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Abstract: The ripening process of dry-cured meat products is characterised by the development of 

fungi on the product’s surface. This population plays a beneficial role, but, uncontrolled moulds 

represent a health risk, since some of them may produce mycotoxins, such as ochratoxin A (OTA). 

The aim of the present work is to assess the potential of near-infrared spectroscopy (NIRS) for the 

detection of OTA-producing mould species on dry-cured ham-based agar. The collected spectra 

were used to develop Support Vector Machines–Discriminant Analysis (SVM-DA) models by a hi-

erarchical approach. Firstly, an SVM-DA model was tested to discriminate OTA and non-OTA pro-

ducers; then, two models were tested to discriminate species among the OTA producers and the 

non-OTA producers. OTA and non-OTA-producing moulds were discriminated with 85% sensitiv-

ity and 86% specificity in the prediction. Furthermore, the SVM-DA model could differentiate non-

OTA-producing species with a 95% sensitivity and specificity. Promising results were obtained for 

the prediction of the four OTA-producing species tested, with a 69% and 90% sensitivity and spec-

ificity, respectively. The preliminary approach demonstrated the high potential of NIR spectros-

copy, coupled with Chemometrics, to be used as a real-time automated routine monitorization of 

dry-cured ham surfaces. 

Keywords: ochratoxin A (OTA); moulds; near-infrared spectroscopy (NIR); classification;  

portable device 

Key Contribution: A portable NIR device was studied in discriminating OTA and non-OTA-pro-

ducing mould species. These species were predicted with a high sensitivity and specificity by SVM-

DA; postulating the NIR spectroscopy as a predictive tool for an OTA risk assessment. 

 

1. Introduction 

The environmental conditions during the ripening process of dry-cured meat prod-

ucts favour the development of fungi on the surface which become the predominant pop-

ulation [1,2]. Moulds play a beneficial role such as the reduction in rancidity [3], and the 

production of desirable volatile compounds due to their proteolytic and lipolytic activity, 

resulting in a strong impact on the development of the of the typical distinctive aroma 

and flavour of this type of product [4,5]. However, an uncontrolled mould development 

represents a high health risk, since some of them, usually isolated from dry-cured meat 

products, are able to produce mycotoxins. 
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Ochratoxin A (OTA) is the most concerning mycotoxin found in dry-cured meat 

products [6,7]. This mycotoxin is nephrotoxic, neurotoxic, genotoxic, teratogenic and has 

an immunosuppressive effect [8]. In addition, it has been rated by the International 

Agency for Research of Cancer (IARC) in the Group 2B as possibly carcinogenic to hu-

mans [9]. According to the EFSA Panel on Contaminants in the Food Chain, meat and 

meat products are among the main contributors of OTA exposure in the European Union 

(EU) [10]. This report may likely lead the EU to set a limit for OTA contamination in these 

foods. In this sense, Italy established a maximum value of 1 µg/ kg for OTA in pork meat 

and derived products [11]. In this sense, several studies have shown that OTA is produced 

during ripening, and at the final product the amount of OTA is frequently higher than the 

guideline value [6,7,12]. Therefore, it is a real risk in dry-cured meat products that should 

be controlled at an early stage in their processing. 

Penicillium nordicum, Penicillium verrucosum and Aspergillus westerdijkiae are com-

monly found in dry-cured meat products, being considered as the largest producers of 

OTA in these foods [7,13,14]. In this respect, the environmental conditions under which 

ripening occurs are within the range in which OTA is synthesised [15]. Thus, once the 

moulds start to develop, they can produce OTA until the end of processing, reaching very 

high levels of this mycotoxin [7]. Therefore, the early detection of OTA-producing moulds 

in dry-cured meat products is critical to prevent OTA reaching the food chain. 

Increased efforts have been made to develop analytically simple, easy-to-use, rela-

tively fast and easy portable methods suitable for rapid OTA screening [16]. However, 

from a food safety standpoint, and according to the HACCP approach, the detection of 

the OTA-producing moulds before OTA synthesis occurs is convenient, and it allows im-

plementing corrective measures to prevent food contamination. Traditionally, fungal de-

tection and identification has been determined by isolation and identification at the genus 

and species levels through macroscopic characteristics such as the colour, size and colony 

appearance as well as by microscopic characteristics [17]. However, it is a difficult and 

time-consuming process, and it also requires highly skilled personnel. Several DNA-

based techniques, including PCR and LAMP methodologies, have been proposed as good 

alternatives to traditional identification, since they are quick, sensitive and specific, allow-

ing for an accurate identification of the fungal ochratoxigenic species [18–20]. Nonethe-

less, these methods do not provide results in real time, and require further sample pro-

cessing in well-equipped specialised laboratories and trained staff. To overcome these 

limitations, a powerful, rapid, accurate, non-destructive and cost-effective method for a 

direct on-line detection of fungi on meat products should be developed. 

In this sense, non-destructive spectroscopic techniques do not require sample prepa-

ration, having a high potential to be used as a real-time automated routine monitorization 

of dry-cured foods to prevent OTA contamination. In recent years, near-infrared (NIR) 

and mid-infrared (MIR) spectroscopy, as well as Raman spectroscopy, have been studied 

as promising tools for the detection of fungal contamination and the estimation of myco-

toxin presence in foods [21]. Among the different commercially available NIR equipment, 

NIR portable devices are a good alternative to benchtop instruments, being equally relia-

ble but cost-effective, faster and allowing in situ analyses. The advantages of these devices 

have been noted by other studies, remarking cost reduction [22] and a lower environmen-

tal impact [23] in comparison with benchtop ones. Therefore, thanks to this tool, it would 

be possible to monitor the development of toxigenic moulds and to establish the appro-

priate corrective measures in order to minimise the production of OTA at an early stage.  

Then, several methods based on NIR and MIR technologies, coupled with chemo-

metric tools, have been used to discriminate healthy agricultural commodities from those 

contaminated with moulds of different genera such as Aspergillus, Diplodia, Fusarium, Pen-

icillium or Trichoderma or with mycotoxins such as aflatoxins, OTA, fumonisin and deox-

ynivalenol [21,24]. In this sense, Fourier transform near-infrared spectroscopy (FT-NIR) 

combined with the Partial Least-Squares Discriminant Analysis (PLS-DA) and Principal 
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Component-Linear Discriminant Analysis (PC-LDA) classification has proven to be useful 

for detecting and discriminating between different levels of OTA in cereals [25]. 

On the other hand, the hyphal wall of filamentous mould from Deuteromycetes, such 

as Penicillium and Aspergillus genera, is mainly composed of layers of polysaccharides 

such as β-glucans, chitin, galactomannans and glycosaminoglycans, along with glycopro-

tein and some lipids [26,27]. Then, the fungal cell composition and metabolism generate 

highly specific IR spectra which have been applied for the species identification of mould 

spore suspensions [28–30]. Accordingly, NIR and MIR spectroscopy have been proposed 

for the identification and characterization of filamentous fungi, including Penicillium cam-

emberti grown on a cheese substrate [27], Aspergillus spp. in peanut [31] and grape-associ-

ated Aspergillus spp., Botrytis cinerea or Penicillium expansum [32,33]. 

Therefore, IR spectroscopy can be considered as a potentially useful method for the 

detection of OTA-producing moulds on the surface of dry-cured meat products to be used 

as part of the monitoring system in the industry for the prevention of this hazard. How-

ever, to the best of our knowledge, no work presents the use of portable devices for OTA-

producing mould identification. 

Thus, this work is a preliminary study that aims at exploring the efficacy of a portable 

NIR device in differentiating commonly isolated OTA- and non-OTA-producing moulds 

on a dry-cured meat-based substrate. The long-term objective is the development of a 

rapid test for the early detection of OTA-producing moulds in raw-cured meat products 

during processing. 

2. Results and Discussion 

In this work, the ability of NIR to discriminate OTA- and non-OTA-producing 

moulds was evaluated on a dry-cured ham-based agar (DHA) medium and at two tem-

peratures (12 and 25 °C) for 32 days, simulating the usual conditions for the ripening of 

dry-cured meat products. 

2.1. Mould Growth Characteristics 

According to the visual assessment of the cultures, all mould strains used for this 

assay showed a satisfactory growth on the DHA medium at the two temperatures tested, 

showing no differences between OTA-producing and non-producing moulds. However, 

in general, a faster growth occurred at 25 °C than at 12 °C (Supplementary Figure S1 and 

Figure S2). 

2.2. MicroNIR Spectra and Principal Component Analysis 

Spectra were acquired by a portable device (MicroNIR OnSite spectrometer, VIAVI, 

Santa Rosa, CA) in the spectral range 945–1500 nm with a 6.5 µs integration time and 100 

scans. No differences were found among the NIR spectra of each mould at 12 and 25 °C. 

The acquired spectra were characterised by similar absorption bands and, to better dis-

cuss their characteristics, the average spectra of each mould after 32 days of incubation 

at 25 °C are reported in Figure 1. In detail, the average spectra showed specific bands at 
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964 nm, 1146 nm, 1205 nm and 1447–1453 nm, with a shoulder at 1348 nm. 

 

Figure 1. Averaged spectra for each species after 32 days of incubation at 25 °C. Non-OTA-produc-

ing species are greenish-coloured (P. polonicum and P. commune), whereas OTA-producing species 

(A. westerdijkiae, P. nordicum 92 and P. nordicum 856) are reddish-coloured. 

The 962 nm band was recognised as O–H alkyl alcohols with no hydrogen bonding 

(R-C-OH) [34]. The 1140 nm band was associated with the stretching of the C–O and C–C 

bonds to the second C–H harmonic spectrum and C–O–H, C–O–C angular deformations 

of carbohydrates of the fungi cell wall [35,36]. The region 1195–1215 nm was influenced by 

the absorption of C–H methyl functional groups as the second overtone of C–H [34]. This 

band has been associated with carbohydrates, in particular with the second overtone of 

CH stretching mode of carbonyl compounds [35,36]. At 1448nm it was reported as the N–

H first overtone of aromatic amine [34]. Berardo et al. [35] assigned the signal between 

1430 and 1470 nm to the first overtone of the OH stretching modes of glucose and NH in 

most amino acids. 

Non-OTA-producing moulds were characterised by a slightly different absorption 

intensity. In particular, the band at 1156 nm was characterised by a higher absorbance in 

respect to the band at 1205 nm, whereas in the OTA-producing moulds, the two bands 

generally had the same absorbance, resulting in a more similar broad band than two dis-

tinct ones, especially for P. verrucosum. Moreover, P. commune was characterised by a dif-

ferent behaviour around 1450 nm; indeed, the band presented here a fast increase and 

decrease around its maximum. 

Moreover, a PCA was performed to investigate the sample distribution according to 

the growing time. The spectra collected for each mould at a different sampling time for 

each tested temperature were merged in a dataset, reduced in the most informative spec-

tral range (950–1400 nm) and pre-treated by smoothing and class mean centring. Figure 2 

reports the score and loading plots obtained for the PCA built from the experiments per-

formed at 25 °C.  

From the score plot (Figure 2a), it is possible to observe that OTA-producing moulds 

were characterised by a common behaviour and were distributed in all the quadrants of 

the plane defined by Principal Component 1 (PC1) and Principal Component 2 (PC2) with 

a time trend. Indeed, A. westerdijkiae, P. nordicum 92 and P. nordicum 856 describe a parab-

ola: spectra collected at 5 days after the inoculum assumed positive PC1 scores; their 

scores decreased with the increment of time up to reaching negative values after 32 days. 

The parabolic behaviour derived from the simultaneous variation of PC2 according to the 

growing time; indeed, PC2 values for the sample collected at the beginning of the 
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monitoring were negative; then, they increased to positive values but at the end of the 

monitoring they again assumed negative scores. 

P. verrucosum behaviour appears different, with a small variation in the distribution 

of spectra collected according to time, and mainly along PC1. Even less variability can be 

observed for the non-OTA-producing species(P. commune and P. polonicum). All the spec-

tra collected for the two moulds assumed PC1 scores close to zero; little variation can be 

observed along PC2 as their value increased with the progression of time.  

The samples distribution is well explained by the loading plot (Figure 2b), which de-

scribes the weight of each variable, also known as the wavelength, in the space defined by 

PC1 and PC2. The loading of PC1 was meanly related to the scattering effect which af-

fected the signal along the whole spectrum. This means that OTA-producing moulds were 

characterised by a higher growing rate in the tested conditions, resulting in a higher scat-

ter effect on the collected spectra. On the other hand, PC2 loading showed an effect related 

to changes of the main absorption bands described above. In particular, the signals at 964 

nm, 1146 nm, 1205 nm and 1348 nm were responsible for the displacement of samples to 

positive PC2 quadrants. Those differences are in accordance with the difference noticed 

in the spectral signal previously commented. Indeed, non-OTA-producing moulds were 

characterised by a higher absorbance at 1156 nm in respect to the band at 1205 nm, 

whereas in the OTA-producing moulds, the two bands generally had the same absorb-

ance, resulting in a broad band. 

 

Figure 2. Principal Component Analysis developed from the spectra collected for the experiments conducted at 25 °C: (a) 

score plot of PC1 vs. PC2 where non-OTA-producing species are greenish-coloured (P. polonicum and P. commune), 

whereas OTA-producing species (A. westerdijkiae, P. nordicum 92 and P. nordicum 856) are reddish-coloured; (b) loading 

plot for PC1 and PC2. 

The spectra characteristics together with the explorative analysis by PCA demon-

strated that OTA and non-OTA moulds present different characteristics which could be 

the basis for a classification model development to discriminate these two classes. 

2.3. Classification Models 

At first, a Support Vector Machines–Discriminant Analysis (SVM-DA) classification 

model was developed to discriminate OTA-producing from non-OTA-producing species. 

Spectra were averaged on sample bases, pre-treated by smoothing and randomly divided 

into a calibration and a validation set, containing 124 and 77 samples, respectively. The 

calibration set was used to build the model and to internally validate the results by itera-

tive cross-validation, whereas the validation set was used to externally validate the model; 

thus, miming its real-life application. The SVM-DA classification led to an optimal 
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discrimination of the two classes in cross-validation (96% for sensitivity and specificity); 

however, the discrimination power reduced when performing the model validation in an 

external prediction (85% and 86% of sensitivity and specificity, respectively) (Table 1).  

Table 1. Figures of merit of SVM-DA model developed for OTA-producing moulds class prediction based on MicroNIR 

spectral data after smoothing. 

 Sensitivity (%) Specificity (%) 

OTA NON-OTA OTA NON-OTA 
 n samples 63 61 63 61 

Calibration Class-based 98 100 100 98 
 Average-based 99 99 

 n samples 63 61 63 61 

Cross-validation Class-based 95 97 0.97 0.95 
 Average-based 96 96 
 n samples 40 37 40 37 

Prediction Class-based 76 95 95 76 
 Average-based 85 86 

In any case, the results were in line with the work reported by Fernández-Ibañez et 

al. [37], who investigated the utility of NIR spectroscopy for the rapid detection of afla-

toxin B1 in both maize and barley. They were able to correctly classify 75% of their sam-

ples by using dispersive NIR. 

More works report the development of classification models for a Fusarium damage 

evaluation on wheat kernels, even if those works were developed from spectra acquired 

by NIR-HSI systems. Indeed, Serranti et al. [38] used a general least square weighting 

algorithm (GLSW) as the pre-processing method and selected 12 effective wavelengths in 

three different ranges (1209–1230 nm, 1489–1510 nm and 1601–1622 nm) to construct a 

PLS-DA able to correctly classify Fusarium-damaged kernels (FDK) with a sensitivity and 

specificity range in cross-validation between 0.92 and 1.00.  

Similarly, Delwiche et al. [39] combined different wavelengths between 1000 and 

1700 nm (1001.7, 1126.9, 1199.2, 1314.8, 1473.8 nm), obtaining an LDA classification accu-

racy of 82.5%. The same author developed a Vis/NIR-HSI protocol which was able to in-

crease the classification ability obtaining a classification accuracy up to 95.0%. In the work 

by Williams et al. [40], the reliability of an NIR-HIS system in differentiating FDK of maize 

was also proved: they reached a classification accuracy between 94.0% and 97.7%. Fur-

thermore, the recent study of Delwiche et al. [41] displayed percentages of a correct clas-

sification of a cross-validation higher than 92.0% when discriminating between sound and 

FDK by both LDA and PLS-DA. Among the proposed approaches, it is worth mentioning 

the industrial application developed by Pearson et al. [42]; they developed a discriminant 

analysis procedure able to correctly classify 97% of the kernels as contaminated (with >100 

ppb of aflatoxin) and 100% of the kernels as uncontaminated (i.e., with no detectable afla-

toxin).  

After the classification model developed to discriminate between non-OTA and 

OTA-producing moulds, the same spectra were used to develop other two classification 

models: one to discriminate among non-OTA-producing species and a second one to clas-

sify the different OTA-producing species considered. When moving to models developed 

to discriminate among species, good results were obtained in classifying non-OTA-pro-

ducing species. Indeed, a 95% sensitivity and specificity were obtained in the prediction 

(Table 2) due to a misclassification of 2 out of 18 samples belonging to the P. polonicum 

class.  
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Table 2. Figures of merit of SVM-DA model developed for species classification among non-OTA-producing moulds 

based on MicroNIR spectral data after smoothing. 

 Sensitivity (%) Specificity (%) 

P. polonicum P. commune P. polonicum P. commune 
 n samples 30 31 30 31 

Calibration Class-based 97 84 84 97 
 Average-based 90 90 

 n samples 30 31 30 31 

Cross-validation Class-based 100 84 84 100 
 Average-based 93 93 

 n samples 18 19 18 19 

Prediction Class-based 89 100 100 90 
 Average-based 95 95 

Similarly, Da Conceição et al. [43] analysed by NIR-HSI (1000–2100 nm) two myco-

toxicogenic Fusarium species. In detail, they considered twelve isolates of Fusarium verti-

cillioides and three of Fusarium graminearum by growing them in 60 mm Petri dishes. Their 

model, developed on a pixel basis, achieved 100% accuracy, sensitivity and specificity. 

The better performance could be linked to the used system, characterised by a high spatial 

resolution (10 nm) thanks to images acquisition by a line-scan camera with a pixel size of 

150 µm × 150 µm with a high-performance camera using a 50 mm lens and a field of view 

of 50 mm.  

The model developed for the discrimination among OTA-producing moulds did not 

perform as well as the previous one. The worst class assignment in the prediction was 

observed for P. nordicum 92, where only 5 out of 10 samples were correctly predicted, 

whereas 2 samples belonging to this species were predicted as P. nordicum 856, 2 as P. 

verrucosum and 1 as A. westerdijkiae; thus, leading to a specificity of this class of 50%. How-

ever, the model gave a good global specificity in the prediction (90%) (Table 3).  

Therefore, the NIR spectroscopy has great potential to discriminate the presence of 

OTA-producing mould species in meat substrates. Moreover, given its rapidity, simplic-

ity, sensitivity and specificity, it could be used integrated in the HACCP in the food in-

dustry to the early detection of those moulds, allowing the implementation of preventive 

or corrective measures to prevent the OTA hazard in dry-cured meat products. In terms 

of costs, conventional species identification requires species isolation and a long-time of 

analysis with an average cost per each DNA-based analysis of around 40 euros. On the 

other hand, the NIR analysis only requires the equipment purchase (ranging from 10000 

to 1000 euros according to the considered portable device) and the classification model 

development. Thus, the economic break-even-point is reached in mid-term, overcoming 

the economic impact of conventional analyses, together with an environmental advantage 

as already reported by Casson et al. [23]. In this sense, the obtained results are promising, 

but a larger data collection of moulds growing on meat products will strength the predic-

tion reliability of the OTA-producing moulds model. Indeed, the model transfer to meat 

products should consider additional factors of variability, including irregular surfaces, a 

heterogenous meat composition, condensation presence, etc.  

  



Toxins 2021, 13, 620 8 of 12 
 

 

Table 3. Figures of merit of SVM-DA model developed for species classification among OTA-producing moulds based on 

MicroNIR spectral data after smoothing. 

 Sensitivity (%) Specificity (%) 

P. nordicum 92 P. nordicum 856 P. verrucosum A. weterdijkiae P. nordicum 92 P. nordicum 856 P. verrucosum A. weterdijkiae 
 n samples 25 23 20 20 25 23 20 20 

Calibration Class-based 60 91 70 95 92 91 94 94 
 Average-based 78 93 

 n samples 25 23 20 20 25 23 20 20 

Cross-validation Class-based 60 91 70 90 92 91 91 96 
 Average-based 77 92 

 n samples 10 13 18 17 10 13 18 17 

Prediction Class-based 50 85 56 82 92 87 95 85 
 Average-based 69 90 

3. Conclusions 

In this study, we demonstrated that a portable device working in the near-infrared 

region is a useful tool for discriminating OTA-producing and non-OTA-producing mould 

species on a dry-cured meat-based substrate. Furthermore, SVM-DA models on the NIR 

spectra could be used for species screening purposes. The use of a portable NIR system 

could overcome the drawbacks related to DNA-based techniques for species discrimina-

tion, as it is easier and faster to execute, cost-effective against other tools and a non-de-

structive approach. In addition, since it is an easy-to-use technology, it could be carried 

out by the same staff who implement the HACCP system without the need for specific 

training. 

The future testing of the developed approach directly on dry-cured ham surfaces 

could close the loop to provide the industry with a powerful tool for monitoring the safety 

of the dry-cured ham production chain, the results obtained in the present work promis-

ing to achieve this aim in final products. In any case, the model transfer would require the 

evaluation of additional factors of variability, such as irregular product surfaces, a heter-

ogenous meat composition, native microbial population and condensation presence. 

4. Materials and Methods 

4.1. Moulds  

In this study, four ochratoxigenic moulds were used: P. nordicum CBS 323.92 from 

the Centraalbureau voor Schimmelcultures (The Netherlands), P. nordicum BFE 856 and 

P. verrucosum MRI 104 from the Federal Research Centre for Nutrition and Food (Karls-

ruhe, Germany) and A. westerdijkiae 6B/131, kindly supplied by Dr Paula Rodrigues from 

the Mountain Research Centre, Polytechnic Institute Bragança (Portugal). In the same 

way, two non-ochratoxigenic mould strains were used: Penicillium commune FHSCC 332 

from the Food Hygiene and Safety Culture Collection at the University of Extremadura 

(Cáceres, Spain) and Penicillium polonicum CECT 20933 from the Spanish Type Culture 

Collection (Valencia, Spain). All of them were isolated from dry-cured meat products.  

4.2. Preparation of Moulds Inocula 

Mould strains were maintained as stock cultures at −80 °C in PBS with 10% (v/v) glyc-

erol as cryoprotectant. For this study, the inocula of each mould were prepared by grow-

ing on potato dextrose agar (PDA, Conda Pronadisa, Madrid, Spain) for 7 days at 25 °C. 

Conidia were harvested by rubbing the surface using saline phosphate buffer PBS; 0.32 

g/L of NaH2PO4 (Scharlab S.L, Barcelona, Spain), 1.09 g/L of Na2HPO4 (Scharlab S.L.) and 

0.9 of NaCl (Scharlab S.L.) with a glass rod. Spores were quantified by using a Thoma 

counting chamber BLAUBRAND® (Brand, Germany) and adjusting to 107 spores/mL to 

be used as inoculum. 
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4.3. Experimental Setting 

This assay was carried out in DHA (30 g/L of lyophilised dry-cured ham, 20 g/L Bacto 

agar (Conda Pronadisa), 50 g/L of NaCl to simulate salt contents of dry-cured ham during 

ripening, and 1000 mL of distilled water). The water activity was 0.95. One hundred mi-

crolitres of each suspension of mould strain were inoculated by spreading it on the surface 

of the culture medium. The cultures were incubated at 12 and 25 °C for 32 days. At days 

5, 13, 25 and 32 after inoculation, IR lectures were taken in quintuplicate at five different 

locations for each plate at the two study temperatures. Both the culture medium and the 

incubation temperatures were chosen to emulate the usual environmental conditions un-

der which the moulds grow during the ripening of raw-cured meat products. 

4.4. MicroNIR Spectra Acquisition  

MicroNIR OnSite spectrometer (VIAVI, Santa Rosa, CA, USA) was used to analyse 

the plate with the DHA culture medium on the external surface of five locations, with a 

similar distribution to the picture reported in Figure 3a. In Figure 3b, a schematic repre-

sentation of the sampling procedure is reported. The measurements were carried out with 

the contact of MicroNIR device and DHA medium; thus, the measurement distances were 

maintained in the different samples. The small size of the instrument (194 mm × 47 mm, 

weight <250 g) and the easy connectivity (by Bluetooth or USB) allowed a simple and fast 

(<0.25 sec per spectra) sampling procedure. Prior to analysis, the instrument was cali-

brated by the acquisition of the signal of a SPECTRALON® as white standard. A disposa-

ble plastic was used between the device and the sample, which was replaced in each meas-

urement. Spectra were acquired in the spectral range 945–1500 nm with a 6.5 µs integra-

tion time and 100 scans, with a spectral bandwidth lower than 1.25% of centre wavelength, 

typically 1% (e.g., at 1000 nm, the resolution is lower than 12.5 nm) and signal-to-noise 

ratio of 25,000. Spectra acquired were averaged on sample basis and merged in a unique 

dataset (201 samples × 125 wavelengths). 

 

Figure 3. Sampling procedure: (a) example of the location of spectral acquisition points on a dry-

cured ham agar dish inoculated with Aspergillus westerdijkiae 6B/131 and incubated for 32 days at 12 

°C; (b) schematic acquisition procedure. 

4.5. Data Analysis  

Spectra data were pre-treated by smoothing (Savitzky–Golay zero order polynomial, 

5-points size) and mean centring. The dataset was divided, by the uniform sampling 
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design procedure proposed by Kennard and Stone [44] into a calibration set used to build 

the model and a test set used to externally validate the model, containing 124 and 77 sam-

ples, respectively. The calibration set was also used to cross-validate the model in an iter-

ative validation process for optimizing some model parameters, such as different number 

of factors. This was performed by iteratively removing 10% of samples from the calibra-

tion set and then building the classification model with the remaining samples, where the 

removed samples were used for model internal validation. Furthermore, the model was 

evaluated for blind prediction by external validation using the 77 samples removed from 

the collected data. 

SVM-DA was applied to develop a series of classification models. In this context, a hier-

archical approach was followed, considering at first a model to classify samples into 

OTA and non-OTA producers and then two models to discriminate species among the 

OTA producers and non-OTA producers (Figure 4). 

 

Figure 4. Scheme of hierarchic model development to classify OTA and non-OTA-producing 

moulds. 

SVM algorithm was applied for its ability to model nonlinear relations, choosing the 

C-SVC (C-support vector regression) algorithm which optimizes a model with an adjust-

able cost function ©, indicating how strongly misclassifications should be penalized. The 

parameters imposed to model 1 were: radial basis function as kernel type, upper tolerance 

on prediction errors (ɣ) equal to 3.16 and cost of prediction errors (C) equal to 100. Before 

classification modelling, a Principal Component Analysis (PCA) compression with 2 com-

ponents was chosen to maximise the model stability and reduce the possibility to over-fit 

the data. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/toxins13090620/s1, Figure S1: growth of different species of moulds in dry-cured ham-

based agar for 5, 13, 25 and 32 days at 12 °C. A. westerdijkiae 6B/131 (AW 6B), P. nordicum BFE 856 

(PN 856) and P. nordicum CBS 323.92 (PN 92), P. polonicum CECT 20933 (PP 20933) and P. commune 

FHSCC 332 (PC 332), Figure S2: growth of different species of moulds in dry-cured ham-based agar 

for 5, 13, 25 and 32 days at 25 °C. A. westerdijkiae 6B/131 (AW 6B), P. nordicum BFE 856 (PN 856) and 

P. nordicum CBS 323.92 (PN 92), P. polonicum CECT 20933 (PP 20933) and P. commune FHSCC 332 

(PC 332). 
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