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Abstract: The Canary Islands are a ciguatoxin (CTX) hotspot with an established official monitoring 
for the detection of CTX in fish flesh from the authorised points of first sale. Fish caught by recrea-
tional fishermen are not officially tested and the consumption of toxic viscera or flesh could lead to 
ciguatera poisoning (CP). The objectives of this study were to determine the presence of CTX-like 
toxicity in relevant species from this archipelago, compare CTX levels in liver and flesh and examine 
possible factors involved in their toxicity. Sixty amberjack (Seriola spp.), 27 dusky grouper (Epineph-
elus marginatus), 11 black moray eels (Muraena helena) and 11 common two-banded seabream (Dip-
lodus vulgaris) were analysed by cell-based assay (CBA) and Caribbean ciguatoxin-1 (C-CTX1) was 
detected by liquid chromatography mass spectrometry (LC-MS/MS) in all these species. Most of the 
liver displayed higher CTX levels than flesh and even individuals without detectable CTX in flesh 
exhibited hepatic toxicity. Black moray eels stand out for the large difference between CTX concen-
tration in both tissues. None of the specimens with non-toxic liver showed toxicity in flesh. This is 
the first evidence of the presence of C-CTX1 in the common two-banded seabream and the first 
report of toxicity comparison between liver and muscle from relevant fish species captured in the 
Canary Islands. 

Keywords: ciguatoxins; amberjack; dusky grouper; moray eel; common two-banded seabream; Ca-
nary Islands 

Key Contribution: Comparison of CTX-like toxicity between liver and flesh of relevant fish species 
from the Canary Islands. Caribbean ciguatoxin-1 (C-CTX1) was identified by liquid chromatog-
raphy mass spectrometry (LC-MS/MS) in the flesh of these fish species. First evidence of the pres-
ence of C-CTX1 in common two-banded seabream (Diplodus vulgaris). 
 

1. Introduction 
Ciguatoxins (CTXs) are natural marine lipophilic toxins which may cause ciguatera 

poisoning (CP) in humans. This illness is the most prevalent foodborne disease caused by 
non-bacterial organisms reported globally (reviewed by [1]). CTXs and other toxic metab-
olites are produced by a group of microalgae principally of the genus Gambierdiscus [2] 
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and Fukuyoa [3]. These compounds reach high trophic levels throughout the food chain. 
Initially, only large carnivores seemed to pose a risk for toxin intake, however it is known 
that also smaller carnivorous, piscivorous, and herbivorous fish are able to cause this dis-
ease [4]. 

At present, the Canary archipelago is considered an important hotspot for CTXs in 
Europe [5,6]. Since 2011, the Directorate-General for Fisheries of the Canary Government 
implemented a protocol to detect CTXs in certain fish species and weights from the au-
thorised points of first sale before reaching the market to protect public health [7]. Addi-
tionally, the EuroCigua project, co-funded by the European Food Safety Authority (EFSA) 
and the University of Las Palmas de Gran Canaria (ULPGC), focused on the characterisa-
tion of the risk of CP in Europe. This project highlighted the importance of the Canary 
Islands for the presence of CTXs in algae and fish, and revealed that amberjack (Seriola 
spp.), dusky grouper (Epinephelus marginatus), moray eel (family Muraenidae), and the 
common two-banded seabream (Diplodus vulgaris) are relevant species that accumulate 
toxins in their tissues. 

These fish species are of great fishery value in the Canary archipelago [8]. In addition, 
these species are widely distributed across the globe. Black moray eels (Muraena helena) 
mainly inhabit in the Macaronesia region [9], with a great economic value in the Azores 
Islands, Madeira, and the Cape Verde archipelago [10]. Dusky groupers can be found in 
many regions of the Atlantic Ocean and in the Western of the Indian Ocean [11], with a 
special huge economic interest in the Mediterranean area [12]. Amberjacks are well dis-
tributed around the world, be one of the most relevant species in the fishery industry 
[13,14]. Common two-banded seabream is especially located in the Eastern Atlantic and 
throughout the Mediterranean Sea and in the Black Sea [15,16]. It is a highly valuable 
commercial species in different countries such as Turkey and Croatia [17]. 

Moray eels are demersal and great hunters and are well known to produce CP out-
breaks worldwide [18]. The presence of Caribbean ciguatoxin-1 (C-CTX1) [19,20] by liquid 
chromatography mass spectrometry (LC-MS/MS) in a black moray eel from the Canary 
Islands [21] has been confirmed. Nevertheless, no reports associated with moray eel con-
sumption have been reported in this area. 

Dusky groupers have been studied for their coordinated hunting with moray eels 
[22]. Therefore, the latter are part of the diet of groupers, as recently reported by Sanchez-
Henao et al. [21]. To date, E. marginatus has caused four CP outbreaks in the Canary Is-
lands [23]. In dusky groupers from this archipelago, the presence of C-CTX1 has also been 
analysed by LC-MS/MS [21,24]. 

The first CP outbreak reported in this archipelago in 2004 was linked to the intake of 
amberjack flesh [25]. After this event, a total of 11 CP outbreaks have been produced by 
different species of amberjack, affecting 75 people [23,26]. The presence of C-CTX1 in am-
berjack captured in the Canary Islands has been confirmed by LC-MS/MS analysis [25,27]. 

The common two-banded seabream of the Sparidae family is an omnivorous fish [28] 
and Sarpa salpa, a member of the same family, has been reported to intake dinoflagellates 
and produce hallucinatory syndrome in humans [29]. However, these species were not 
associated with any CP outbreaks. 

Despite the worldwide incidence of CP, regulatory measures are necessary in many 
endemic regions [30]. The official control protocol carried out by the Canary Government, 
based on the presence or absence of CTX-like toxicity in the muscle of certain fish species, 
evaluated by cell-based assay (CBA), prevents toxic specimens from being released into 
the market. The presence of CTXs can only be detected by analytical methods, considering 
that these toxins do not alter the appearance, smell, or taste of the flesh. Additionally, 
some authors have observed that the CTXs concentration varies depending on the tissues 
and fish species; thus, an individual with no detectable CTX-like toxicity in muscle could 
present CTXs in other tissues [18]. 

CTXs tend to attach to the cytoplasmic protein of hepatocytes [31] and the liver is 
therefore a major depot for these toxins [32,33]. Most of what is known about the chemical, 
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pharmacological, and immunological aspects of CTX is from studies which isolated it 
from the liver of Gymnothorax javanicus, allowing the scientific community to improve 
knowledge concerning CTXs [34–36]. It is also noted that the viscera of risky fish do not 
have a market share, as they are considered a high risk to consumers because this toxin is 
normally most concentrated in visceral tissue [33]. Nonetheless, sport fishermen have vis-
cera available to them, and their consumption could pose a potential risk to public health. 
Furthermore, these tissues are usually not analysed prior to consumption and, therefore, 
sport fishery is currently the main cause of CP outbreaks in the Canary Islands. 

However, to the best of our knowledge, no studies on CTX detection in the liver of 
fish species captured in the Canary Islands have been published to date. 

The present study deepens the knowledge of the presence of CTX-like toxicity in rel-
evant fish species commonly used for human consumption from this archipelago, com-
paring CTX levels in the liver and flesh to better evaluate the potential risk of CTXs in 
viscera to consumers. The study also examined potential factors involved in the levels of 
CTX-like toxicity found in these fish species (amberjack, dusky grouper, black moray eel, 
and common two-banded seabream). 

2. Results 
A total of 109 specimens were analyzed by CBA to determine the presence of CTXs 

in the flesh and liver samples. CTX-like toxicity in hepatic tissue was found in 107 fish 
(98.2%), and 93 of them (85.3%) also showed toxicity in their flesh. The results obtained 
for both flesh and liver are summarised in Table 1 by fish species, expressed as the range 
of ng Pacific ciguatoxin-1 (CTX1B) equivalents (Eq.)·(g tissue)−1, including the minimum 
and maximum values reached, mean and median values, and the ratio between CTX con-
centrations in the liver and flesh. In addition, the distribution of individual toxin concen-
trations obtained by CBA in the liver and flesh of the different species are represented in 
a box plot (Figure 1), as well as the liver versus flesh CTX concentration ratio (Figure 2). 
Furthermore, from all samples, 62 flesh were available to analyse by means of the LC-
MS/MS method to identify and quantify the presence of C-CTX1 (Table 2, Figure 3). 

Table 1. Estimated concentration of ciguatoxins (CTXs) content according to CTX-like toxicity ob-
tained by cell-based assay (CBA) in flesh and liver, and the ratio between CTXs concentration of 
liver and flesh. Data expressed as mean ± standard deviation (SD), median, minimum, and maxi-
mum values in ng Pacific ciguatoxin-1 (CTX1B) equivalents (Eq.)·(g tissue)−1. 

Fish Studied  
Amberjack 

(Seriola spp.) 
na = 60 

Dusky Grouper 
(E. marginatus) 

na = 27 

Black Moray Eel 
(M. helena) 

na = 11 

Common Two-
Banded Seabream 

(D. vulgaris) 
na = 11 

Total 
na = 109 

ng CTX1B Eq·(g 
flesh)−1 

nb 57 22 7 7 93 
Mean ± SD 0.165 ± 0.264 0.238 ± 0.325 0.096 ± 0.081 0.036 ± 0.011  

Median 0.061 0.088 0.058 0.031  
Minimum 0.011 0.013 0.026 0.024  
Maximum 1.306 1.365 0.217 0.051  

ng CTX1B Eq·(g 
liver)−1 

nb 59 27 11 10 107 
Mean ± SD 0.953 ± 1.066 1.527 ± 1.317 1.949 ± 1.816 0.454 ± 0.223  

Median 0.655 1.234 1.373 0.525  
Minimum 0.069 0.020 0.361 0.084  
Maximum 6.439 4.991 6.062 0.808  

Ratio (liver tox-
icity/flesh toxicity) 

nb 55 22 7 7 91 
Mean ± SD 17.84 ± 25.05 35.51 ± 47.63 48.32 ± 41.55 16.32 ± 4.49  

Median 8.39 14.94 27.91 17.19  
Minimum 1.21 1.31 10.06 11.25  
Maximum 130.15 155.70 124.09 24.69  

na = Sample size. nb = Individuals with CTX-like toxicity. 
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Table 2. Level of Caribbean ciguatoxin-1 (C-CTX1) from the flesh tissue of the individuals analysed 
by liquid chromatography mass spectrometry (LC-MS/MS). C-CTX1 levels were quantified using 
CTX1B calibration curve due to unavailability of C-CTX1 reference material. Data expressed as 
mean ± standard deviation (SD), median, minimum, and maximum values. 

Fish Studied  
Amberjack 

(Seriola spp.) 
n = 29 

Dusky Grouper 
(E. marginatus) 

n = 18 

Black Moray 
Eel 

(M. helena) 
n = 8 

Common Two-
Banded Sea-

bream 
(D. vulgaris) 

n = 7 

Total 
n = 62 

ng·(g flesh)−1 by 
LC-MS/MS 

C-CTX1 con-
firmed a 

8 15 2 5 30 

Mean ± SD 0.109 ± 0.091 0.057 ± 0.059 0.035 ± 0.021 0.040 ± 0.017  
Median 0.075 0.030 0.035 0.030  

Minimum 0.020 0.018 0.020 0.030  
Maximum 0.270 0.240 0.050 0.070  

n = Sample size. a = Individuals with presence of C-CTX1 in flesh confirmed by LC-MS/MS. 

 
Figure 1. CTX-like toxicity in flesh (A) and liver (B) by CBA (ng CTX1B Eq·(g tissue)−1) according to 
fish species. The plot represents the interquartile range (Q3–Q1), and dark line represents the median 
values. Asterisks (*) indicate outliers and the numbers correspond to specific individuals (Table S1). 
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Figure 2. Liver versus flesh CTX concentration ratio according to fish species evaluated by CBA. 
The plot represents the interquartile range (Q3–Q1), and dark line represents the median values. 
Asterisks (*) indicate outliers. 

 
Figure 3. LC-MS/MS chromatogram monitoring CTXs [M + Na]+ as precursor and product ion of: 
(A) Reference material of CTXs: CTX1B (1), C-CTX1 (2), C-CTX1-Me (3), 52-epi-54-deoxyCTX1B (4), 
54-deoxyCTX1B (5), 49-epiCTX3C (6), CTX3C (7), CTX4A (8), and CTX4B (9); (B) C-CTX1 (2) detected 
in an amberjack. 

2.1. Evaluation of the Presence of CTX-like Activity by CBA 
2.1.1. In Amberjack 

Of the total fish (n = 60), all amberjacks with toxic flesh also exhibited hepatic toxicity 
(n = 57); in contrast, two amberjacks with no CTX presence in their flesh displayed toxicity 
in their livers, and in one individual, no toxicity was found in either tissue. The flesh ex-
hibited mean and median values of 0.165 and 0.061 ng CTX1B Eq·(g flesh)−1, respectively, 
and, by comparison, a mean of 0.953 ng CTX1B Eq·(g liver)−1 and a median of 0.655 ng 
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CTX1B Eq·(g liver)−1 in the liver (Table 1). The highest CTX concentration observed in the 
liver of all fish species studied corresponds to an amberjack (number 31), and this indi-
vidual was the one with the highest concentration of CTX both in the flesh and liver within 
these species (see Figure 1) and also with the highest concentration of C-CTX1 in flesh 
measured by LC-MS/MS (0.270 ng·(g flesh)−1). In most individuals, the liver showed more 
toxins than the flesh, with the exception of two specimens. Individual number 10 dis-
played a CTX-like toxicity of 1.250 ng CTX1B Eq·(g flesh)−1 and 0.178 ng CTX1B Eq·(g 
liver)−1. In addition, number 15 showed 0.556 ng CTX1B Eq·(g flesh)−1 and 0.195 ng CTX1B 
Eq·(g liver)−1. The livers of the remaining amberjacks (n = 55) exhibited more than 17 times 
the amount of toxins compared to those estimated in the flesh (Table 1). However, as the 
values were not normally distributed, this average ratio was far from the median (8.39). 
Among all the fish species studied, these species showed the highest maximum toxicity 
in the liver (6.439 ng CTX1B Eq·(g liver)−1). 

2.1.2. In Dusky Grouper 
All dusky grouper individuals (n = 27) showed toxicity in the liver and 22 displayed 

toxicities in the flesh. These specimens presented a mean of 0.238 ng CTX1B Eq·(g flesh)−1 
and a median of 0.088 ng CTX1B Eq·(g flesh)−1 (Table 1). Among all the species studied in 
this research, individual 79 had the highest toxicity level in flesh (1.365 ng CTX1B Eq·(g 
flesh)−1) (Figure 1A, Table 1). 

In contrast, for this species, the liver displayed mean and median values of 1.527 and 
1.234 ng CTX1B Eq·(g liver)−1, respectively. Regarding the ratio between the toxicity levels 
of both tissues (liver/flesh), all livers were more toxic than the corresponding flesh, with 
high variability among individuals (from 1- to 156-fold more), which represents a median 
value of 14.94, greater than the ratio observed in amberjacks. 

2.1.3. In Black Moray Eel 
All the black moray eels analysed (n = 11) displayed toxicity in the liver (1.949 and 

1.373 ng CTX1B Eq·(g liver)−1, mean and median, respectively), and seven of them also 
presented CTX in flesh (0.096 and 0.058 ng CTX1B Eq·(g flesh)−1, mean and median, re-
spectively). One of the specimens (number 94) was the individual with the highest toxicity 
level in both the flesh and liver of the black moray eels tested (see Supplementary Table 
S1). All the livers showed at least ten times the toxicity of flesh, with a mean value of 48.32 
and a median of 27.91 (Table 1). One black moray eel specimen (number 98) presented a 
124-fold increased toxicity in the liver than in the flesh (see Supplementary Table S1). 

Black moray eels showed a high maximum value of toxicity in the liver (6.062 ng 
CTX1B Eq·(g liver)−1), close to that found in amberjack. 

2.1.4. In Common Two-Banded Seabream 
CTX-like toxicity in liver was observed in 10 out of 11 common two-banded sea-

breams, and seven of them also displayed toxicity in the flesh. The quantity of CTX found 
in the flesh showed a mean value of 0.036 and a median value of 0.031 ng CTX1B Eq·(g 
flesh)−1, while the values reached in the liver were 0.454 and 0.525 ng CTX1B Eq·(g liver)−1, 
respectively (Table 1). Every individual exhibited higher CTX concentration in the liver 
than flesh, with similar mean and median values of the ratios being 16.32 and 17.19, re-
spectively. This species showed the lowest level of toxicity in both types of tissues ana-
lysed among all the species studied. 

2.2. Identification and Quantification of CTX by LC-MS/MS 
In the framework of the EuroCigua project, 62 out of the 109 flesh considered in this 

study were analysed by LC-MS/MS in order to identify and quantify the presence of CTXs 
in these specimens (Table 2). An example of LC-MS traces showing the detection of C-
CTX1 and the absence of additional CTXs is showed in Figure 3. The mixture of CTXs with 
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standard available are compared with the CTXs detected in the sample confirming the 
detection of C-CTX1 and the absence of other CTXs. The presence of C-CTX1 was con-
firmed in 30 samples, whereas concentrations below the LOD were obtained for the re-
maining samples. C-CTX1 was the only CTX analogue identified (Figure 3) in all species 
evaluated in this study. Twenty-nine of the 57 amberjack flesh samples were investigated 
using this method, and the levels of C-CTX1 obtained were 0.109 ng·(g flesh)−1 as mean 
and 0.075 ng·(g flesh)−1 as median. The average level displayed in the dusky grouper flesh 
(n = 18) was 0.057 ng·(g flesh)−1, and the median was 0.030 ng·(g flesh)−1. All the toxic flesh 
samples and one non-toxic from the moray eels were analysed by LC-MS/MS. However, 
only 2 individuals presented C-CTX1 with the following values: 0.020 and 0.050 ng·(g 
flesh)−1. All the toxic flesh samples from the common two-banded seabream were ana-
lysed. The average and median levels in this species were 0.040 and 0.030 ng·(g flesh)−1, 
respectively. 

2.3. CTX-Like Toxicity According to Fish Species by CBA 
Although different distributions of concentration, mean, and median values of CTX 

in flesh were observed between fish species, no statistical difference was found. On the 
contrary, a significant difference in the liver CTX level between species was found (p = 
0.025), with black moray eels having the highest mean and median values of CTX in the 
liver. The common two-banded seabream was the species with the lowest concentration 
(Figure 1B). A statistically significant difference in the ratio of liver toxin concentration 
versus flesh between species was found (p = 0.014). Amberjack being the species with the 
lowest median value ratio (8.39), followed by the dusky grouper (14.94), and very closely 
by seabream (17.19), with the latter having the lowest average ratio (16.32) (Table 1, Figure 
2). Moray eels stood out for their great difference between toxin concentrations in the liver 
and flesh (mean, 48.32 and median, 27.91) (Table 1, Figure 2). 

2.4. CTX-Like Toxicity According to Fish Weight and Length by CBA 
2.4.1. In Amberjack 

A positive correlation was observed between liver toxicity level and weight (r = 0.266, 
p = 0.044) and length (r = 0.829, p = 0.042) (Figures 4C,D). Likewise, a positive correlation 
was found between flesh toxicity and weight (r = 0.321, p = 0.016) (Figure 4A). 
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Figure 4. Scatter plots displaying the toxicity results of amberjack and dusky grouper samples, ac-
cording to the individual morphological features—weight and length. CTX-like toxicity in flesh ac-
cording to the weight (A), and length (B). CTX-like toxicity in liver according to the weight (C), and 
length (D). Ratio between CTX concentrations of liver and flesh according to the weight (E), and 
length (F). The squared correlation coefficient (R2) is also shown. 

2.4.2. In Dusky Grouper 
A negative correlation was detected between the liver/flesh ratio and weight (r = 

−0.435, p = 0.049) and length (r = −0.579, p = 0.062) (Figure 4E,F). In these specimens, the 
ratio decreased as the individual size increased. 

In addition, in these individuals, a strong positive correlation was observed between 
liver toxicity level and length (r = 0.636, p = 0.015) (Figure 4D). This positive correlation 
was also observed between flesh toxicity and length (r = 0.624, p = 0.040) (Figure 4B). 
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2.5. Influence of Liver Condition 
The liver conservation state was recorded at the time of sampling. Most of the studied 

livers presented different autolysis levels, with the exception of black moray eels, with 
50% of the livers showing fresh conditions. Overall, no relationship was observed between 
the hepatic decomposition level and the variables analysed in this study, either with the 
CTX-like toxicity or liver/flesh ratio. 

3. Discussion 
3.1. Differences in CTX Accumulation in Liver and Flesh 

As previously reported by Vernoux et al. [33], it seems that distribution of CTXs in 
liver versus muscle varies significantly within and between fish species. In almost all of 
the individuals analysed in the present study (91 out of 93), the liver was more toxic than 
the flesh. Even when the flesh was non-toxic (n = 16), the liver showed a high level of 
toxicity (14 out of 16). Moray eel livers presented a median nearly 28-fold toxicity com-
pared to flesh which represents the greatest ratio observed among the studied species (see 
Figure 2). These data are similar to those of previous studies. In 2011, Chan et al. [37], 
found that the liver of Gymnothorax spp. was 9-fold (ranging from 4- to 15-fold) more toxic 
than flesh. Vernoux et al. [33] analysed the concentration of CTX in the liver and flesh of 
different fish species, Muraenidae, Serranidae, and Carangidae, among others. They found 
that the liver presented a minimum of 13-fold higher concentration of CTX than flesh and, 
in Gymnothorax funebris, they observed a maximum of a 114-fold increase in liver than in 
muscle, comparable with the maximum found in this study in a black moray eel which 
presented 124 times more toxicity in the liver than in the flesh. 

However, the greatest difference in concentrations reached in this study was ob-
served in the dusky grouper (155-fold). In contrast with a paper published by Vernoux et 
al. [33], in which three individuals of Epinephelus morio showed between 7- and 16-fold 
more toxicity in the liver than in the flesh. In a study published recently by Li et al. [38], 
the levels of CTXs in the liver from orange-spotted groupers, were between 1.9- and 17-
fold higher than that in flesh. In amberjack, the difference between tissues was lower (8-
fold as median), slightly lower than the results obtained by Vernoux et al. [33], where the 
liver of two specimens of S. dumerili contained between 10- and 21-fold higher levels of 
CTXs than flesh. Our results detected more differences between the liver and muscle than 
previously reported [33,36,38,39]. Of the total individuals analysed in this study, two am-
berjacks showed muscle with more toxicity than the liver which suggests that the toxin is 
stored in different ways, depending on the individual and fish species. However, in a high 
percentage (97.85%) of the fish analysed in the present study, it was observed that the liver 
contained higher levels of CTX toxicity than the flesh. Thus, in the Canary Islands, the CP 
official control protocol established by the detection of CTX indicated that the viscera of 
certain species (Seriola spp., Epinephelus spp., Acanthoocybium solandri, and Pomatomus sal-
tarix) cannot be sold independently if the muscle is non-toxic [7]. Interestingly, differences 
in the course of CP have been observed depending on consumption. Thus, patients who 
consumed liver showed more severe symptoms than those who ate flesh [40], and some 
even had a fatal resolution [41]. 

The high CTX concentrations found in the liver may be due to the fact that it is the 
target of acute toxicity and the first organ exposed to any compound absorbed [42]. The 
liver is responsible for the metabolism of xenobiotics among other substances [43] pre-
dominantly through cytochrome p450 enzymes (CYPs). It has been observed that CTXs in 
rat liver [32] induces multiple CYPs (mainly members of CYP2 and CYP4 families), and 
glutathione S-transferases (GST), which is part of the mechanism of phase II metabolism. 
It has been reported [44], that CYP in fish liver could oxidise less potent CTXs (CTX4A/B) 
to more potent CTX (CTX1B). Jiang et al. [45] analysed the liver proteomic profiles of Ceph-
alopholis argus and Gymnothorax undulatus by observing differences in the proteomics of 
toxic liver from these two fish species. Besides, they suggested that fish livers develop 
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different resistance strategies to CTX which are species-specific [45,46]. In addition, in ex-
perimental studies of dietary CTX exposure in fish [38,47], the liver accumulated a higher 
portion of CTX in the first hours after a single ingestion of CTX. After these first hours, 
the concentration of CTX decreased quickly. The muscle requires more time to accumulate 
CTX, and it is slowly eliminated. These authors suggested that the muscle could act as a 
target tissue for CTX storage, and that the liver could be a good indicator of recent CTX 
exposure. This could be the reason why only a few fish in our study (2.15%) showed 
higher CTX toxicity in muscle than in the liver. The role of flesh as a temporary storage 
was observed in a study recently published by Sanchez-Henao et al. [48], where a goldfish 
significantly reduced its CTX-like toxicity after 60 days of feeding with non-toxic food. In 
the present study, the individuals analysed were supposed to be exposed to CTX for a 
long time. Positive correlations between size, either the weight or the length, and CTX 
levels in the liver and flesh were detected in this study. Therefore, the concentration in 
both tissues continues to increase as the animal increases in size, which is supported by 
other studies on grouper species [49] and amberjack [5,50]. Other authors have also con-
cluded that fish size and CTX levels may differ between species and regional areas [39,51]. 
In this regard, a negative correlation between the CTX liver/flesh ratio and size of the 
specimens was observed in this study, suggesting that as the fish grows, the difference in 
CTXs between the liver and flesh decreases, which may be explained by the strategy 
mechanisms developed by the animals to remove toxins from the liver by increasing the 
efficiency of hepatic detoxification, which could also lead to a greater CTX accumulation 
in the muscle. 

3.2. Toxicity Differences among Fish Species 
Dusky grouper showed the highest toxicity in the flesh (1.365 ng CTX1B Eq·g−1) (Ta-

ble 1), which is comparable with other studies where groupers were more toxic than other 
fish species [37,52]. Although the toxicity level of flesh from black moray eels was quite 
similar to that of the other species studied, the liver was found to be more toxic than the 
other fish species. In parallel, some livers of black moray eels reached 6.062 ng CTX1B 
Eq·(g liver)−1. In addition, dusky groupers and amberjack flesh were more toxic than the 
flesh of moray eels and common two-banded seabream. To date, no CP outbreak in the 
Canary Islands has been linked to the consumption of moray eels, but several cases have 
been reported in other parts of the world. In these outbreaks, the severity of the disease 
was related to the intake of viscera, liver, or the head of these fish species (reviewed by 
[18]). In the Canary archipelago, moray flesh is traditionally consumed fried with the skin; 
thus, the small portions and the absence of the viscera may be the main reason why there 
have not been any poisoning cases recorded in the Canary Islands thus far, but other pos-
sible species-specific toxicological issues should be considered. 

In all the species evaluated, C-CTX1 was the only CTX analogue identified (Figure 3). 
This CTX profile was similar to the one obtained for samples from the Madeira archipel-
ago [53,54]. The results obtained by CBA showed higher toxicity values than those ob-
tained by LC-MS/MS, as expected, since both methods are not exactly comparable. CBA 
allowed the detection of CTX-like toxicity and may be caused by the action of multiple 
CTX analogues and not only C-CTX1. 

To the best of our knowledge, this is the first identification of C-CTX1 in common 
two-banded sea bream (D. vulgaris) in the Canary Islands. It is an omnivorous fish, whose 
diet is based on polychaeta, crustacea, fish, and echinoderms [55,56]. Thus, it has not been 
considered as a CTX risky fish species, however, it is part of the diet of amberjacks [57], 
and dusky groupers [58]. Both species are traditionally involved in CP outbreaks. There-
fore, our results suggest that D. vulgaris can transmit CTX in the Canary archipelago. The 
lack of CP outbreaks due to the intake of this fish species could be explained by the low 
toxicity found in flesh (with a maximum of 0.051 ng CTX1B Eq·(g flesh)−1) and the usual 
low dietary exposure of consumers to this fish species. These values are quite different 
from those obtained by Costa et al., [59] in a zebra seabream (Diplodus cervines) captured 
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in the Selvagens Islands (Portugal). In this individual, the toxicity determined by CBA 
was 0.37 µg CTX1B Eq·(kg flesh)−1, and the presence of C-CTX1 was not found. Despite 
the low toxicity found in flesh of D. vulgaris, the liver was found to be 17-fold (median) 
more toxic than flesh, as found in the rest of the studied species in this study. Although 
viscera are always discarded by professional fisheries, the present results emphasise the 
importance of avoiding its consumption by sport fishermen, which are more vulnerable 
to poisoning as the fish they catch are not subject to official control in this archipelago. 
Furthermore, the study of the livers of fish individuals from a given area could allow the 
detection of CP risk situations before they occur. 

4. Conclusions 
The present study investigated the different CTX concentrations found between the 

liver and flesh of important fish species consumed worldwide (amberjack, dusky grouper, 
black moray eel, and common two-banded seabream), considering all the consequences 
that this implies for food safety. Furthermore, the study of the livers of fish individuals 
from a given area could allow the detection of CP risk situations before they occur. In 
addition, this study reveals for the first time the presence of C-CTX1 in common two-
banded seabream from the Canary Islands, and highlights the sport fishing vulnerability 
to CP outbreaks. 

5. Materials and Methods 
5.1. Study Area 

The Canary Islands are a Spanish archipelago of the Macaronesian region located in 
the North Atlantic Ocean to the south of the European continent and about 100 km east of 
the coast of Africa. The archipelago consists of eight main volcanic islands and several 
islets. The islands have a strong fishery tradition [60], and constitute the division 34.1.2 
marine fishing area by the Food and Agriculture Organization (FAO) [61]. 

5.2. Fish Sample Collection 
The flesh and liver of 109 fish specimens from four different species were analysed 

in the present study: amberjack (Seriola spp.; n = 60), dusky grouper (E. marginatus; n = 27), 
black moray eel (M. helena; n = 11), and common two-banded seabream (D. vulgaris; n = 
11). The identification of these fish species was based on morphological characteristics. 
All individuals were caught in the Canary waters from 2016–2019. 

In the Canary Islands, four species of the genus Seriola have been described: Seriola 
rivoliana, Seriola fasciata, Seriola dumerili, and Seriola carpenteri. However, due to the absence 
of molecular techniques to confirm the species level, in this study all amberjacks have been 
identified only with the genus Seriola. 

The specimens were obtained from different sampling sources. Most of them were 
provided by the official control protocol of the Canary Government to prevent CP (n = 79; 
species: amberjack and dusky grouper). It is important to highlight that most individuals 
from the official monitoring were ciguatoxic, and they were selected to achieve the objec-
tives proposed by this study. The remaining individuals were sampled in the framework 
of the EuroCigua project (GP/EFSA/AFSCO/2015/03) (n = 29; all studied species) from local 
fisheries or authorised first sale points on different islands provided by sport fishermen 
(n = 1), and one black moray eel was recovered from the stomach content of a dusky 
grouper. 

Details regarding the capture island, year, and season were taken into account when 
analysing these individuals (see Supplementary Table S1). 
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5.3. Muscle Sample Preparation and CTX Extraction 
Each fish was kept frozen until processing. Muscle and liver samples were collected 

from each individual, and when possible, the total length (nearest mm), and weight (near-
est g) were recorded (Table 3). Samples were extracted according to the protocol described 
in [62], with slight modifications according to laboratory needs [5]. 

Table 3. Information regarding the individual weight and length of all the fish species studied. Data 
expressed as mean ± standard deviation (SD), median, minimum, and maximum values. 

Fish Studied  Amberjack 
n = 60 

Dusky Grouper 
n = 27 

Black Moray Eel 
n = 11 

Common Two-
Banded Seabream 

n = 11 

Individual weighta 

Mean ± SD 29.97 ± 12.41 19.53 ± 7.43 1.24 ± 0.86 0.46 ± 0.16 
Median 28.50 21.30 0.98 0.48 

Minimum 3.53 3.80 0.41 0.15 
Maximum 73.00 33.00 2.81 0.71 

Individual lengthb 

Mean ± SD 124.43 ± 42.33 92.32 ± 17.20 76.25 ± 17.24 28.17 ± 3.17 
Median 132.00 98.50 74.00 29.50 

Minimum 66.00 58.00 56.90 21.00 
Maximum 190.00 110.00 110.00 32.00 

a Total weight in kg. b Total length in cm. n = Sample size. 

For the matrix effect, the protocol employed was that described by [63] with minor 
modifications. Initially, fish flesh was homogenised, after which 10 g was cooked at 70 °C 
for 10 min in a water bath. When the sample reached room temperature (22 °C), 20 mL of 
acetone was added, mixed with an Ultraturrax blender, and centrifuged at 3000 × g for 10 
min at 4 °C, and the final step was repeated twice and both supernatants were pooled. 
The resulting acetone was filtered through a 0.45 µm PTFE filter and dried on a rotary 
evaporator at 55 °C. The dried extract obtained was re-suspended twice in Milli Q water 
with diethyl ether (DEE). Both DEE phases were pooled and evaporated with a rotary 
evaporator at 55 °C for a subsequent dissolution with methanol:water (8:2) and parti-
tioned twice with n-hexane. The n-hexane was discarded, and the methanol phase was 
evaporated to dryness under a N2 current at 40 °C. The final residue was dissolved in 4 
mL of methanol and kept at −20 °C to be used in the cytotoxicity assay. 

5.4. Liver Sample Preparation and Extraction of CTX 
At the time of sampling, the conservation state of the liver was recorded according 

to its morphological features and was graded as 1 (very fresh) to 5 (very advanced autol-
ysis) (Table S1), given that the liver is a susceptible organ which deteriorates quickly after 
death. 

When possible, 10 g of liver were obtained and cooked at 70 °C for 10 min in a water 
bath. However, for some samples, the weight of the liver was not sufficient to fulfil the 
protocol and ranged from 1.2–8.9 g. The protocol was performed as previously described 
above for the flesh, with slight differences. The centrifugation time was 15 min, and three 
partitions of n-hexane were conducted. 

5.5. Cytotoxicity CBA (Neuro-2a-MTT) 
Neuro-2a neuroblastoma cells (cell line: CCL131) were purchased from the American 

Type Culture Collection (ATCC, LGC Standards S.L.U., Barcelona, Spain). Cells were 
grown and maintained in Roswell Park Memorial Institute (RPMI)-1640 medium contain-
ing 5–10% fetal bovine serum at 37 °C in a 5% CO2 atmosphere. The Pacific type 1 CTX 
standard (STD) (named CTX1B) (R.J. Lewis, Queensland University, Brisbane, Queens-
land, Australia) was used to assess CTX-like toxicity. 
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The cytotoxicity assay was conducted as previously described [5] with minor modi-
fication in cell density (at 40000 cells per well). 

The assessment of the matrix effect on the Neuro-2a assay was performed with a dose 
of 200 mg tissue equivalents (TE)/mL from different species. Half dilutions of this concen-
tration were conducted to expose cells with or without ouabain/veratridine (O/V) pretreat-
ment. At the first dose, several samples showed interference with the assay, whereas at a 
concentration of 100 mg TE/mL this effect disappear in flesh extracts. Regarding the livers, 
it was observed that concentrations higher than 50 mg TE/mL produced matrix effects 
which may mask CTX-like toxicity. Regarding hepatic samples from common two-banded 
seabream, matrix interferences were observed even at 50 mg TE/mL, but not at 25 mg 
TE/mL (see Supplementary Figure S1). 

Flesh and liver extracts were tested at a maximum concentration of 200 and 50 mg 
TE of matrix/mL, respectively, to avoid matrix effects on cells. Tissues from the same in-
dividuals were assessed under the same methodological conditions. The limit of detection 
(LOD) and limit of quantification (LOQ) of CBA were set at the level of CTX1B STD that 
caused 20% inhibition of cell viability (IC20), considering the concentration of extracts used 
for the analysis. 

The LOD/LOQ mean values obtained for both tissues were 0.015 ng CTX1B Eq·(g 
flesh)−1 (min.: 0.004 and max.: 0.074, depending on the particularity of the tissue) and 0.043 
ng CTX1B Eq·(g liver)−1 (min.: 0.015 and max.: 0.118, depending on the particularity of the 
tissue). 

Toxic content in fish analysed for CTX-like toxicity by CBA was expressed in ng 
CTX1B Eq·(g tissue)−1. 

5.6. CTX Identification by LC-MS/MS 
In order to confirm the presence of CTX in the individuals analysed, 62 flesh samples 

from all the species involved in this study were analysed by LC-MS/MS in the framework 
of the EuroCigua project. 

CTX1B (4466 ng/mL) and a mixture of P-CTXs containing: CTX1B, 52-epi-54-deox-
yCTX1B (previously named P-CTX2) [20,64], 54-deoxyCTX1B (previously named P-CTX3) 
[20,64], 49-epiCTX3C, CTX3C, CTX4A and CTX4B were kindly provided by Prof. Takeshi 
Yasumoto (Japan Food Research Laboratories, Tokyo, Japan). The C-CTX1 standard was 
kindly provided by Dr. Robert W. Dickey (University of Texas, Austin, USA) via Dr. 
Ronald Manger (Fred Hutchinson Cancer Research Center, Seattle, USA). A laboratory 
reference material containing C-CTX1-Me was obtained by isolation and purification of 
this toxin from naturally contaminated fish tissue used from previous work carried out 
by some of the authors of this study [65]. 

Sample pretreatment for LC-MS/MS analyses was carried out following the condi-
tions described by [24]. Briefly, 15 g of fish tissue were extracted twice with acetone (45 
mL). Acetone layers were combined and evaporated to an aqueous residue which was 
extracted twice with DEE (15 mL). The combined DEE layers were evaporated to a solid 
residue. Solid residue was dissolved in 90% methanol/water (v/v) (4.5 mL) and defatted 
with n-hexane (9 mL). The methanolic layer was evaporated to dryness and submitted to 
the purification step. The solid residue was dissolved in ethyl acetate (2 mL) and loaded 
in a Florisil SPE cartridge (500 mg, 3 mL) previously conditioned with ethyl acetate (3 mL). 
The cartridge was washed with ethyl acetate (3 mL) and the CTXs were eluted with ethyl 
acetate/methanol 9/1 (v/v) (5 mL). The toxic eluate from Florisil SPE was evaporated to a 
solid residue, dissolved in 60% methanol/water (v/v) (2 mL) and loaded in a C18 SPE car-
tridge (500 mg, 3 mL) previously conditioned with 60% methanol/water (v/v) (3 mL). The 
C18 SPE cartridge was washed with 60% methanol/water (v/v) (3 mL) and the CTXs were 
eluted with 90% methanol/water (v/v) (5 mL). The toxic eluate containing the CTXs was 
evaporated to dryness, and the solid residue was dissolved in methanol LC-MS grade (0.5 
mL, 30 g flesh/mL), and filtered through 0.22 µm prior the LC-MS/MS analyses. 
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LC-MS/MS analyses were performed using an Agilent 1290 Infinity Liquid Chroma-
tography system coupled to an Agilent 6495 triple quad iFunnel (Agilent Technologies, 
Waldbronn, Germany) according to the method described by [24]. 

Chromatographic separation was carried out on a C18 column (Poroshell 120-EC-
C18, 3.0 × 50 mm, 2.7 µm, Agilent USA) set at 40 °C. Mobile phases consisted of 0.1% 
formic acid and 5 mM ammonium formate in water (A) and methanol (B). The injection 
volume was 1 µL and the flow rate was 0.4 mL/min. CTXs were separated using a gradient 
of mobile phases starting at 78% B, increasing to 88% B in 10 min, keeping for 5 min, and 
increasing from 15.01 min to 100% B for 3 min. The gradient of the mobile phase returned 
to the initial conditions of 78% B in 18.01 min, equilibrating the column 4 min prior to the 
next injection. 

CTX sodium adduct [M + Na]+ was monitored in positive ionisation mode as the pre-
cursor and product ion using the multiple reaction monitoring (MRM) mode. The collision 
energy (CE) and collision acceleration voltage (CAV) were set at 40 eV and 4 eV, respec-
tively, for all CTXs monitored. CTXs with the reference material available were monitored 
as follows: CTX1B (m/z 1133.6 -> m/z 1133.6), C-CTX1 (m/z 1163.7 -> m/z 1163.7), C-CTX1-
Me (m/z 1177.6 -> m/z 1177.6), 52-epi-54-deoxyCTX1B/54-deoxyCTX1B (m/z 1117.6 -> m/z 
1117.6), 49-epiCTX3C/CTX3C (m/z 1045.6 -> m/z 1045.6), and CTX4A/CTX4B (m/z 1083.6 -
> m/z 1083.6). 

The ion source and interface settings were as follows: gas flow, 15 L/min; gas tem-
perature, 290 °C; sheath gas flow, 12 L/min; sheath gas temperature, 400 °C; nebuliser 
pressure, 50 psi; fragmentor potential, 380 V; capillary voltage, 5000 V; and nozzle voltage, 
300 V. 

The LOD and LOQ for CTX1B were 0.004 and 0.015 ng·g-1, respectively. The limited 
amount available for the C-CTX1 standard did not allow the performance of full calibra-
tion studies required for proper quantitation. Therefore, the quantitation of C-CTX1 in the 
contaminated samples was carried out using CTX1B for calibration, selecting 0.45–27.88 
ng CTX1B·mL-1 as the range, n = 5; equivalent to 0.015–0.929 ng CTX1B·g-1. CTX1B Eq. 
were transformed into C-CTX1 Eq. by using a correction factor obtained from the quanti-
tation of the standard of C-CTX1 in the CTX1B calibration curve as described by [24]. 

5.7. Statistical Analysis 
Data analysis was conducted using PASW Statistics software version 18.0 for Win-

dows (SPSS Inc., Chicago, IL, USA). 
Normality of data was evaluated using the Kolmogorov-Smirnov test or Shapiro-

Wilk test, as appropriate. Due to the absence of normality, non-parametric tests such as 
the Mann-Whitney U and Kruskal-Wallis tests were used. Chi-square and exact Fisher 
tests were conducted to compare the percentages of nominal variables. The non-paramet-
ric Spearman’s rank order test was used to compare numeric variables. As usual, a p-value 
≤ 0.05, was considered statistically significant. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/toxins14010046/s1, Figure S1: Representative matrix effect dose-re-
sponse curves obtained by CBA with an amberjack flesh sample (A), an amberjack liver sample (B), 
and a common two-banded seabream liver sample (C). Red line indicates the limit of exposure (mg 
tissue equivalent (TE)/mL) for matrix interferences; Table S1: Information details regarding the cap-
ture - island, year, and season - morphological features – weight, length, and liver conservation state 
– and toxicity results obtained by cell-based assay in flesh and liver of each specimen analysed in 
this study.  
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