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Abstract: The use of chemical pesticides to control the occurrence of mycotoxigenic fungi in crops has
led to environmental and human health issues, driving the agriculture sector to a more sustainable
system. Biocontrol agents such as Bacillus strains and their antimicrobial metabolites have been
proposed as alternatives to chemical pesticides. In the present work, a broth obtained from a
commercial product containing Bacillus subtilis QST 713 was tested for its ability to inhibit the growth
of mycotoxigenic fungi as well as reduce their mycotoxin production. Mass spectrometry analysis of
Bacillus subtilis broth allowed to detect the presence of 14 different lipopeptides, belonging to the iturin,
fengycin, and surfactin families, already known for their antifungal properties. Bacillus subtilis broth
demonstrated to be a useful tool to inhibit the growth of some of the most important mycotoxigenic
fungi such as Aspergillus flavus, Fusarium verticillioides, Fusarium graminearum, Aspergillus carbonarius,
and Alternaria alternata. In addition, cell-free Bacillus subtilis broth provided the most promising
results against the growth of Fusarium graminearum and Alternaria alternata, where the radial growth
was reduced up to 86% with respect to the untreated test. With regard to the mycotoxin reduction, raw
Bacillus subtilis broth completely inhibited the production of aflatoxin B1, deoxynivalenol, zearalenone,
and tenuazonic acid. Cell-free broth provided promising inhibitory properties toward all of the
target mycotoxins, even if the results were less promising than the corresponding raw broth. In
conclusion, this work showed that a commercial Bacillus subtilis, characterized by the presence of
different lipopeptides, was able to reduce the growth of the main mycotoxigenic fungi and inhibit the
production of related mycotoxins.

Keywords: Bacillus subtilis QST 713; mycotoxin; mycotoxigenic fungi; lipopeptides
Key Contribution: Bacillus subtilis QST 713, available at the commercial level, was characterized by

the presence of different lipopeptides and demonstrated the ability to inhibit the growth of the main
mycotoxigenic fungi and the production of related mycotoxins.

1. Introduction

Mycotoxigenic fungal contamination represents a serious threat to crop plant produc-
tion and global food security. In the past years, biofungicides have been proposed as a
sustainable management system in order to reduce and substitute the use of chemical pesti-
cides to shift the agriculture sector to greener approaches [1]. Bacteria, and in particular
bacilli, are considered as one of the most studied groups of biofungicides, able to provide
plant growth-promotion and the biocontrol of multiple diseases [2]. The antagonistic effect
of Bacillus species is mainly related to the production of various bioactive secondary metabo-
lites and lytic enzymes [3]. Lipopeptides, cyclic, low molecular weight, and amphiphilic
molecules with hydrophilic and hydrophobic moieties have been proposed as one of the
strongest antimicrobial and antifungal secondary metabolites produced by several species
of the genus Bacillus [4]. Surfactins, iturins, and fengycins are the three most well-known
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families of lipopeptides. Surfactins and iturins consist of a ring of seven x-amino acids
linked to one 3-hydroxy (surfactins) or 3-amino (iturins) fatty acid; fengycins are formed
by a ring of eight «-amino acids linked to ornithine and glutamic acid and to one (3-hydroxy
fatty acid (Figure 1).
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Figure 1. (a) Surfactin, (b) iturin, and (c) fengycin structures.

The length of fatty-acid chains varies from 11 to 17 C atoms for surfactins [5,6], 14 to
17 C for iturins, and from 14 to 19 C for fengycins [7]. Generally, iturins and fengycins show
strong antifungal activities, while surfactins have an antibacterial activity; these compounds
show a very low toxicity for humans, high biodegradation, and can be applied in both
pharmaceutical, food, and agriculture research [8]. Lipopeptides producing Bacillus species are
often endophytes for different agriculture crops, producing positive effects on the host [9,10].
They exert their activity as an elicitor of biochemical changes (e.g., reinforcements of plant
cell walls, production of antimicrobial phytoalexins, and the synthesis of pathogenesis-
related enzymes) that trigger plant induced systemic resistance [11]. In addition, several
studies have shown encouraging results for their antifungal properties in vitro or in vivo
on different crops. Lipopeptides have been demonstrated to directly act on fungi by
inhibiting spore germination, germ tubes, and hyphal growth of filamentous fungi [12],
even if the specific mechanisms behind these antimicrobial bioactivities remain largely
unknown [13]. In common bean seeds, Bacillus amyloliquefaciens prevented the development
of endophytic fungi [14]; lipopeptides produced by endophytic Bacillus subtilis induced
host defense gene expression in maize [15]. Moreover, fengycin and iturin compounds
inhibited different phytopathogenic fungi of wheat [16]. Most recently, different studies
have investigated the effects of lipopeptides on the main mycotoxigenic fungi and their
mycotoxin production [11,17]. Antifungal activity against the aflatoxin-producing fungi
Aspergillus flavus and Aspergillus parasiticus was shown by iturin produced by Bacillus
pumilus isolated from soybean sauce [18]; lipopeptides produced by Bacillus vallismortis
were successful tested against Alternata alternata [17]. Their use as natural compounds
produced by microbial populations was proposed in combination with synthetic fungicides
and may be a safe and promising alternative [19]; Kihyun Kim indicated that lipopeptides
produced by Bacillus amyloliquefaciens could reduce the growth of Fusarium graminearum and
trichothecene production and could be used as chemosensitizers to chemical fungicides [20].

Nowadays, Bacillus-based products, also engineered to improve lipopeptide yield [21],
are commercially available as biocontrol agents against phytopathogenic fungi and are
employed directly to the soil or sprayed in the plant surface [22,23]. In the present work,
a commercial Bacillus subtilis QST 713 was studied for its ability to produce different
lipopeptides and inhibit the presence of some of the main mycotoxigenic fungi as well as
their regulated mycotoxins. For this purpose, in vitro tests were carried out in order to
verify the reduction in aflatoxins, fumonisins, deoxynivalenol, ochratoxin A, zearalenone,
and Alternaria toxins.



Toxins 2022, 14, 797

30f10

2. Results and Discussion
2.1. Lipopeptide Production of Bacillus subtilis QST 713

Raw and cell-free Bacillus subtilis broths were analyzed for lipopeptide determination,
as reported in the Materials and Methods section and in Table 1.

Table 1. Lipopeptides detected in the Bacillus subtilis broth.

Lipopeptide Family [M-HI* Possible Assignment Retention Time
995 Surfactin C12 13.95
Surfactin C 1009 Surfactin C13 14.93
urfactin 1023 Surfactin C14 17.31
1037 Surfactin C15 18.68
1044 Tturin C14 7.02
Tturin A 1058 Iturin C15 7.25
turin 1072 Tturin C16 7.66
1086 Tturin C17 7.93
1437 Fengycin C14 7.19
1451 Fengycin C15 7.67
. 1465 Fengycin C16 7.70
Fengycin C 1479 Fengycin C17 7.86
1493 Fengycin C18 7.89
1507 Fengycin C19 8.06

Regarding surfactins, an average concentration of 292 mg/L for surfactin C was
determined in the raw broth. Other surfactins with MW 1023, 1008, and 994 Da (probably
C14, C13, and C12 fatty acid chain) showed lower signals of 72.6, 8.9, and 2.2% with respect
to that of surfactin C. In the cell-free broth, the concentration of surfactins were always
lower, with percentages of reduction that ranged from 5% for the C12 surfactin to 30% for
the C15 surfactin with respect to the signals detected in raw broth. Regarding the C13 and
C14 surfactins, they presented signals that were 25.3% and 27.5% lower than those detected
in raw broth, respectively.

For the iturins, the average concentration of iturin A in the raw broth was 3034 mg/L;
the highest peak area was represented by the isoform A, C14 fatty acid chain-iturin with a
MW of 1043 Da; the signals of iturins with 1057, 1071, and 1085 Da (probably C15, C16 and
C17) were 40.3, 24.1, and 5.4%, respectively, to that of iturin A. In the cell-free broth, as also
observed for surfactin compounds, it was detected a lower concentration of iturin isoforms.
The percentages of reduction were 6.9 % for C14 iturin, 23.9% for the C15 iturin, 26.1% for
the C16 iturin and 44.1% for the C17 iturin compared to their respective signals detected in
the raw broth.

Finally, with regard to the fengycin family, the ones with a MW of 1464 Da (C16 fatty
acid chain, called fengycin C) and 1492 Da (C18) showed the greatest signals. An average
concentration value of 1033 mg/L of fengycin C was calculated in the raw broth. For
fengycin with 1478 and 1506 Da, the signals were 52.3 and 29.0%, respectively, compared to
that of fengycin C; fengycins with a MW of 1436 and 1450 Da were detected at very low
levels (3.8 and 5.1% to fengycin C, respectively). Limited reductions ranging from 1.0 to
16.7% were observed in the cell-free broth compared to the lipopeptide signals detected in
the raw broth. In particular, these percentage reductions were about 1.0% for C15 fengycin,
2.5% for C16 fengycin, 6.5% for C14 fengycin, 8.6% for C18 fengycin, 13.1 and 16.7 % for
C17 and C19 fengycin, respectively.

2.2. Reduction on Fungal Growth and Mycotoxin Production

Raw and cell-free Bacillus subtilis broths were tested for their in vitro ability to reduce
the growth of mycotoxigenic fungi and mycotoxin production. In the case of raw Bacillus
subtilis broth, where bacterial cells were still present and vital, the growth of all of the
tested mycotoxigenic fungi resulted in being completely inhibited. Using the cell-free broth,
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instead, the presence of the bacteria was completely avoided, and the fungal growth was
presumably limited by the composition of the bacterial metabolites present. In particular,
the best results were obtained against Fusarium graminearum and Alternaria alternata with
a reduction in growth higher than 85%. The lowest incidence of fungal growth was
obtained by Aspergillus flavus, where no significant differences were determined between
the untreated control and the Bacillus subtilis cell-free broth (Table 2).

Table 2. Antagonistic activity of cell-free Bacillus subtilis broth against toxigenic fungi.

Average

Fungal Isolates Treatments Radial Fungal Aver.age o
Reduction %
Growth (mm)
) Control (untreated) 775+252
Aspergillus flavus - —
+ Bacillus subtilis cell-free broth 702 +16.0° 9.5
) o Control (untreated) 81.0+002
Fusarium verticillioides
+ Bacillus subtilis cell-free broth 59.7 +2.5° 26.3
) ) Control (untreated) 85.0+0.02
Fusarium graminearum
+ Bacillus subtilis cell-free broth 122 +25P 85.7
. . Control (untreated) 73.8+13%2
Aspergillus carbonarius
+ Bacillus subtilis cell-free broth 50.5 + 4.7 P 31.5
Control (untreated) 723 +3.8%2
Alternaria alternata
+ Bacillus subtilis cell-free broth 10.0 +3.3° 86.2

The data are reported as average + standard deviation and are the mean of three independent analyses. Significant
differences were compared among each fungal strain trials at a level of p < 0.05 and are indicated by different letters.

Regarding mycotoxins, the raw Bacillus subtilis broth completely inhibited the pro-
duction of aflatoxin B1, deoxynivalenol, zearalenone, and tenuazonic acid and an average
reduction between 93.1 and 99.7% was obtained for ochratoxin A, fumonisin B1 and B2,
alternariol, alternariol mono-ether, and tentoxin (Table 3).

Table 3. Effect of Bacillus subtilis raw and cell-free broths on mycotoxins.

Aspergillus Aspergillus Fusarium Fusarium Alternaria
flavus carbonarius verticillioides graminearum alternata
Treatment AFB1 OTA FB1 FB2 DON ZEA AOH AME TEA TEN
Control 63333 £ 182.3 & 109.2 + 3239 + 1513.7 = 1678.0 = 21.3 +
(untreated) 1829 £80° 130532 7522£913%  “popa 10082247 THgh 7734 23574 270.84 534
Raw
Bacillus 10.7 + b b 03+
subtilis <0.1°¢ 184.3 146 ¢ 51.7 £345°¢ 746 <0.5¢ <0.2°¢ 37+£03°¢ 39.7 £ 6.8 <0.5 0.1P
broth
Bacillus
subtilis-cell- b b b 523% b 418+ b b b 12+
free 532 +316 2700 =+ 1450 305.7 + 67.6 367D 10.5+ 3.9 15.5b 115+5.1 46.1 £24.8 <0.5 08P
broth

Aflatoxin B1 (AFB1), ochratoxin (OTA), fumonisins B1 and B2 (FB1 and FB2), deoxynivalenol (DON), zearalenone
(ZEA), alternariol (AOH), alternariol mono ether (AME), tenuazonic acid (TEA), tentoxin (TEN) production.
Results are expressed as ug/g and are the mean of three independent analyses. Values followed by different
letters within one column are significantly different (p < 0.05).

The Bacillus subtilis cell-free broth showed results on mycotoxin inhibition less promis-
ing that the raw one, as also previously reported for the lipopeptide concentration and the
fungal growth. The lower inhibitory capacity of cell-free broth was probably due to the
lower concentration of Bacillus subtilis secondary metabolites with antifungal activities and
to the continuous production of lipopeptides by the bacterium in the non-filtered broth.
The inhibitory activity of these lipopeptides has been demonstrated by a dual plate trial
performed by positioning the fungal inoculum at the center of a Petri dish with a bacterial
strip on both side of the fungus (Figure 2).
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Fusarium verticillioides Fusarium graminearum Alternaria alternata

Negative Control

Bacillus subtilis QST 713

Figure 2. Dual culture plate assay of Bacillus subtilis QST 713 antagonistic effect against Alternaria
alternata, Fusarium graminearum and Fusarium verticilloides. The negative control assay was performed
in the same condition but without the Bacillus subtilis strip. Petri dishes were incubated at 25 °C for
14 days.

None or very limited fungal growth was observed, and no contact took place between
the fungus and the bacterium strip. In addition, in the portion of agar free of any visible
contamination, the presence of lipopeptides was detected, underlining that these com-
pounds were secreted by Bacillus subtilis and surely contributed to the inhibition of fungal
growth with other undetected antimicrobial metabolites.

Biocontrol agents based on Bacillus species and the derived lipopeptides are nowadays
available on the market [24,25]. Their activity ranged among a large spectrum of crop
diseases: grey mold (Botrytis cinerea); scab (Venturia spp.); fire blight (Erwinia amylovora);
Sclerotinia spp.; monilia (Monilia fructigena); bacterial spot of stone fruits (Xanthomonas
arboricola); and bacterial speck in tomato plants (Pseudomonas syringae pv. tomato). In
the scientific literature, several studies reported the inhibitory activity of lipopeptides
against the growth of some mycotoxigenic fungi [26-28]. A reduction in fungal growth
does not imply a minor mycotoxin contamination; in fact, under stress conditions, fungi
can indeed increase mycotoxin production [29,30]. In this direction, recent studies have also
demonstrated the high efficacy of these lipopeptides on the reduction of some mycotoxins.
In particular, fengycins, purified from the Bacillus amyloliquefaciens extract, were able to
suppress Fusarium graminearum growth and reduce deoxynivalenol, 3-acetyldeoxynivalenol,
15-acetyldeoxynivalenol, and zearalenone production in infected grains [31]; iturin A signif-
icantly inhibited the growth and production of ochratoxin A and Aspergillus carbonarius [32].
A mixture of surfactins and fengycins produced by Bacillus mojavensis suppressed the
growth of Fusarium oxysporum and inhibited T-2 and HT-2 toxin production [33]. Fengycin
inhibited patulin production and the gene expression of patulin in Penicillium expansum [34].
Finally, next to lipopeptides, Bacillus strains have been characterized for their ability to
produce a wide spectrum of different secondary metabolites including enzymes (e.g., chiti-
nases, glucanases, and proteases) that can exert antifungal activities [35] and have not been
characterized here.
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3. Conclusions

Bacillus species have been reported to produce a plethora of secondary metabolites
with excellent biocontrol properties, with lipopeptides that display strong antifungal
activity [36]. In this study, it was demonstrated by in vitro assays that a commercial
Bacillus subtilis QST 713 is able to suppress the growth of the main mycotoxigenic fungi
and to inhibit the production of related mycotoxins. In addition, the Bacillus subtilis
QST 713 broths have been characterized by mass-spectrometry analysis for the presence
of different lipopeptides belonging to fengycin, surfactin, and iturin families. It is not
excluded that the Bacillus subtilis QST 713 is able to produce other antifungal metabolites
such as enzymes, which could have co-participated with lipopeptides in the inhibition of
fungal growth and mycotoxin production. In this direction, further studies are needed in
order to confirm the presence of other antifungal compounds and identify the ones most
affective against the different mycotoxigenic fungi tested here. In addition, in field analysis
on different crops (i.e., cereals, horticultural products) will be needed in order to confirm
these preliminary data. In this way, it will be possible to substitute or reduce chemical
pesticides, which are nowadays used for controlling the occurrence of mycotoxigenic fungi,
with more sustainable alternatives that are already used for other crop diseases. The
decrease in synthetic fungicide use will accelerate the transition to a more sustainable
agriculture system, perfectly meeting the Farm to Fork strategy proposed by the European
Union Green Deal.

4. Materials and Methods
4.1. Reagents and Standards

The chemicals and solvents used for the extraction and clean-up solutions were ACS
grade or equivalent (Carlo Erba, Milano, Italy). Deionized water was purified through a Milli-Q
treatment system (Millipore, Bedford, MA, USA). For LC-MS/MS analysis, water, methanol,
acetonitrile, and formic acid were of HPLC grade (Merck, Darmstadt, Germany). Toxins (AFB1,
OTA, FB1, FB2, DON, ZEA, AOH, AME, TEA, and TEN) and lipopeptide standards (surfactin
C, iturin A, fengycin C) were obtained from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Preparation of Fungal Strains

One strain of Aspergillus flivus (ITEM 8069), one strain of Fusarium verticillioides ITEM
10027), one strain of Fusarium graminearum (ITEM 646), one strain of Aspergillus carbonarius
(ITEM 5012) from the official fungal collection of the Institute of Sciences of Food Production
of the National Research Council (ISPA-CNR) in Bari (Italy) and one strain of Alternaria
alternata (CBS 118814) from the Westerdijk Fungal Biodiversity Institute in Utrecht (The
Netherlands) were used in this work. The fungal strains were transferred in the center of
Petri dishes containing potato dextrose agar (PDA, Biolife, Milano, Italy) and incubated at
25 °C for 7 days (12 h light + 12 h dark photoperiod) [37-39]. After the incubation period,
the developed fungal colonies were used as the source of inoculum for the in vitro test.

4.3. Preparation of Bacterial Solution

One gram of a commercial product based on Bacillus subtilis QST 713 was added to
1000 mL of potato dextrose broth (PDB) obtained from potato broth (200 g of potatoes/L of
distilled water, 10g/L of D-glucose); the solution was incubated at 25 °C for 3 weeks before
being used in the in vitro experiments to evaluate its potential to reduce fungal growth both
prior and after filtration with a sterile 0.20 pm filter in order to obtain a cell-free Bacillus
subtilis broth.

4.4. Lipopeptide Analysis

After dilution (1 mL of bacterial solution + 4 mL of mixture H,O:CH3CN = 80:20)
and filtration (0.45 um), the determination of lipopeptides was performed by LC-MS/MS.
Filtration was necessary to eliminate any kind of solid in the broths before injection in the
instrument. However, after this operation, even bacterial cells present in row B. subtilis
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broth were removed. The system consisted of a Vanquish pump and autosampler, and a
TSQ Fortis triple-quadrupole mass spectrometer (Thermo-Fisher Scientific, San Jose, CA,
USA). The separation was performed with a Betasil RP-18 column (5 pm particle size,
150 mm x 2.1 mm, Thermo-Fisher) with a gradient HyO:CH3CN (both acidified with
0.2% of formic acid) from 75:25 to 5:95 in 5 min, isocratic for 10 min; the flow rate was
0.2 mL/min and the injection volume 10 pL. Ionization was carried out in positive and
detection in selected ion monitoring mode; a total of four surfactins, four iturins, and six
fengycins were selected (Table 1). Standards of surfactin C (MW 1036 Da), iturin A (MW
1043 Da), and fengycin C (MW 1464 Da, Sigma-Aldrich, Milano, Italy) were injected.

4.5. In Vitro Experiment

Considering both the raw and cell-free Bacillus subtilis broths, 1 mL of the solution was
added on Petri dishes containing PDA medium and distributed on the surface with a sterile
spatula. Agar discs (& 2mm) were cut with a sterile cork borer from the margin of one
of the mycotoxigenic fungal colony and put at the center of the dish. An untreated thesis
(Petri dishes without the addition of the bacterial broths) was also tested and considered as
the control for all five fungal strains. Then, Petri dishes were incubated at 25 °C for 14 days
and, at the end of the incubation time, the fungal growth and mycotoxin production were
determined. The test was conducted in triplicate.

4.6. In Vitro Bacterial Effect on Fungal Growth

The diameter of the fungal colonies was measured along two perpendicular diagonals
crossing the inoculum point. The percentage of reduction in fungal growth was calculated
by comparing the fungal growth diameters obtained in the untreated dishes (Petri dishes
without the bacterial broths) with those obtained in the presence of the bacterial broths.

4.7. Mycotoxin Analysis

The mycotoxins were extracted and analyzed as reported by methods previously
developed in our laboratory. Briefly, the fungal colony and agar media were mixed in a
flask with 40 mL of acetonitrile and vigorously shaken with a rotary-shaking stirrer for 1 h.
The mixture was then filtered and diluted for instrumental analysis. For fumonisins and
Alternaria toxins, the analysis was carried out by LC-MS/MS, according to the methods
of Pietri and Bertuzzi [15] and Bertuzzi et al. [16], respectively. Briefly, both groups of
toxins were separated on a Betasil RP-18 column (5 um particle size, 150 mm x 2.1 mm,
Thermo-Fisher, Milano, Italy). For fumonisins, a mobile-phase gradient acetonitrile-water
(both acidified with 0.2% formic acid) from 25:75 to 55:45 in 9 min was performed, then
isocratic for 3 min; the flow rate was 0.2 mL min~!. Alternaria toxins were separated using
gradient elution with acetonitrile and water (both acidified with 0.2% formic acid) from
35:65 to 75:25 in 5 min, then isocratic for 2 min, at a flow rate of 0.2 mL min~!. For the
fragmentation of [M + H]+ ions (722 m/z for FB1, 706 m/z for FB2, 259 m/z for AOH,
273 m/z for AME, 198 m/z for TeA and 415 m/z for TEN), the fragment ions were: 704, 352,
and 334 m/z for FB1; 688, 336, and 318 m/z for FB2; 738, 374, 128, 185, and 213 m/z (35 V)
for AOH, 128, 184 m/z (38 V), and 258 m/z (30 V) for AME, 125, 139, and 153 m/z (16 V) for
TeA, 132 m/z (37 V), 135, and 312 m/z (25 V) for TEN. Deoxynivalenol and zearalenone
were detected by GC-MS and HPLC-FD as described by Bertuzzi et al. [17]. Briefly, GC-MS
analysis was carried out using a TraceGQ Ultra coupled with an ISQ single quadrupole
mass spectrometry (Thermo-Fisher Scientific, Milano, Italy). A capillary column Rtx-5MS
(B0m x 0.25 mmi.d., 0.25 um film thickness; Restek Corporation, Bellefonte, PA, USA) was
used for the analysis. Helium was the carrier gas with a column head pressure of 55 kPa.
The PTV temperature was raised from 70 °C (held 0.2 min) to 260 °C (held for 2 min) at
10 °C sec™!. The oven temperature programming was from 125 °C (held for 1 min) to 245 °C
at 10 °C min~! and then to 300 °C (held for 1 min) at 30 °C min~!. MS transfer line and ion
source temperature were at 230 °C and 250 °C, respectively. Electron ionization at 70 eV
and selected ion monitoring (SIM) were used for DON detection (fragment monitored: 393,
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407, 422, 512). Zearalenone was detected with an HPLC system (Perkin Elmer, Norwalk,
CT, USA) equipped with a FP 1520 fluorescence detector (Jasco Corporation, Lecco, Italy)
set at 274 nm excitation and 440 nm emission wavelengths. ZEN was separated on a
phenyl-hexyl column (5 um particle size, 150 mm x 4.6 mm i.d.; Phenomenex, Torrance,
CA, USA) at ambient temperature with a mobile phase acetonitrile—2% acetic acid aqueous
solution (43 + 57 v/v) at 1.0 mL min~!. Aflatoxins and ochratoxin A were determined
as reported by Pietri et al. [18]. The analysis was performed with a HPLC instrument
equipped with a FP 1520 fluorescence detector (Jasco Corporation, Tokyo, Japan). AFs
were separated with a Superspher RP-18 column (4 pum particle size, 125 mm x 4 mmi.d.,
Merck) while OTA with a phenyl-hexyl column (5 um particle size, 150 mm x 4.6 mm i.d.,
Phenomenex, Torrance, CA, USA) at ambient temperature. For AFs, the mobile phase was
water-methanol-acetonitrile (64 + 23 + 13, v/v/v), the flow rate was 0.5 mL min~!, and
the fluorimeter was set at 365 nm excitation and 440 nm emission wavelengths. OTA were
analyzed with a mobile phase gradient acetonitrile-2% acetic acid aqueous solution from
35:65 to 67:33 in 15 min, the flow rate was 1.0 mL min~!, the fluorescence detector was set
at 333 nm excitation and 470 nm emission wavelengths.

4.8. Data Analysis

The data were transformed before statistical analysis; in particular, fungal growth
reduction was arcsine transformed and mycotoxin content was In transformed [19]. Analy-
sis of variance (ANOVA) was calculated using the statistical package IBM SPSS Statistics
27 (IBM Corp., Armonk, NY, USA) while significant differences were highlighted using the
Tukey test (p < 0.05) for mean separation.
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