in different
countries. The main themes identified from the literature reveal that official formal sampling
procedures focus on sample size and frequency, thus addressing regulatory legislation
and trade requirements. “Formal sampling procedures obtain samples, which are taken
and analysed according to all the relevant legislation” [15]. However, informal sampling
procedures focus on sampling mechanics, thus managing mycotoxin risk assessment, to
ensure safe food consumption. “An Informal sampling procedure is not for enforcement
purposes, but mainly a surveillance exercise to ensure food safety” [16]. Although there is
an array of sampling procedures available, there is no clear indication as to which method
is regarded as the best approach or has been optimized for accurate AF measurements. The
overall aims of this review are to summarize the range of sample procedures identified,
and critique which factors best contribute to obtaining an effective and adequate sample
procedure, to produce truly representative samples. Sampling procedures have been
compared and divided into informal and formal protocols. A model framework template of
the standard practice has been devised for both formal and informal sampling procedures
to accurately determine levels of AF contamination in corn.

Table 1. Summary of gray literature from Google engine.

Source Material Accessed

ADHB AHDB Cereals & Oilseeds is a division of the Agriculture and Horticulture Development
Board (AHDB) [17].

Codex Alimentarius Commission (CAC)
Codex Alimentarius international food standards, General standard for contaminants and

toxins in food and feed. CXS 193-1995. Adopted in 1995 [18].
Codex Alimentarius Procedural Manual [19].

Canadian Grain Commission (CGC) Systems Handbook and Approval Guide (CGC; 2015) [20].

Canadian Food Inspection Agency (CFIA) Government of Canada. Section 1—RG-8 Regulatory Guidance: Contaminants in Feed [21].

Department for Environment, Food & Rural Affairs
(DEFRA) Guidance on the organisation of informal food authenticity surveys [16].

European Union Commission Regulation (EC) No 466/2001 [22].
Commission Regulation (EC) No 401/2006 [23].

Food and Agricultural Materials Inspection
Centre (FAMIC) Aflatoxin Regulations [24]

Food and Agriculture Organization of the United
Nations/World Health Organization (FAO/WHO)

Report of an FAO technical consultation Rome, 3–6 May 1993. Sampling plan for aflatoxin
analysis in peanuts and corn. (FAO 1993) [4].

Worldwide regulations for mycotoxins in food and feed [25].

Food and Drug Administration (US) Food And Drug Administration Office of Regulatory Affairs. Mycotoxin Analysis.
ORA Laboratory Manual Volume IV Section 7 [26].

Food Standards Agency Mycotoxins Sampling Guide (2016) [15]

Food Standards Australia New Zealand (FSANZ) Australia New Zealand Food Standards Code, 2017, Schedule 19, Maximum levels of
contaminants and natural toxicants [27].

Food Safety and Standards Authority of India
(FSSAI) Food safety and standard authority of India. Manual of Methods Mycotoxins [28]

International Organization for Standardization
(ISO) ISO-24333: Cereal and cereal products—sampling. Geneva (Switzerland): ISO; 2009 [29]
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Table 1. Cont.

Source Material Accessed

The Grain and Feed Trade Association (GAFTA) Sampling rules no. 124. Sampling,
Analysis Instructions, Methods Of Analysis and Certification [30].

United States Department of Agriculture (USDA)

Grain Inspection Handbook. Grain Inspection Packers and Stockyards [31]
Foreign Agricultural Service, Gain Report No. CH18026 China’s Maximum Levels for

Mycotoxins in Foods [32]
Feed Grains Sector at a Glance [33].

World Food Programme (WFP) SOP for sampling and testing for Aflatoxin [34].

World Health Organization (WHO) Mycotoxins [1]

2. Results

The process for determining papers for inclusion and the collation of papers selected
for use in this study is illustrated in Figure 1.
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3. Discussion
3.1. Legislation and AFs’ Regulatory Limits

Due to the health threats associated with AF consumption, maximum levels of AFs
have been set, to reduce these risks [12]. Moreover, the globalization of food is increasing;
therefore, it is essential that there are consistent and harmonized regulations and control
systems to ensure the trade of safe food [12]. More than 100 countries have established
maximum levels for mycotoxin contaminants [25]; however, these limits vary greatly be-
tween countries [35]. As AFs are carcinogenic, a “no-effect” concentration or tolerable daily
intake cannot be established due to the toxicity of these compounds, and thus levels in food
commodities should be as low as possible [10]. Table 2 shows an overview of the regulatory
limits of AFs in food adopted throughout the world. The European Commission has
established the lowest maximum levels for AFB1 and total AFs (B1 + B2 + G1 + G2) in corn,
conversely, America has established maximum limits only for total AFs (B1 + B2 + G1 + G2).
While Europe has the lowest levels permitted for AFB1 in corn (5 µg/kg), America, China,
and Nigeria have higher limits of 20 µg/kg for total AFs. The limits for most countries
range from 5 to 15 µg/kg; however, Thailand and the Philippines have the highest limits
permitted, i.e., 50 µg/kg for total AFs in food. It is evident from Table 2 there has been an
effort to reach harmonized maximum levels between countries. This standardization will
ease global trade efforts and control systems [36]. One limitation is that some countries
have regulations for AFs specifying a particular food type (corn), whereas other countries
have established limits for all food, therefore making it difficult to compare regulations of
AFs in corn between regions.

Table 2. Overview of different regions’ regulatory limits of AFB1 and total AFs in food. Those
highlighted in bold represent the aflatoxin limits in corn only. X = not available.

Organization Country AFB1 (µg/kg)
(Food)

Total AFs
(B1 + B2 + G1 + G2) Food Type References

European Union EU 5.0 10.0 Corn Commission Regulation
(EC) No 466/2001) [22]

Food and Drug
Administration USA X 20 Corn

United States Food and
Drug Administration

USDA, GIPSA (1998) [37]

China 20 X All food USDA, 2018 [32]

Africa 5 10 All food Miklos et al., 2020 [12]

Japan 10 10 All food FAMIC, 2011 [24]

Canada X 15 All food
Canadian Food

Inspection Agency,
(CFIA), 2017 [21]

Nigeria 20 X All food Miklos et al., 2020 [12]

India X 10–15 All food
Food Safety and

Standards Authority of
India (2020) [28]

Australia, New
Zealand X 15 All food

Food Standards Australia
New Zealand (FSANZ)

(2017) [27]

ASEAN
(Association of
Southeast Asian

Nations)

Malaysia 0.1 5–35

All food Miklos et al., 2020 [12]

Philippines 10 10–50

Singapore 0.1–5 5

Thailand X 15–50

Vietnam 0.1–12 4–15
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3.2. AFs’ Legislative Global Impacts

The globalization of the food trade has both positive and negative impacts associated
with AF contamination [38]. Countries with stricter AF limits will reject imports from
countries with higher limits, resulting in extensive economic losses for certain exporting
countries [39]. The EU has the strictest standard for AFs in corn, thereby reducing the global
supply that can meet this standard due to higher limits in other regions (e.g., China and
America). This can result in a shortage or limited supply of corn in Europe [39]. Conversely,
stricter limits will ensure the export of higher quality products, including corn containing
negligible concentrations of AFs [39], thus resulting in economic benefits for exporting
countries [39]. Moreover, stricter limits can also improve AF-mitigation strategies and
sampling techniques in exporting countries [39]. AF contamination has imposed significant
economic losses in America (approximately USD 10,000 per lot annually) [38] as AF contam-
ination led to food waste and reductions in crop price [39]. However, in developing regions,
AF contamination poses a greater threat to public and animal health. The economic costs
of monitoring programs, lack of political enforcement of food safety regulations, and the
high reliance of corn as a staple food due to food insecurity in these regions all contribute
to, and exacerbate, this food safety issue [38]. This results in significant health risks and
chronic health diseases in developing regions [40,41]. The impacts associated with AF
contamination indicate the need for appropriate and effective AF sampling procedures, in
order to protect consumers and comply with established regulatory limits, and to ensure
safe food for trade and consumption [11].

3.3. Sampling

The principal aim of sampling is to provide a reliable sample which represents the
entire lot, i.e., “an identifiable quantity delivered at one time and assumed to have common
characteristics” [42]. Various sampling procedures have been developed based on statistical
parameters in association with consumer safety and producer protection [43]. Research has
uncovered that only minimal corn kernels (approximately 0.1%) are highly contaminated
(AF clusters), while most of the kernels are mycotoxin-free [13]. Hence, sampling must be
effective for AFs, and consider their heterogeneous distribution within corn kernels [44].
Corn kernels are transported in large bulk quantities; thus, it is unrealistic to sample the
entire consignment, and multiple incremental samples are withdrawn [44]. An effective
sampling procedure can minimize the misclassification of lots and reduce the undesirable
consequences associated with regulatory accept or reject decisions [14]. Effective sampling
procedures are vitally important for developing countries for a number of reasons. Firstly,
AF exposure is high in these regions and is illustrated by the high number of Aflatoxicosis
cases in Africa, resulting from the consumption of contaminated corn [38] Secondly, Sub-
Saharan Africa and Asia are large exporters of corn; therefore, they must ensure compliance
with the regulatory limits of the countries they are exporting to [38,45]. Hence, continuous
efforts are directed towards improving sampling procedures for AF analysis in foods to
reduce the variability of analytical results [43].

3.4. Sampling Procedures

National and international organizations have established sampling procedures for a
variety of grain commodities [4,15,18,20,23,30,31,34]. Each sampling procedure contains
different specifications associated with sampling; however, some procedures are more
comprehensive than others. The AF-testing procedure consists of three stages: sampling,
sample preparation, and analysis (Figure 2).
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Each stage of the AF-testing procedure has an associated uncertainty; therefore, it
is impossible to quantify the levels of AFs present in corn with 100% accuracy [2]. Fur-
thermore, the sampling step is the most crucial step, as this is the largest contributor to
error and variability [46]. To minimize variation and sampling errors and achieve a rep-
resentative sample, three crucial components of the sampling procedure are highlighted
within this review: the frequency and size of incremental samples in relation to the lot
size, and the methods used to obtain the selected samples. A novel alternative approach,
which can overcome the variance in AF sampling, is via indirect grain dust sampling [47].
This provides a fast and non-destructive sampling method for AF detection. As dust
accumulates from a large quantity of grains during storage and transportation, sampling
dust particles, rather than corn itself, will provide a more representative AF quantity of
the entire batch [48]. Basically, the concentration of AFs present in a corn lot is indirectly
related to the concentration present in dust [47]. Sampling is carried out via utilization of
a rapidust system®, featuring a vacuum stream and a cyclone type collector [47]. Results
from this sampling type [48] are promising; however, this study focused solely on wheat
grain dust particles, which may not be reproducible for corn. Thus, the standardization of
dust sampling is challenging to implement, and a more realistic solution is needed [47].

3.5. Sample Size

Many of the reviewed sampling procedures highlight that the key component of
representative sampling is withdrawing sufficient quantities of many incremental samples
from the lot at multiple locations [18,20,23,30], noting that this component is critical to
reduce uncertainties and produce the most representative sample possible [44]. Moreover,
procedures emphasize that increasing the sample size significantly reduces heterogeneous
variation within a sample [15,23].

The reviewed sampling procedures include the number of incremental samples, sam-
ple frequency, the size of the required aggregate sample [15,18,20,23,30,34], or sample
patterns [15,30,34]. Both the EU and FSA indicate 100 g is sufficient for all incremental
samples regardless of the size of the lot or sub lots (Table 3). The FSA sample procedure is
derived from the EU standard [23]. In contrast, CAC [18] and GAFTA [30] (Tables 4 and 5)
include the minimum number of incremental samples for each corresponding lot weight,
which is beneficial to understand the weight of samples needed to obtain sufficient results.
CAC [18] specifies lot weights from <1 to >15 Tonnes (T) (Table 4), whereas the EC [23]
specifies different lot weights varying from ≤0.05 to ≥1500 T (Table 3). Therefore, the EC
sampling procedure is more specific per lot weight, suggesting that following this approach
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could produce more representative results. Moreover, the minimum size of the aggregate
sample for CAC [18] is 20 kg, compared to the range of 1–10 kg in the EC procedure [23].
Obtaining a larger aggregate sample could increase the reliability of results as it can reduce
sample variation [14], thus, suggesting 20 kg is more appropriate in achieving this.

Table 3. EU sampling plan for analysis of AFs in corn kernels by [15] and [23].

Lot Weight (Tonnes) Weight or Number
of Sub Lots

No. of Incremental
Samples

Aggregate Sample
Weight (kg)

≥1500 500 tonnes 100 10

>300 and <1500 3 Sub lots 100 10

≥50 and ≤300 100 tonnes 100 10

>20 and ≤50 - 100 10

>10 and ≤20 - 60 6

>3 and ≤10 - 40 4

>1 and ≤3 - 20 2

>0.5 and ≤1.0 - 10 1

>0.05 and ≤0.5 - 5 1

≤0.05 - 3 1

Table 4. Codex Alimentarius Commission [18] sampling plan for analysis of AFs in corn kernels.

Lot Weight (Tonnes)
Minimum Number

of Incremental
Samples

Minimum Size of
Incremental Sample

(kg)

Minimum Size of
Aggregate Sample

(kg)

≥15 100 0.2 20

>10 and <15 75 0.267 20

≥5 and ≤10 50 0.4 20

>1 and ≤5 25 0.8 20

≤ 1 10 2 20

Table 5. The Grain and Feed Trade Association [30] sampling plan for analysis of AFs in corn kernels.

Consignment
Size (Tonnes)

Lot Size
(Tonnes)

Number of
Increments per

Lot

Minimum Bulk
Aggregate Sample

per Lot (kg)

Maximum Weight
of Increments

(kg)

>25,000 500 Minimum 20 20 1

10,001–25,000 1000 Min 30 30 1

5001–10,000 2500 Min 40 40 1

0–5000 5000 Min 50 50 1

Several procedures failed to indicate exact numbers or sizes of samples per lot weight,
hence limiting the sampling comparison within this review [20,34]. For example, the WFP
indicates only one example of a 5000 T lot, in which 100 incremental samples should be
taken weighing 220 g each [34], which is similar to EC and CAC [18,23]. However, GAFTA
specifies, a lot of 5000 T will require a minimum of 50 incremental samples to be taken,
withdrawing at least 50 kg per lot but a maximum 1 kg per sample [30] (Table 5). This
incremental sample weight is much larger than that specified by WFP and EC, further
implying a larger sample size will reduce sample variability [23,34]. GAFTA stipulates
that, “as many incremental samples should be taken as physically possible” [30]; however,
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the International Organization for Standardization (ISO) standard of cereals and cereal
products [29] stipulates for a sub lot of 500 T, 20 incremental samples (weighing between
300 and 1900 g) should be taken. This suggests a larger weight of the incremental sample
should be collected, implying a greater sample weight is more significant in obtaining a
representative sample. Furthermore, this stresses the inconsistencies between sample pro-
cedures. The majority of procedures acknowledge that aggregate samples with a minimum
weight of 1 kg are required for analysis; however, the USDA [31] stipulates a larger mini-
mum sample of 2.5 kg aggregate sample is sufficient. This further highlights inconsistences
between the procedures. It is difficult to compare the CGC sampling procedure [20], as the
specified lot sizes are “per bag” without any indication of the actual bag weight (Table 6).
This is a significant flaw in the CGC protocol. The majority of corn transportation is via
consignment lots by cargoes [45], not in bags. However, this illustrates that an effective
sampling procedure should include both bags and lot weights as corn is transported by
both means [45].

Table 6. Canadian Grain Commission [20] sampling plan for AF analysis of corn kernels.

Lot Size Minimum Number of Incremental Samples

1–20 bags All bags must be sampled

21–1000 bags 6% of all bags in lot, minimum of 20 samples randomly selected

>1000 bags 3% of all bags in lot, minimum of 20 samples randomly selected

Sample Frequency

Advantageously, the EC, CAC, and WFP [18,23,34] procedures all provide a sampling
frequency equation, to statistically estimate the time periods of sampling.

EC and CAC procedures contain the same equation:

Sampling frequency (SF) n = Lot weight × Weight of the incremental sample/Weight
of the aggregate sample × Weight of individual packing

However, WFP indicates the sampling frequency using a different equation:

T (number of increment/hour) = incremental samples/sublots × Frequency.

These equations give statistical guidance of the sampling frequency, thereby reducing
variation and error during sampling to create representative samples [14]. However, the
method specified by the Agriculture and Horticulture Development Board [17] suggests
sampling should be taken “according to the flow”, and GAFTA [30] specifies sampling
points should be “carefully selected.” Each sampler’s judgment of the sampling flow will
of course be different, therefore increasing the margin for error and bias during sampling,
and reducing the accuracy of the overall AF detection [14]. Therefore, using the sampling
frequency equation may be a better approach to reduce error and increase the reliability
of results [14]. A limitation within the GAFTA [30] procedure includes the description of
“uniform systematic sampling”, as systematic sampling achieves a representative sample
of the entire lot [30]. However, they fail to provide an equation or guidance on obtaining
the sampling frequency. The remaining procedures fail to indicate sample frequency, thus
limiting comparison within this review. An advantageous feature in the GAFTA [30]
procedure is the guidance of the “sampling point.” This indicates if samples are drawn
outside natural daylight, there must be adequate light exposure for sampling to take place,
such as artificial lighting. This was the only procedure to mention this important aspect of
sampling. Moreover, GAFTA is the only procedure that briefly mentions the sampling size
of grains intended for animal feed; this is particularly interesting [30], as corn is commonly
used for animal feed, contributing to 95% of all animal feed in America [33].

The procedures mentioned above focus on the number of incremental samples and
sampling frequency. However, USDA and GIPSA (2020) focus on providing protocols of
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sampling patterns using infographics, indicating multiple positions from which various
samples should be taken from the lot. These include hopper cars, trucks, box cars, etc. [31].
However, these sampling patterns take fewer incremental samples than those discussed
previously (8–10 per lot), further emphasizing the inconsistencies between procedures.
However, these procedures are more cost-effective and less time consuming than regula-
tory procedures. Moreover, pattern-sampling protocols may be easier to follow, creating
harmonized, systematic random sampling [14]. Most importantly, following the patterns
may produce more representative samples, allowing for more accurate AF detection [9].
That said, some patterns may cause inaccurate samples to be drawn, as several sample
patterns exclude the middle of the lot, and only obtain samples from the outside, thus
failing to achieve a representative sample [9]. A further difference in the USDA guidance
is that one incremental sample is combined with other sample(s) to create an aggregate
sample, using an acceptable sampling ratio. For example, 1250 g from one carrier is added
to 1250 g from another carrier, to form a 2.5 kg aggregate sample [31]. This, however, will
not produce a representative sample of the entire lot, and a higher number of incremental
samples are needed to increase the reliability of the sample and determine the true AF
contamination [14].

The FAO and USDA emphasize the sampling procedure must allow for a high per-
centage of non-contaminated kernels and a low percentage of contaminated kernels [4,31].
This is extremely important in obtaining a representative sample, as it has been noted that
this is a common error in sampling procedures [31]. The only feasible way to ensure this
is by increasing sample frequency [44]. Statistically, the higher the number of samples
taken from a lot, the higher the probability that grains containing AFs will be sampled [14].
This further highlights how sample size and frequency play a crucial role in producing an
effective sampling plan for AF detection.

3.6. Methods and Equipment for Obtaining Incremental Samples

From the reviewed procedures, it is apparent that dynamic sampling should be per-
formed for the optimum, representative sampling result. A large number of incremental
samples collected via dynamic sampling from a moving stream provide a high possibility
of any individual kernel being chosen from the entire lot [45,49]. Static sampling is chal-
lenging due to storage conditions, as moisture can drain from grains, causing variation in
corn layers [50]. Hence, static sampling may only represent the part of the consignment
that is assessed and will be less representative of the lot [50]. If static sampling is adopted,
it is advised that the equipment must reach the entire depth of the lot [45]. CAC, ISO,
ADHB, and CCG and FAO highlight how important dynamic sampling is to ensure a
representative sample; therefore, it is most common and appropriate to sample corn during
unloading/loading [17,18,20,26,29].

Moreover, CGC specifies sampling for both static and dynamic lots. This is unique
and more beneficial for an effective sampling procedure to consist of both sampling strate-
gies [20]. It provides a more practical approach, as both sampling strategies are performed.
The CGC procedure gives in depth details of sampling static lots (grain stored in bags or
totes), which are beneficial for companies who receive corn in this packaging type [20]. The
static procedure is very thorough, indicating measures to avoid contamination, such as
details on how to physically stroke sample sacks, preventing bursting of the sack. However,
GAFTA specifies that samples should be taken from the top, middle, and bottom of each
sack, to obtain a representative sample, which is not considered in the CGC procedure [30].
To achieve this, “increment samples shall be drawn uniformly, by a piercing spear from
the top, middle and bottom of each bag. If it is not possible to draw a sample by spear
efficiently, then the original bags may be opened to sample by hand scoop” [30].

The FAO suggests the use of automatic sampling equipment to be the most accept-
able way to obtain representative samples, as it reduces human bias and removes the
product from flow at regular intervals [26]. CAC, GCG, and ADHB support this, and recom-
mend automatic sampling equipment including crosscut samplers, automatic cross-stream
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diverter-type sampling devices, and automatic sample buckets, respectively [17,18,20].
Using any of these options will be less time consuming and eliminate sample bias, thus
ensuring random samples are collected to produce representative results. Moreover, ADHB
highlights that the bucket samples are in agreement with results from standard practice
recommendations [17].

Many of the reviewed procedures highlight the use of probe/triers, only if automatic
sampling is not available [18,20,26,30,31], and include descriptive instructions on their
use. In particular, the CGC procedure contains thorough instructions on probe/triers, thus
creating comprehensive instructions for the sampler to follow, and reducing sampling
mistakes [20]. Nobbe Triers are suitable for sampling free flowing products such as corn,
thus reaching the center of most containers and reducing the risk of contamination [20].
However, this equipment can only sample horizontally. The double sleeve trier can sample
both horizontally and vertically, but this trier poses a risk of contamination [20]. GAFTA
and CGC also suggest manual handheld sampling, using a scoop [20,30]. However, this is
laborious, requiring 2–3 people, and increases bias and variation within the sample [14].
Therefore, this demonstrates the use of automatic sampling equipment is the best approach,
as it eliminates bias and produces more accurate results than manual sampling. To summa-
rize, the key factors that should be considered when sampling grain for mycotoxins are
outlined in Figure 3.
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3.7. Sample Storage

Several publications have indicated the importance of suitable storage containers
for incremental samples [15,18,30,31,33,37]. Sample storage is critical to reduce further
contamination of corn and preserve the original characteristics of samples [15,30]. The
majority of procedures indicate that samples should be stored in fully sealed, clean opaque
containers, with reduced sunlight exposure [15,18,30,31,37] as a warm climate could worsen
AF contamination [50]. However, the FDA recommends samples should be frozen for
extended storage to avoid spoilage or mold growth [37]. ADHB provides comprehensive
instructions on monitoring the temperature (best below 15 ◦C) and moisture content (below
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14.5%) of stored samples, as grains are still a living crop during storage and are susceptible
to mold growth [17]; therefore, monitoring both factors will indicate any signs which
threaten corn quality.

3.8. Sample Preparation

Sampling strategy is only one factor that plays into the variability of test results. Sam-
ple preparation and the choice of test method all contribute to this variability and need to be
taken into context when choosing a sampling method. Sample preparation is an important
factor in sampling, as this step will reduce variation and the impact of heterogeneous distri-
bution of AFs in corn, thus increasing the suitability of analytical samples for instrumental
analysis [11]. One of the main factors associated with AF determination which is often
overlooked is how samples are homogenized. Moreover, as the test samples are combined
composite samples from the lot, this suggests sampling provides a mass average level of
AFs detected from the lot, not a measure of the worst case. However, this is appropriate
for AF detection in corn, as corn is often ground and mixed with other foodstuffs prior
to consumption; hence, the results from the mass average AF contamination in corn are
deemed suitable for this commodity.

The preparation of the composite sample is the last step in sampling prior to the
mycotoxin analysis. It is often overlooked, although it is a vital component in the sampling
procedure [44]. The procedures highlight the optimum equipment for comminution is a
subsample mill, as this will create a homogenous and uniform test sample [4,30,37,51]. A
mill can grind corn kernels without generating heat or causing a change in the moisture
content [30]. Inadequate grinding creates false negatives, as smaller particles migrate to the
bottom of the sample container when the sample is handled [37]. To minimize this, it is
essential to thoroughly mix the sample with a high degree of comminution [52] to open and
distribute the toxin throughout the particles [37]. This will ensure uniformity and reduce
variability in sample preparation. The sufficient comminution of kernels will ensure the
sample is representative of the bulk contamination.

3.9. Informal and Formal Sampling Procedure

The main differences between the sampling procedures resulted in the categorization
of formal and informal guidelines (Table 7). Formal sampling procedures include: EC, FSA,
GAFTA, and WFP [15,23,30,34]. These procedures mainly focus on incremental sample
numbers, sample size, and frequency. This suggests that these formal guidelines mainly ad-
dress regulatory requirements for trade and due diligence. However, informal procedures
including USDA, ADHB, FAO, and CGC [4,17,20,31] focus on sampling mechanics and
equipment used for sampling, including a lower number of incremental samples than for-
mal guidelines. This suggests that informal procedures focus on consumer protection and
mitigation strategies, due to the practicality of these procedures to ensure food safety [16].
Formal sampling procedures are more expensive and time consuming, although the uti-
lization of sampling frequency equations will likely produce a more representative sample
than obtaining samples randomly from flow [14]. However, further research is needed to
support this. CAC includes common features from both formal and informal procedures,
demonstrating this sample procedure may be optimum as it recommends sample size,
frequency, sample method, and equipment [18]. Although the CAC sampling procedure
has many advantages such as providing a sampling plan including the minimum and max-
imum sample size, the CAC fails to provide a limit of AFs in corn or other cereals, which
is a limitation within the CAC sampling procedure. Developing countries have a limited
mycotoxin sampling budget [52]. Hence, the risk between sampling cost and effective
monitoring of AFs in commodities is difficult, posing a further challenge to reduce AF
consumption in developing countries [52]. Therefore, an optimum AF sampling procedure
for developing countries is one that must be cost-effective but will also produce accurate
results and demonstrate compliance [52]. This implies an informal sampling procedure is
optimal for developing countries.
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Table 7. Similarities and differences between formal and informal sampling procedures.

Informal Sampling Procedure Formal Sampling Procedure

Addresses regulatory requirements Addresses consumer protection and mitigation strategies

Addresses number of incremental samples Infographics and sample patterns

Much higher number of incremental samples (100) Lower number of incremental samples (10–20)

Sample frequency determined Random intervals depending on flow

Limited indication of static or dynamic sampling Recommends dynamic sampling to obtain a representative sample

Limited information on sampling equipment In-detail description on how to use sampling equipment

Indication of sample storage Indication of sample storage

Highlights importance of homogenous ground aggregate
sample Highlights importance of homogenous ground aggregate sample

Expensive and time consuming Less time consuming, and cost-effective

Recommendations for Good Sampling Practice and Future Considerations

All procedures highlight that the heterogeneous distribution of AFs is the main challenge
associated with producing an effective sampling procedure. To overcome this challenge, key
components of sampling have been recommended to ensure optimum results (Table 8 and
Figure 4) and minimize the variability and uncertainties surrounding AF detection.
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Table 8. Main conclusions drawn from the review to obtain “best practice”.

Main Factors Ensuring Good Practice to Minimize AFs’ Variation within Sampling

Increase number of incremental samples withdrawn.

Large incremental sample weight should be taken to produce a representative sample and reduce
sample variation.

Multiple incremental samples should be drawn from multiple locations throughout the lot.

Random systematic sampling using frequency equation.

Dynamic sampling is recommended as the best approach to reduce variation and bias.

Automatic sampling equipment is recommended over manual equipment.

The aggregate sample should be fully comminuted by increasing the degree of grinding.

Incremental samples should be stored in a sealed container in a dark and cool environment.

Sampling procedure must allow for a high percentage of non-contaminated kernels and a low
percent of contaminated kernels.

Despite the lack of evidence to support the effectiveness of these practices, they are
deemed the best to reduce sample variation and error. The literature fails to indicate the
current utilization of the reviewed procedures, or whether using these sampling procedures
truly provides representative samples. This suggests the sample procedures reviewed are
highly theoretical, and thus poses the following question: are these sampling procedures
feasible in reality? A lack of evidence suggests they are too expensive and time consuming
for companies to adhere to. Therefore, further research is needed via testing to investigate
the reliability of the current sampling procedures to produce representative samples. This
review could not recommend definite sample sizes or sampling frequency for standard
practice due to the lack of evidence available and inconsistencies existing between sampling
procedures. This highlights that further research is essential to determine optimum sam-
pling factors. Additionally, there is a need to research alternative strategies for optimization
of calculating the mass average AF concentration from composite samples taken from
a lot. This will improve the reliability and accuracy of the average AF detection from
composite samples. A suggested method could include testing the corn fines at the base
of the transport vehicle, as these are concentration points and can be representative of
the entire load. A further limitation within this review is that many developing regions
including Africa do not have a mycotoxin sampling protocol to follow; therefore, effective
sampling protocols should be established and implemented for these countries. Sampling
protocols from India, Asia, Australia, or New Zealand are not accessible, which further
limits comparison between protocols. China follows general food sampling standards
from 1985, indicating the need for revised, and improved sampling procedures to produce
appropriate sampling protocols for current challenges in AF sampling today. A few of
the sampling procedures are also outdated, including FAO and EC [4,23]. However, the
FAO provides a mycotoxin sampling tool to support the design of an effective sampling
procedure for all mycotoxin and commodity combinations, which can be accessed via
http://www.fstools.org/mycotoxins (accessed on 18 February 2022) [50]. This sampling
tool has two main features, including evaluating the performance of a specific sampling
plan and concluding the most applicable sampling plan for the type of mycotoxin (AF), to
diminish the misclassification of lot acceptance or rejection. The mycotoxin sampling tool
is user friendly, and a step-by-step guide is available to support its use. The tool consists
of five stages (instructions, edit plans, chart results, results, plan summary, and export
to software) in creating an appropriate mycotoxin sampling tool [50]. It offers a range of
parameters that can be altered according to the needs of the user, including: mycotoxin
type, commodity, sample size and amount, kernel count per kg, regulatory limit, analytical
variance, and accept/reject limits. Altering the above sampling plan design parameters will
ultimately improve the performance of the sampling plan for each user’s objective. This

http://www.fstools.org/mycotoxins
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tool allows the determination of sampling, sample preparation, and analytical variances,
thus enabling the design of an appropriate sampling plan for AFs in corn that should be
considered for future sampling plans [50].

Table 9 includes a table of key principles to consider when choosing a “fit for purpose”
sampling method, as this will aid developing countries in adopting an AF sampling strategy.

Table 9. Table highlighting key considerations for adopting AF sampling strategies.

Recommended Not Recommended

Obtain numerous samples from random points of a lot Obtain limited or biased samples from the same area of a lot

Obtain samples using sample frequency equation Obtain samples randomly from flow via samplers judgment

Dynamic sampling: sample periodically from a moving stream Static sampling

Utilize automatic sampling equipment Use manual hand scoop (biased)

Store samples in fully sealed, clean, opaque container Store samples in direct sunlight

Combine samples to obtain a composite sample from every part
of a load Combine samples from alike areas/points of a load

Homogenize samples fully using mill Grind corn samples inadequately

4. Conclusions

In order to ensure the safe global trade of corn, adhere to legislation, and protect
consumers from AF-contaminated corn, evaluating and producing effective sampling
procedures are of paramount importance. This review revealed sampling is the major
source of error in AF testing, and it is the most important factor for obtaining reliable results.
The most precise detection methods will not produce reliable results if the sample procedure
is not representative and adequately homogenized. Insufficient sampling procedures can
lead to false negatives and false positives, and result in high economic impacts and health
risks. Reducing the variability within AF sampling will reduce the misclassifications of lots
and is therefore the most critical factor to minimize the overall sampling error. An effective
sampling procedure must have low variability and sample bias; this can be accomplished by
increasing sample size and frequency, automatic dynamic sampling techniques, adequate
storage, and ensuring the complete homogenization of aggregate samples for the analysis.
Incorporating the recommended principles as outlined in Table 9 into an AF sampling
procedure will help to ensure a representative sample is obtained. However, further
research is needed to support these findings, and to obtain a fit-for-purpose sampling
procedure for accurate and reliable AF detection.

5. Materials and Methods
5.1. Literature Search

The Campbell Methods Guide was followed for this review [53]. Gray literature
sources and a range of peer review literature searches were examined to address the main
guidelines and factors considered within AF sampling procedures for corn. Non-peer
reviewed sources from the gray literature were obtained via Google search engine, to
identify relevant governmental, non-governmental sources, and business publications,
reports, guidelines, and standards on mycotoxin sampling procedures. Specific gray
literature sources included:

a. European Commission
b. European Food Safety Authority
c. Food and Agriculture Organization of the United Nations
d. Food and Agriculture Organization
e. The Codex Alimentarius Commission
f. The Grain and Trade Association
g. The Food Standards Agency
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h. The World Food Programme
i. United States Department of Agriculture
j. United States Food and Drug Administration

Peer-reviewed sources were obtained by conducting searches on the electronic databases
Web of Science and Scopus. In order to conduct these searches, breaking down and assess-
ing the project title identified the key words and terms. Subsequently, the key words used
were (Aflatoxin* OR Aspergillis*) AND (*Corn OR *Maize) AND (Sampling* OR Sampling
procedure OR Sampling procedure * protocol* OR guideline* OR standard*).

Using these electronic databases allowed for efficient identification and collection of
a variety of papers from an array of scientific journals and facilitated the application of
the selected inclusion and exclusion criteria. Further studies were also identified through
references to various publications in the retrieved papers. After available databases were
searched and relevant results returned, the online bibliographic management tool ‘Endnote’
was employed to remove any duplicate papers present.

5.2. Eligibility Criteria

To ensure only the relevant literature was included in the review, inclusion and ex-
clusion criteria were determined. Inclusion criteria included literature in the English
language. The inclusion of papers only in English ensured adequate understanding of
the text. The exclusion criteria excluded literature prior to 1990; this allowed exploration
of the literature from a wide range of information. Additionally, to assess the eligibility
of the literature obtained, the literature was screened by reading titles and abstracts for
key words to ensure relevance. If the literature referred to the mycotoxin, aflatoxin, corn,
contaminants, sampling guidelines, sampling methods, or sample preparation, it was
deemed relevant. Any papers containing peanuts or other food stuffs containing myco-
toxins besides corn, or mycotoxins such as deoxynivalenol, fumonisins, zearalenone, and
ochratoxin, were excluded.

5.3. Critical Appraisal

Critical appraisal of the publications ensured that only relevant high-quality studies
were included in the review, and low-quality studies excluded. To be included in the review,
papers had to adequately answer the following screening questions:

1. Does the citation indicate publication within the time period specified?
2. Is the title and abstract in English?
3. What are the main components of the sampling procedure?
4. What are the main findings of the paper?
5. Strengths?
6. Limitations?
7. Is the sampling procedure similar to others?
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aflatoxins in different matrices and food-chain positions. Front. Microbiol. 2020, 11, 1916. [CrossRef]

13. Miraglia, M.; De Santis, B.; Minardi, V.; Debegnach, F.; Brera, C. The role of sampling in mycotoxin contamination: An holistic
view. Food Addit. Contam. 2005, 22 (Suppl. S1), 31–36. [CrossRef] [PubMed]

14. Whitaker, T.B. Sampling Foods for Mycotoxins. Food Addit. Contam. 2006, 23, 50–61. [CrossRef] [PubMed]
15. Food Standards Agency. Mycotoxins Sampling Guidance. 2016. Available online: https://www.food.gov.uk/sites/default/files/

media/document/mycotoxins-sampling-guidance.pdf (accessed on 20 April 2022).
16. Department for Environment, Food & Rural Affairs. Guidance on the Organisation of Informal Food Authenticity Surveys. 2020.

Available online: http://sciencesearch.defra.gov.uk/Document.aspx?Document=14693_GuidancefortheInformalSamplingofAut-
henticitySurveysfinalFeb.pdf (accessed on 25 April 2022).

17. Agriculture and Horticulture Development Board. Grain Sample Guides for Cereals & Oilseeds. 2013. Available online:
https://media.ahdb.org.uk/media/Default/Imported%20Publication%20Docs/Grain%20sampling%20guide%20for%20
cereals%20and%20oilseeds.pdf (accessed on 22 March 2022).

18. Codex Alimentarius Commission. General Standard for Contaminants and Toxins in Food and Feed. CXS 193-1995.
Adopted in 1995. Revised in 1997, 2006, 2008, 2009. Amended in 2010, 2012, 2013, 2014, 2015, 2016, 2017. Available online:
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%
252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 18 March 2022).

19. Codex Alimentarius Commission. Procedural Manual. World Health Organisation/Food and Agriculture Organisation of the
United Nations, Rome, Italy. 2013. Available online: http://www.fao.org/3/i3243e/i3243e.pdf (accessed on 19 July 2021).

20. Canadian Grain Commission. Sampling Systems Handbook and Approval Guide. 2015. Available online: https:
//grainscanada.gc.ca/en/grain-quality/sampling-grain/sampling-systems-handbook/pdf/sampling-systems-handbook.pdf
(accessed on 18 March 2022).

21. Canadian Food Inspection Agency (CFIA) RG-8 Regulatory guidance. Contaminants in feed (formerly RG-1, Chapter 7), Section
1: Mycotoxins in livestock feed, 2017. Available online: http://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-8/
eng/1347383943203/1347384015909 (accessed on 19 March 2022).

22. Commission Regulation (EC) No 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. 2001.
Available online: https://op.europa.eu/en/publication-detail/-/publication/52b2484d-39e0-4aa9-ba19-4b13a887bb1c (accessed
on 19 March 2022).

23. Commission Regulation (EC) No 401/2006 of 23 March 2006 Laying Down the Methods of Sampling and Analysis for the Official
Control of the Levels of Mycotoxins in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=celex%3A32006R0401 (accessed on 18 February 2022).

https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
http://doi.org/10.3390/foods9030297
http://www.ncbi.nlm.nih.gov/pubmed/32150943
http://doi.org/10.1080/02652030701765723
http://www.ncbi.nlm.nih.gov/pubmed/18286405
https://www.fao.org/3/t0838e/t0838e.pdf
http://doi.org/10.3389/fmicb.2019.02266
http://www.ncbi.nlm.nih.gov/pubmed/31636616
http://doi.org/10.1016/j.tifs.2017.11.007
http://doi.org/10.3390/toxins10060214
http://doi.org/10.1080/10408398.2019.1658570
http://doi.org/10.1111/risa.13721
http://doi.org/10.1002/mnfr.200800145
http://www.ncbi.nlm.nih.gov/pubmed/19360755
http://doi.org/10.3390/toxins12090539
http://doi.org/10.3389/fmicb.2020.01916
http://doi.org/10.1080/02652030500389055
http://www.ncbi.nlm.nih.gov/pubmed/16332619
http://doi.org/10.1080/02652030500241587
http://www.ncbi.nlm.nih.gov/pubmed/16393815
https://www.food.gov.uk/sites/default/files/media/document/mycotoxins-sampling-guidance.pdf
https://www.food.gov.uk/sites/default/files/media/document/mycotoxins-sampling-guidance.pdf
http://sciencesearch.defra.gov.uk/Document.aspx?Document=14693_GuidancefortheInformalSamplingofAut-henticitySurveysfinalFeb.pdf
http://sciencesearch.defra.gov.uk/Document.aspx?Document=14693_GuidancefortheInformalSamplingofAut-henticitySurveysfinalFeb.pdf
https://media.ahdb.org.uk/media/Default/Imported%20Publication%20Docs/Grain%20sampling%20guide%20for%20cereals%20and%20oilseeds.pdf
https://media.ahdb.org.uk/media/Default/Imported%20Publication%20Docs/Grain%20sampling%20guide%20for%20cereals%20and%20oilseeds.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf
http://www.fao.org/3/i3243e/i3243e.pdf
https://grainscanada.gc.ca/en/grain-quality/sampling-grain/sampling-systems-handbook/pdf/sampling-systems-handbook.pdf
https://grainscanada.gc.ca/en/grain-quality/sampling-grain/sampling-systems-handbook/pdf/sampling-systems-handbook.pdf
http://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-8/eng/1347383943203/1347384015909
http://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-8/eng/1347383943203/1347384015909
https://op.europa.eu/en/publication-detail/-/publication/52b2484d-39e0-4aa9-ba19-4b13a887bb1c
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R0401
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R0401


Toxins 2022, 14, 819 18 of 19

24. Food and Agricultural Materials Inspection Centre (FAMIC). Aflatoxin. 2011. Available online: http://www.famic.go.jp/ffis/
oie/obj/hc_aflatoxin.pdf (accessed on 19 March 2022).

25. Food and Agriculture Organisation of the United Nations. Worldwide Regulations for Mycotoxins in Food and Feed; FAO Food
and Nutrition Paper 81; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2003; Available online: https:
//www.fooddiagnostics.dk/seekings/uploads/Worldwide_mycotoxin_regulations_in_food_and_feed_2003.pdf (accessed on
19 March 2022).

26. Food and Drug Administration Office of Regulatory Affairs. Mycotoxin Analysis. ORA Laboratory Manual Volume IV Section 7.
2020. Available online: https://www.fda.gov/media/73568/download (accessed on 18 February 2022).

27. Food Standards Australia New Zealand (FSANZ). Australia New Zealand Food Standards Code, 2017, Schedule 19, Maximum
levels of contaminants and natural toxicants. Prepared by Food Standards Australia New Zealand (FSANZ) on 13 April 2017.
Australian Government, Federal Register of Legislation. 2017. Available online: https://www.legislation.gov.au/Details/F201
7C00333 (accessed on 19 March 2022).

28. Food Safety and Standards Authority of India (FSSAI) Food Safety and Standards (Contaminants, Toxins and Residues) Regula-
tions, 2011, F. No. 2-15015/30/2010. 2011. Available online: https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_
Contaminants_Regulations_20_08_2020.pdf (accessed on 19 March 2022).

29. International Organization for Standardization ISO-24333; Cereal and Cereal Products—Sampling. ISO: Geneva, Switzerland, 2009.
Available online: https://www.iso.org/standard/42165.html (accessed on 20 April 2022).

30. The Grain and Feed Trade Association. Sampling Rules no 124. Sampling Analysis Instructions, Methods of Analysis and
Certification. 2012. Available online: https://www.gafta.com/write/MediaUploads/Contracts/2012/124.pdf (accessed on
20 March 2022).

31. United States Department of Agriculture. Grain Inspection Handbook. 2020. Available online: https://www.ams.usda.gov/
sites/default/files/media/Book1.pdf (accessed on 20 February 2022).

32. United States Department of Agriculture. China Releases Standard for Maximum Levels of Mycotoxins in Foods. USDA
Foreign Agriculture Service, Global Agriculture Information Network (GAIN) Report CH18026. 2018. Available online:
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=China%20Releases%20Standard%
20for%20Maximum%20Levels%20of%20Mycotoxins%20in%20Foods%20_Beijing_China%20-%20Peoples%20Republic%20of_
5-9-2018.pdf (accessed on 19 March 2022).

33. U.S Department of Agriculture, Feed Grains Sector at a Glance. 2021. Available online: https://www.ers.usda.gov/topics/crops/
corn-and-other-feedgrains/feedgrains-sector-at-a-glance (accessed on 27 April 2022).

34. World Food Programme. SOP for Sampling and Testing for Aflatoxin. 2010. Available online: https://documents.wfp.org/
stellent/groups/public/documents/manual_guide_proced/wfp254542.pdf (accessed on 20 February 2022).

35. Ottoboni, M.; Pinotti, L.; Tretola, M.; Giromini, C.; Fusi, E.; Rebucci, R.; Grillo, M.; Tassoni, L.; Foresta, S.; Gastaldello, S.; et al.
Combining E-nose and lateral flow immunoassays (lfias) for rapid occurrence/co-occurrence aflatoxin and fumonisin detection
in maize. Toxins 2018, 10, 416. [CrossRef] [PubMed]

36. Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of regulation limits in mycotoxin contamination in Asia and risk
management programs at the National Level. J. Food Drug Anal. 2013, 21, 227–241. [CrossRef]

37. U.S. Department of Agriculture Grain Inspection, Packers and Stockyards Administration (GIPSA). GIPSA Backgrounder:
Aflatoxin. September 1998. Available online: https://www.usda.gov/sites/default/files/documents/17-09-GIPSA.pdf (accessed
on 28 March 2022).

38. Wu, F.; Guclu, H. Aflatoxin regulations in a network of global maize trade. PLoS ONE 2012, 7, e45151. [CrossRef]
39. Wu, F. A tale of two commodities: How EU mycotoxin regulations have affected U.S. Tree Nut Industries. World Mycotoxin J.

2008, 1, 95–102. [CrossRef]
40. Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [CrossRef]
41. Kumar, A.; Pathak, H.; Bhadauria, S.; Sudan, J. Aflatoxin contamination in food crops: Causes, detection, and management: A

Review. Food Prod. Process. Nutr. 2021, 3, 17. [CrossRef]
42. Wu, F.; Khlangwiset, P. Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: Case studies in

Biocontrol and post-harvest interventions. Food Addit. Contam. Part A 2010, 27, 496–509. [CrossRef]
43. Tittlemier, S.A.; Varga, E.; Scott, P.M.; Krska, R. Sampling of cereals and cereal-based foods for the determination of ochratoxin A:

An overview. Food Addit. Contam. Part A 2011, 28, 775–785. [CrossRef]
44. Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017,

14, 632. [CrossRef] [PubMed]
45. JAPAN P& I CLUB. Loss prevention bulletin Protection & Indemnity. Loss Prev. Process Ind. 2019, 44, 1–7.
46. Kumphanda, J.; Matumba, L.; Monjerezi, M.; Whitaker, T.B.; De Saeger, S.; Makun, H.A. Are sample size and sample preparation

for mycotoxin quantitation in Grain Products getting trivialized? Food Control 2021, 130, 108400. [CrossRef]
47. Ciasca, B.; De Saeger, S.; De Boevre, M.; Reichel, M.; Pascale, M.; Logrieco, A.F.; Lattanzio, V.M.T. Mycotoxin analysis of grain via

dust sampling: Review, recent advances and the way forward: The contribution of the MycoKey Project. Toxins 2022, 14, 381.
[CrossRef] [PubMed]

48. Reichel, M.; Staiger, S.; Biselli, S. Analysis of fusarium toxins in grain via dust: A promising field of application for Rapid Test
Systems. World Mycotoxin J. 2014, 7, 465–477. [CrossRef]

http://www.famic.go.jp/ffis/oie/obj/hc_aflatoxin.pdf
http://www.famic.go.jp/ffis/oie/obj/hc_aflatoxin.pdf
https://www.fooddiagnostics.dk/seekings/uploads/Worldwide_mycotoxin_regulations_in_food_and_feed_2003.pdf
https://www.fooddiagnostics.dk/seekings/uploads/Worldwide_mycotoxin_regulations_in_food_and_feed_2003.pdf
https://www.fda.gov/media/73568/download
https://www.legislation.gov.au/Details/F2017C00333
https://www.legislation.gov.au/Details/F2017C00333
https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Contaminants_Regulations_20_08_2020.pdf
https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Contaminants_Regulations_20_08_2020.pdf
https://www.iso.org/standard/42165.html
https://www.gafta.com/write/MediaUploads/Contracts/2012/124.pdf
https://www.ams.usda.gov/sites/default/files/media/Book1.pdf
https://www.ams.usda.gov/sites/default/files/media/Book1.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=China%20Releases%20Standard%20for%20Maximum%20Levels%20of%20Mycotoxins%20in%20Foods%20_Beijing_China%20-%20Peoples%20Republic%20of_5-9-2018.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=China%20Releases%20Standard%20for%20Maximum%20Levels%20of%20Mycotoxins%20in%20Foods%20_Beijing_China%20-%20Peoples%20Republic%20of_5-9-2018.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=China%20Releases%20Standard%20for%20Maximum%20Levels%20of%20Mycotoxins%20in%20Foods%20_Beijing_China%20-%20Peoples%20Republic%20of_5-9-2018.pdf
https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance
https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance
https://documents.wfp.org/stellent/groups/public/documents/manual_guide_proced/wfp254542.pdf
https://documents.wfp.org/stellent/groups/public/documents/manual_guide_proced/wfp254542.pdf
http://doi.org/10.3390/toxins10100416
http://www.ncbi.nlm.nih.gov/pubmed/30332757
http://doi.org/10.1016/j.jfda.2013.07.009
https://www.usda.gov/sites/default/files/documents/17-09-GIPSA.pdf
http://doi.org/10.1371/journal.pone.0045151
http://doi.org/10.3920/WMJ2008.x011
http://doi.org/10.1016/j.jscs.2010.06.006
http://doi.org/10.1186/s43014-021-00064-y
http://doi.org/10.1080/19440040903437865
http://doi.org/10.1080/19440049.2011.559278
http://doi.org/10.3390/ijerph14060632
http://www.ncbi.nlm.nih.gov/pubmed/28608841
http://doi.org/10.1016/j.foodcont.2021.108400
http://doi.org/10.3390/toxins14060381
http://www.ncbi.nlm.nih.gov/pubmed/35737042
http://doi.org/10.3920/WMJ2013.1687


Toxins 2022, 14, 819 19 of 19

49. Cheli, F.; Campagnoli, A.; Pinotti, L.; Fusi, E.; Dell’Orto, V. Sampling feed for mycotoxins: Acquiring knowledge from food. Ital. J.
Anim. Sci. 2009, 8, 5–22. [CrossRef]

50. Food and Agriculture Organization of the United Nations. Mycotoxin Sampling Tool User Guide. 2014. Available online:
http://tools.fstools.org/mycotoxins/Documents/UserGuide.pdf (accessed on 19 July 2022).

51. Turner, N.W.; Bramhmbhatt, H.; Szabo-Vezse, M.; Poma, A.; Coker, R.; Piletsky, S.A. Analytical methods for determination of
mycotoxins: An update (2009–2014). Anal. Chim. Acta 2015, 901, 12–33. [CrossRef] [PubMed]

52. Focker, M.; Fels-Klerx, H.J.; Oude Lansink, A.G. Optimization of the aflatoxin monitoring costs along the maize supply chain.
Risk Anal. 2019, 39, 2227–2236. [CrossRef]

53. Kugley, S.; Wade, A.; Thomas, J.; Mahood, Q.; Jørgensen, A.M.K.; Hammerstrøm, K.; Sathe, N. Searching for studies: A guide to
information retrieval for Campbell systematic reviews. Campbell Syst. Rev. 2017, 13, 1–73. [CrossRef]

http://doi.org/10.4081/ijas.2009.5
http://tools.fstools.org/mycotoxins/Documents/UserGuide.pdf
http://doi.org/10.1016/j.aca.2015.10.013
http://www.ncbi.nlm.nih.gov/pubmed/26614054
http://doi.org/10.1111/risa.13364
http://doi.org/10.4073/cmg.2016.1

	Introduction 
	Results 
	Discussion 
	Legislation and AFs’ Regulatory Limits 
	AFs’ Legislative Global Impacts 
	Sampling 
	Sampling Procedures 
	Sample Size 
	Methods and Equipment for Obtaining Incremental Samples 
	Sample Storage 
	Sample Preparation 
	Informal and Formal Sampling Procedure 

	Conclusions 
	Materials and Methods 
	Literature Search 
	Eligibility Criteria 
	Critical Appraisal 

	References

