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Abstract: The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that
cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence
factors Rho/Ras-glycosylating toxins TcdA and TcdB, hypervirulent strains produce the binary AB-
type toxin CDT. CDT consists of two separate proteins. The binding/translocation B-component
CDTb facilitates uptake and translocation of the enzyme A-component CDTa to the cytosol of cells.
Here, CDTa ADP-ribosylates G-actin, resulting in depolymerization of the actin cytoskeleton. We
previously showed that CDTb exhibits cytotoxicity in the absence of CDTa, which is most likely due
to pore formation in the cytoplasmic membrane. Here, we further investigated this cytotoxic effect
and showed that CDTb impairs CaCo-2 cell viability and leads to redistribution of F-actin without
affecting tubulin structures. CDTb was detected at the cytoplasmic membrane in addition to its
endosomal localization if CDTb was applied alone. Chloroquine and several of its derivatives, which
were previously identified as toxin pore blockers, inhibited intoxication of Vero, HCT116, and CaCo-2
cells by CDTb and CDTb pores in vitro. These results further strengthen pore formation by CDTb in
the cytoplasmic membrane as the underlying cytotoxic mechanism and identify pharmacological
pore blockers as potent inhibitors of cytotoxicity induced by CDTb and CDTa plus CDTb.

Keywords: pore-forming toxins; transmembrane pore; Clostridioides difficile; bacterial binary AB-toxins;
CDT toxin; pore blocker; chloroquine

Key Contribution: The Clostridioides difficile B-component CDTb of CDT toxin causes cytotoxicity in
the absence of its A-component CDTa by pore-formation in cytoplasmic membranes. CDTb causes
redistribution of F-actin and cytotoxicity in Vero and human colon epithelial CaCo-2 cells. CDTb
intoxication is inhibited by pore blockers chloroquine and chloroquine derivatives.

1. Introduction

Clostridioides difficile (C. difficile), formerly known as Clostridium difficile, is a clinically
highly relevant, Gram-positive anaerobic pathogen that releases several AB-type protein
toxins. The large AB-type toxins TcdA and TcdB are considered the main virulence factors
which cause the symptoms of C. difficile associated disease (CDAD) [1–3]. AB-type protein
toxins consist of two functional domains. The binding/translocation B-domain mediates
binding of the toxin to its cell surface receptor, triggering endocytosis. Then, the B-domains
facilitate the translocation of the enzymatically active A-domain from intracellular transport
vesicles (e.g., acidified endosomes) into the cytosol. Here, the A-domains modify a specific
substrate, which leads to cellular reactions and, thus, to characteristic clinical symptoms [2].
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The characteristic symptom of CDAD is severe diarrhea that can result in life-threatening
complications of pseudomembranous colitis and toxic megacolon. CDAD is highly preva-
lent in hospitalized patients and in patients at nursing home settings. In most CDAD cases,
previous treatment with antibiotics leads to a disturbed gut microbiota, which in turn en-
ables C. difficile overgrowth. C. difficile releases two large AB-type protein toxins, TcdA and
TcdB, which cause glycosylation of Rho/Rac proteins in cells and are considered the major
virulence factors of C. difficile [4]. However, increasing numbers of hypervirulent strains
have been reported that were isolated from more severe CDAD cases. These strains produce
a third toxin, the C. difficile transferase CDT [5,6], which belongs to the group of binary
actin ADP-ribosylating toxins and is closely related to the binary Clostridium perfringens
(C. perfringens) iota toxin [1,7–11]. Although the molecular and cellular effects caused by
CDT have been well characterized in recent years, its role as a virulence factor and, therefore,
its contribution to disease are still under debate [1,9]. This is due to observations, for exam-
ple, in a hamster model that C. difficile strains only expressing CDT but not TcdA or TcdB do
not cause the typical symptoms of CDAD [12,13]. However, CDT might contribute to more
severe forms of disease, which have been observed with hypervirulent strains additionally
expressing CDT [1,12].

CDT consists of two separate protein toxin components: the binding/translocation
B-component, CDTb, and an enzymatically active A-component, CDTa. CDTb binds
to a specific receptor on the cell surface, the lipolysis-stimulated lipoprotein receptor
(LSR). Moreover, CD44 has been identified as a co-receptor [14]. Upon binding of CDTb,
LSR clusters in cholesterol-rich microdomains of the cytoplasmic membrane [8,9,15,16].
CDTa binds to CDTb, and the toxin complex is then internalized by receptor-mediated
endocytosis. Recently, the 3D structures of CDT were revealed, which show that one CDTa
molecule binds to the center of one CDTb heptamer [17]. CDTa is transported by CDTb
across the endoplasmic membrane into the cytosol of the target cell [9]. This translocation
step is assisted by the host cell chaperones Hsp90, Hsp70, cyclophilins, and FK506 binding
proteins [18–21]. In the cytosol, CDTa covalently transfers an ADP-ribose moiety from
NAD+ onto its specific substrate, G-actin. F-actin depolymerization, cell rounding, and
eventually apoptotic cell death are the consequences [6,22–24].

We recently reported that the B-component CDTb exhibits cytotoxicity in the absence
of CDTa [25]. CDTb alone caused cell rounding in Vero and CaCo-2 cells, as well as a
decrease in the cell viability of Vero cells. This cytotoxic effect depends on LSR, the specific
cellular receptor of CDTb. Cell rounding was prevented by an enzymatically inactive
CDTa mutant or by a cyclodextrin derivative, a known blocker of the transmembrane
pores of other binary toxins [25]. Moreover, CDTb caused calcium (Ca2+) influx in CaCo-2
cells [26,27]. From in vitro experiments in black lipid bilayers, it is known that CDTb forms
pores into membranes [26,28], which serve as translocation channels for the enzymatically
active CDTa into the cytosol. A 3D structure analysis revealed distinct states of CDTb
from soluble pre-pore to pre-insertion, and partial and then full ß-barrel pore formation
at pH 8.0 [29]. Taken together, these results provide evidence that pore formation in the
cytoplasmic membrane might be the underlying mechanism of CDTb cytotoxicity. In
the present study, we further characterized the cytotoxic CDTb effect in more detail. We
demonstrated that treatment of cells with CDTb leads to redistribution of F-actin without
causing microtubule-based protrusions that have been reported to be induced by CDTb
plus CDTa. Fluorescence-labeled CDTb was detected at least partially at the cytoplasmic
membrane in addition to its localization in early endosomes. If CDTb was applied together
with CDTa, CDTb signals were predominantly detected in early endosomes and not at
the cytoplasmic membrane. Moreover, we showed that chloroquine and several of its
derivatives, which were previously identified as pore blockers for binary toxins, protected
Vero, HCT 116, and CaCo-2 cells from CDTb intoxication and inhibited CDTb pores in vitro
and in cells. Furthermore, chloroquine also inhibited cytotoxic effects of the combination
of CDTa plus CDTb.
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2. Results
2.1. CDTb Impairs Cell Viability of CaCo-2 Cells

As demonstrated before [25], CDTb causes cell rounding in Vero and CaCo-2 cells
in the absence of CDTa. Rounding of cells occurs at relatively high concentrations, early
after treatment with CDTb, and is morphologically distinct from cell rounding induced by
the combination of CDTa and CDTb (Figure 1). Here, we additionally showed that CDTb
impairs cell viability of CaCo-2 cells after 48 and 72 h (Figure 1c). This effect was more
pronounced with the higher concentration of CDTb.
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Figure 1. CDTb causes cell rounding and impairs cell viability. Vero (a) and CaCo-2 (b) cells were incubated with a
combination of CDTa and CDTb or with CDTb alone. After 3 h, images of cell morphology were taken. (c) Cell viability of
CaCo-2 cells was determined after 48 and 72 h after incubation with different concentrations of CDTa plus CDTb or CDTb
alone. For positive control (pos. con), cells were exposed to osmotic shock by double-distilled water. Values are given as
percentage of control, mean ± SD (n = 3). Significance was tested using one-way ANOVA followed by Dunnett’s multiple
comparison test (** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 vs. con (untreated control).

2.2. CDTb Leads to Redistribution of F-Actin in CaCo-2 cells

Treatment of CaCo-2 cells with the combination of CDTa plus CDTb led to the typical
loss of F-actin (Figure 2). G-actin that has been ADP-ribosylated by CDTa acts as a capping
protein on actin filaments, inhibiting the addition of further G-actin monomers. This leads
to depolymerization of the actin cytoskeleton and loss of F-actin signal (Figure 2, second
row). Moreover, the formation of microtubule-based protrusions (Figure 2, second row and
magnification) was induced by CDTa plus CDTb as described before [30,31]. In contrast,
CDTb did not cause microtubule-based protrusions but led to the redistribution of F-actin
signals in cells treated with CDTb alone (Figure 2, third row). The signal for F-actin is
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reduced in the cell body and is concentrated at the cell cortex. The increased signal for
α-tubulin in CDTb-treated cells is most likely due to cells starting to round up, causing a
condensed and thus intensified signal.
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Figure 2. CDTb does not induce microtubule-based protrusions. CaCo-2 cells were incubated for
1 h with CDTa plus CDTb or with CDTb alone. For control, cells were left untreated. Cells were
fixed, permeabilized, and after blocking, nuclei (by Hoechst 33342), F-actin (by phalloidin-FITC), and
microtubules (by mouse anti-α-tubulin and Alexa568 goat anti-mouse antibodies) were visualized.
Scale bar = 10 µm.

2.3. CDTb Is Partially Localized at the Cytoplasmic Membrane

When cells are treated with 500 ng/mL CDTa plus 1000 ng/mL CDTb (Figure 3, second
row), CDTb signals are predominantly found as dots that colocalize with signals of early
endosomes. This indicates that the majority of CDTb is endocytosed if applied together
with CDTa. When cells are exposed to the same concentration of CDTb (1000 ng/mL) in the
absence of CDTa (Figure 3, 4th row), CDTb signals at the cell borders that did not colocalize
with early endosomes are detected additionally to endosomal CDTb. This distribution of
CDTb signal is also found in higher concentrations of CDTb (Figure 3, 5th and 6th row).
Moreover, CDTb signals at cell borders are also observed if higher concentrations of CDTa
plus CDTb are applied (Figure 3, 3rd row). These results indicate that CDTb alone and
in higher concentrations, also in the presence of CDTa, is only partially endocytosed and
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partially resides at the cytoplasmic membrane. This is in line with our earlier finding that
CDTb forms pores into the cytoplasmic membrane, thereby causing cytotoxicity [25–27].
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Figure 3. CDTb is localized at the cytoplasmic membrane. CaCo-2 cells were incubated for 1 h
with DyLight488-labeled CDTb in the presence or absence of unlabeled CDTa. For control, cells
were left untreated. After fixing, permeabilization, and blocking, nuclei (by Hoechst 33342) and
early endosomes (by goat anti-EEA1 and mouse anti-goat-CFL647 antibodies) were visualized
additionally to DyLight488-labeled CDTb. Z-stacks were taken, and two-dimensional Z-projections
were generated with ImageJ. Arrows indicate CDTb signals at cell boundaries, i.e., cytoplasmic
membrane. Scale bar = 10 µm.

2.4. Chloroquine and Chloroquine Derivatives Protect Cells from CDTb Cytotoxicity

Chloroquine and chloroquine derivatives have been described before as inhibitors of
Bacillus anthracis anthrax toxins, C. botulinum C2 toxin, and C. perfringens iota toxin by blocking
the translocation pore formed by the toxins’ respective B-components [32–39]. Moreover, it
was shown that chloroquine blocks CDTb pores in lipid bilayer membranes [28]. Here, we
investigated the effect of chloroquine and members of two chloroquine derivative families,
chloroquine-related heterocyclic fused azinium salts (azolopyridinium salts, HA1383, HA1495,
HA1568), and 4-aminoquinolines (quinacrine) on the cytotoxic effect of CDTb.
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Chloroquine or its derivative quinacrine were applied to Vero cells together with
CDTb and inhibited CDTb-induced cell rounding (Figure 4a). Notably, the inhibitors alone
had no effect on cell morphology (Figure 4b).
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Figure 4. Cells are protected from CDTb-induced cell rounding by chloroquine and quinacrine. Vero cells were treated with
CDTb in the presence or absence of chloroquine and its derivative quinacrine at indicated concentrations (a). For control,
cells were treated with chloroquine and quinacrine alone (b). For further control, cells were left untreated (con). Images
were taken after the indicated time points, and percentage of rounded cells was determined. Values are given as percentage
of control, mean ± SD (n = 3). Significance was tested by two-way ANOVA followed by Dunnett’s multiple comparison
test. (a) All samples were compared to samples treated with CDTb only. **** p ≤ 0.0001. (b) No significant differences were
detected between all samples.

The azolopyridinium salts HA1383, HA1495, and HA1568 protected cells from intoxi-
cation with CDTb (Figure 5). Vero cells treated with CDTb together with the chloroquine
derivative HA1495 were almost completely protected from CDTb-induced cell rounding.
Only after longer incubation periods of 24 h did cells round up in the presence of the
chloroquine derivative (Figure 5a). Moreover, the chloroquine derivative also protected
cells from the combination of CDTa plus CDTb. However, the protective effect was more
pronounced against CDTb alone (Figure 5a). Two other structurally similar chloroquine
derivatives, HA1383 and HA1568, also inhibited CDTb-induced cell rounding (Figure 5b).
Not only Vero cells but also two human colon epithelial cell lines, HCT 116 and CaCo-2
cells, were protected from CDTb cytotoxicity by a chloroquine derivative (Figure 5b,c).
Fewer rounded HCT 116 cells were observed if cells were treated with CDTb in the presence
of the chloroquine derivative (Figure 5c). Moreover, the chloroquine derivative delayed
the CDTb-induced loss of epithelial barrier of CaCo-2 cells determined by measuring
the transepithelial electrical resistance (TEER) of a CaCo-2 monolayer (Figure 5d). TEER
measurements represent a more sensitive endpoint than cell rounding because effects on
cell–cell contacts, such as tight junctions that are not visible in light microscopy, also cause
a decrease in transepithelial resistance. Therefore, a CDTb concentration of 500 ng/mL was
used in this experiment, which caused only mild morphological impairments observed in
light microscopy [25].
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Figure 5. The intoxication of cells by CDTb is reduced by azolopyridinium salts. (a) Vero cells were treated with the
combination of CDTa plus CDTb or with CDTb alone in the presence or absence of HA1495. For control, cells were left
untreated (con) or treated with HA1495 alone. Images show cell morphology after 3 h of incubation with toxins and the
inhibitor. Percentages of rounded cells were determined from images after the indicated time points. Values are given as
percentage of control, mean ± SD (n = 3). Significance was tested by two-way ANOVA followed by Dunnett’s multiple
comparison test. (b) Vero cells were incubated with two different concentrations of CDTb in the presence or absence of three
different azolopyridinium salts. Analysis was performed as described in (a). Significance was tested by two-way ANOVA
followed by Dunnett’s multiple comparison test vs. samples treated with CDTb alone. (c) HCT116 cells were incubated with
CDTb in the presence or absence of HA1568. For control, cells were left untreated (con). Images were taken after incubation
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for 1 h. (d) CaCo-2 cells were seeded on filter inserts and treated with 500 ng/mL CDTb in the presence or absence of
100 µM HA1568. For control, cells were left untreated (con) or were treated with HA1568 only. The transepithelial electrical
resistance was measured at the indicated time points. Values were normalized to untreated control and are given as
mean ± SD (n = 4). Significance between samples treated with CDTb only and CDTb plus HA1568 was tested by two-way
ANOVA followed by Dunnett’s multiple comparison test. (* p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001, ns = not significant).

2.5. Chloroquine Blocks CDTb Pores In Vitro

The addition of small amounts of CDTb in nanomolar concentration led to a strong
increase in membrane conductance caused by channel insertion in the membrane. Figure 6a
shows the channel formation by CDTb in artificial bilayers in 1 M KCl solution. The
channels showed some flickers to lower conductance states but otherwise had a stepwise
appearance with a long lifetime. The single-channel conductance was around 150 pS under
these conditions (see Figure 6b). When the reconstitution of CDTb channels was followed
for a longer time, the conductance was virtually stationary after about 30 to 60 min. At
that time, the titration of membrane conductance with chloroquine started by adding small
amounts of concentrated chloroquine solution to both sides of the membrane while stirring.
Shortly after each addition, the CDTb-induced conductance decreased in a dose-dependent
manner as shown in Figure 6c. The titration curve given in Figure 6c can be analyzed
using a Langmuir adsorption isotherm, as shown in Figure 6d. The analysis yielded a
stability constant K of 110,000 M−1 (half saturation constant Ks of 9.1 µM) for the binding
of chloroquine to the CDTb channels. The percentage of conductance that responded to
ligand binding was about 74% in the case of the experiment shown in Figure 6c,d.

2.6. A Chloroquine Derivative Prevents Ca2+ Influx through CDTb Pores in Cells

We reported earlier that CDTb forms Ca2+ permeable pores in the cytoplasmic mem-
brane of CaCo-2 cells [26,27]. Here, we demonstrate that CDTb-mediated Ca2+ influx
was inhibited by the chloroquine derivative HA1495 (Figure 7). Quantification of Ca2+

influx 5 and 10 min after application of CDTb together with the chloroquine derivative also
showed a significant inhibition of CDT-induced Ca2+ influx by the chloroquine derivative
(Figure 7c). Notably, the chloroquine derivative alone had no effect on intracellular Ca2+

levels (Figure 7b,c).
These taken together, we extended the current knowledge on the cytotoxic effect of

CDTb and demonstrated that CDTb leads to a redistribution of F-actin from the cell body
to the cellular cortex. Microtubule-based protrusions were not induced by CDTb alone.
Moreover, fluorescence-labeled CDTb was at least partially detected at the cell membrane
additionally to its localization in early endosomes. In combination with CDTa, CDTb
was predominantly colocalized with early endosomes. Chloroquine and its derivatives
efficiently protected Vero and human HCT 116 as well as CaCo-2 cells from intoxication
with CDTb and inhibited CDTb pores in vitro and in cells. Moreover, a chloroquine
derivative also inhibited intoxication of cells with the combination of CDTa plus CDTb.
Our results further establish a possible role of the binding component CDTb of the binary
CDT toxin as a virulence factor of hypervirulent C. difficile strains and revealed chloroquine
and its derivatives as potent inhibitors of CDTb cytotoxicity.
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Figure 6. Chloroquine inhibits CDTb pores in lipid bilayers. (a) Single-channel recording of a diphytanoyl
phosphatidylcholine/n-decane membrane in the presence of 160 ng/mL CDTb added to the cis side of a black mem-
brane. The aqueous phase contained 1 M KCl, 10 mM MES, pH6. The applied membrane potential was 20 mV; T = 20 ◦C.
(b) Histogram of the probability P(G) of occurrence of a given conductivity unit observed with membranes formed of
PC/n-decane in the presence of CDTb taken from experiments similar to the conductance steps in Figure 6a. P(G) is
Table (147 ± 16) pS for 127 conductance steps. (c) Titration experiment of CDTb-induced membrane conductance with
chloroquine. The membrane was formed from diphytanoyl phosphatidylcholine/n-decane. The aqueous phase contained
2 nM CDTb (added to the cis side of the membrane), 100 mM KCl, 10 mM MES, pH 6.0, and chloroquine added in the
concentrations shown on the top of the figure to both sides of the membrane. The temperature was constant at 20 ◦C, and
the applied voltage was 20 mV. The membrane contained about 25 CDTb channels. The bottom line represents zero level of
conductance. (d) Langmuir adsorption isotherm of the inhibition of CDTb-induced membrane conductance by chloroquine.
The data taken from Figure 6b were fitted to Equation (3). The inhibition constant, K, for a chloroquine-induced channel
block was (1.1 × 105 ± 0.02 × 105) 1/M. The block was at maximum 74% ± 1.8%; half saturation constant KS = 9.1 µM
(r2 = 0.9929).
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Figure 7. HA1495 prevents CDTb-mediated Ca2+ influx in CaCo-2 cells. CaCo-2 cells were incubated with Fura-2 (3 µM)
for 45 min at 37 ◦C. After baseline recording for 2 min of the ratio of Fura-2 at 340 and 380 nm, 1000 ng/mL CDTb or
1000 ng/mL CDTb plus 200 µM HA1495 were added to the cells simultaneously (a). For control, cells were treated with
200 µM HA1495 alone (b). Time of applications is indicated by arrows. (c) Bar graph showing results 5 min and 10 min after
initial application of different treatments (first arrow in a, b). Values were normalized to untreated control and are given as
mean ± SD (n = 3). Significance vs. CDTb was tested by two-way ANOVA followed by Dunnett’s multiple comparison test.
(**** p ≤ 0.0001).

3. Discussion

Bacterial AB-type toxins are characterized by their unique structural and functional
organization. The A-subunit of these toxins harbors enzymatic activity and is transported
into the cytosol by the B-subunit [7,40]. Therefore, the B-subunit binds to a specific receptor
on the cell surface, which triggers endocytosis of the AB-complex. Subsequently, the B-
subunit mediates translocation of the A-subunit across a cellular barrier into the cytosol,
where the A-subunit modifies a specific substrate. This causes cellular effects and, thus,
specific clinical symptoms of the respective toxin-associated diseases. The cytotoxic effect
of AB-type toxins depends on the specific activities of both functional subunits. In the
case of binary clostridial toxins, to which CDT belongs, translocation of the A-component
into the cytosol is mediated by the B-component via pore formation into the endosomal
membrane. This pore formation is triggered by acidification of the endosomal lumen [9,24].

We recently reported that CDT deviates from this established AB-type model and
showed that the B-component CDTb causes cytotoxicity in the absence of its respective
enzyme component CDTa [25]. Here, we extended these findings and investigated the
cellular uptake of CDTb and its effects on the cytoskeleton by fluorescence microscopy. In
combination with CDTa, CDTb was detected mainly in early endosomes. If the concen-
tration of CDTa and CDTb was increased or if CDTb was applied in the absence of CDTa,
CDTb signals were also found at the cytoplasmic membrane. These results are in line with
our finding that CDTb forms pores into the cytoplasmic membrane and thus exerts its
cytotoxic effect.

Interestingly, the intracellular trafficking of Ib, the B-component of Clostridium perfrin-
gens iota toxin, was previously investigated, revealing that Ib was also taken up into early
endosomes in the absence of its respective enzyme component Ia [41]. At later time points,
Ib was found in late endosomes and then lysosomes, and degraded Ib was transported back
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to the cytoplasmic membrane [41]. Iota toxin and CDT display some similarities regarding
their cellular uptake [7,40]. Both toxins require LSR as their cellular receptor [15]. Moreover,
iota toxin and CDT share sequence homology to a degree that their A- and B-components
are interchangeable [7]. In the same study by Nagahama et al., it was shown that Ib causes
Ca2+ influx into MDCK cells in a concentration-dependent manner [41]. Interestingly, pore
formation by Ib was not investigated, but it was reported that Ib causes cytotoxicity by
inducing rapid necrosis in two epithelial cell lines, but not in other cell lines such as Vero
or CaCo-2 cells [42]. Moreover, we previously showed that Ib causes cytotoxic effects in
Vero cells similar to CDTb [43]. In the present study, we demonstrated that CDTb causes
Ca2+ influx into CaCo-2 cells and pore formation in black lipid bilayers, which was both
inhibited by a known pore blocker. Therefore, we further established the hypothesis that
pore formation in the cytoplasmic membrane is the underlying cytotoxic mechanism of
CDTb. These commonalities of Ib and CDTb effects suggest that pore formation might be a
common cytotoxic mechanism for the group of iota-like toxins.

Recently, the crystal structure of oligomeric CDTb structures has been described
in two studies [29,44]. Interestingly, both studies discovered di-heptameric structures
of CDTb as an oligomeric state. Comparison with the structure of protective antigen,
the pore-forming component of anthrax toxin, revealed significant differences. Most
importantly, an additional receptor-binding domain of CDTb was found that was not
present in protective antigen [29,44]. This domain likely contributes to the stabilization of
CDTb oligomers prior to receptor binding and membrane insertion through the shielding
of several hydrophobic residues [44]. Anderson et al. investigated pore formation and
membrane insertion of CDTb in more detail and observed that all structural states from
pre-pore to pre-insertion to partial-ß-barrel to pore were detected at pH 8.0 [29]. This
suggests that receptor binding might be more important for pore formation than low pH in
acidified endosomes, which would be in line with our finding that CDTb forms pores at
the cytoplasmic membrane. Although the biological role of the CDTb di-heptamers is still
elusive, the authors hypothesize that it might advance membrane insertion. Moreover, the
additional heptamer might be important to protect and stabilize the pore-forming CDTb,
thereby possibly increasing its in vivo half-life [44]. These special structural characteristics
of CDTb oligomer formation that differ from well-studied related anthrax protective antigen
might also play a role in the cytotoxic pore-forming mechanism of CDTb described here.

Fluorescence experiments also revealed that F-actin was redistributed in CDTb-treated
cells. The F-actin signal in the cell body was decreased compared to untreated controls, and
mainly cortical F-actin was detected. It is known that the combination of CDTa plus CDTb
causes a loss of F-actin due to the ADP-ribosylation of G-actin by CDTa [5,6]. However,
the mechanism by which CDTb causes redistribution of F-actin in the absence of CDTa
is not known and might also be a secondary effect due to osmotic changes caused by
CDTb-induced pore formation. CDTb did not induce the formation of microtubule-based
protrusions like it was shown for the combination of CDTa plus CDTb. This is in line
with the finding that this effect was dependent on ADP-ribosylation of G-actin by CDTa
and protrusions preferably occurring at spots of the cytoplasmic membrane where cortical
F-actin was reduced [9,30,31].

Although the large Rho/Ras-glycosylating toxins TcdA and TcdB are regarded as the
main virulence factors of C. difficile, increasing numbers of strains have been identified
that additionally release CDT [1,9,45,46]. The role of CDT as a virulence factor is still
under debate. It was shown that microtubule-based protrusions induced by CDT lead to
an increased adherence of C. difficile bacteria in cell culture experiments and also in the
mouse model of C. difficile infection [30]. Moreover, CDT was shown to cause increased
inflammation and suppress protective colonic eosinophilia [47]. These effects depended on
the enzyme activity exerted by CDT. Our finding that CDTb has pore-forming activity and
thereby harbors cytotoxicity in the absence of CDTa might also be a relevant mechanism
of CDT as a virulence factor. C. difficile strains only expressing CDT but not TcdA or
TcdB are considered enterotoxic, and cases with enterotoxic symptoms such as diarrhea
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have been reported previously [48]. However, these symptoms differed from typical
TcdA/TcdB-induced symptoms, and in most described cases or animal studies, the course
of the disease was milder compared to infection where TcdA/TcdB were present [1,12,13].
Recently, a C. difficile strain expressing CDT but not TcdA or TcdB was isolated from
a patient suffering from several recurrent infections and colonizations. Although this
patient also suffered from end-stage chronic kidney disease and congestive heart failure,
C. difficile infection was likely contributing to the fatal outcome [46]. This and other
reports strengthen the importance of CDT as a contributing virulence factor that should be
pharmacologically targeted [49]. In the present study, we showed that chloroquine and its
derivative efficiently protect cells from intoxication with CDTb by inhibiting CDTb pores
in cytoplasmic membranes. Moreover, the same derivative inhibited the intoxication of
cells with the combination of CDTa plus CDTb, demonstrating that one inhibitor is able to
protect cells from both cytotoxic mechanisms. Previous studies showed that chloroquine
blocked CDTb pores in vitro in black lipid bilayers and that chloroquine and several
derivatives also blocked the pores of C2 toxin, iota toxin, and anthrax toxin in vitro and in
cells [28,32–39].

These taken together, we characterized the cytotoxic effect of CDTb in more detail and
showed that CDTb causes impairment of CaCo-2 cell viability as well as redistribution of F-actin
without leading to microtubule-based protrusions. Chloroquine and its several derivatives
prevented CDTb as well as CDTa plus CDTb induced cytotoxicity. The findings support our
hypothesis that CDTb represents a pore-forming toxin in the absence of CDTa and suggest
that pore blockers might be attractive starting points for the development of novel therapeutic
strategies directly targeting at the toxin level in the context of CDAD. This might complement
current antibiotic therapy as well as neutralizing antibodies against TcdB.

4. Materials and Methods
4.1. Protein Expression and Purification

CDTa and CDTb were purified and activated as recombinant proteins as described be-
fore [50]. For fluorescence microscopy experiments, CDTb was labeled with DyLight488 in
accordance with the manufacturer’s recommendations (Thermo Fisher Scientific, Waltham,
MA, USA). Micro Bio-Spin 6 columns (Bio-Rad laboratories, Munich, Germany) were used
to remove excess dye.

4.2. Cell Culture and Intoxication Experiments

Vero cells (African green monkey kidney cells, DSMZ, Braunschweig, Germany),
HCT 116 (human colon carcinoma cells, DSMZ), and CaCo-2 (human epithelial colorectal
adenocarcinoma cells, ATCC HTB-37, Manassas, VA, USA) were cultivated as described
before [25].

For intoxication experiments, cells were seeded in culture dishes, and toxin compo-
nents were added. Well plates and culture dishes were purchased from TPP Techno Plastic
Products (Trasadingen, Switzerland). To test the effect of inhibitors, the respective inhibitor
was added to the cells together with the toxin components. After different incubation times,
images were taken using a Zeiss (Oberkochen, Germany) Axiovert 40CFL microscope with
a Jenoptik (Jena, Germany) ProGres C10 CCD camera. The percentage of rounded cells
was determined from the images using ImageJ (NIH, Bethesda, MD, USA). Chloroquine
and quinacrine were obtained from Sigma Aldrich (Munich, Germany) and were dissolved
in H2O. HA1383, HA1495, and HA1568 were synthesized as described before [32,51–55].

4.3. Cell Viability

Cell viability was measured via MTS assay (Promega, Mannheim, Germany). There-
fore, cells were seeded in 96-well plates, and toxin components were added for indicated
times. MTS reagent was added, and after 1 h, absorbance at 490 nm was measured.
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4.4. Fluorescence Microscopy

Cells were seeded in 8-well plates (ibidi, Martinsried, Planegg, Germany). After treatment
with toxin components, cells were washed with PBS and fixed with PFA for 15 min. After wash-
ing with PBS, cells were permeabilized with Triton X-100, and autofluorescence was quenched
with glycine. Then, cells were blocked in 5% milk powder in PBST and incubated with primary
antibodies (mouse anti-α-tubulin (Santa Cruz Biotechnology, Dallas, TX, USA), goat anti-EEA1
(early endosome marker, Sicgen, Cantanhede, Portugal)), and after washing with PBST with
secondary antibodies (goat anti-mouse-568 (Thermo Fisher Scientific, Waltham, MA, USA),
mouse anti-goat-647 (Santa Cruz Biotechnology)). F-actin was stained with Phalloidin-FITC
(Merck, Sigma-Alrich) and nuclei with Hoechst 33,342 (Thermo Fisher Scientific). Images were
obtained with an iMic Digital Microscope using the Live Acquisition 2.6 software (FEI, Munich,
Germany) and were processed with ImageJ.

4.5. TEER Measurements

TEER measurements were performed as described before [25]. Values of control samples
were set to 100%, and other values were normalized to control for every time point.

4.6. Lipid Bilayer Experiments

The method used for the reconstitution experiments by the black lipid bilayer mem-
branes has been described previously [38]. The membranes were formed from a 1% (w/v)
solution of diphytanoyl phosphatidylcholine (PC) (Avanti Polar Lipids, Alabaster, AL,
USA) in n-decane. The membrane current was measured with a pair of Ag/AgCl electrodes
switched in series with a voltage source and a highly sensitive current amplifier (Keithley
427). The amplified signal was monitored with a digital oscilloscope and recorded using a
strip chart recorder (Rikadenki, Freiburg, Germany).

The binding of chloroquine to the CDTb channel was investigated with titration exper-
iments similar to those performed previously to study the binding of 4-aminoquinolones
to the C2II and PA63 channels in multichannel experiments [36,56,57]. The CDTb channels
were reconstituted into lipid bilayers. About 60 min after the addition of activated CDTb
to the cis side of the membrane, the rate of channel insertion in the membranes was very
small. Then small amounts of concentrated solutions of chloroquine were added to the
cis side of the membranes while stirring to allow equilibration. The results of the titration
experiments, i.e., the blockage of the channels, i.e., the decrease in the conductance as
a function of the chloroquine concentration, were analyzed using Langmuir adsorption
isotherms (see Equation (1); [56,58]). The conductance, G(c), of a CDTb channel with
stability constant K and chloroquine concentration c is given by the maximum conductance
(without ligand), Gmax, times the probability that the binding site is free:

G(c) =
Gmax

(1 + K·c) (1)

The half saturation constant Ks is given by the inverse stability constant 1/K. Equation (1)
can also be rewritten in the following from (i.e., in the form of Langmuir adsorption
isotherm [59]:

Gmax − G(c)
Gmax

=
K·c

(K·c + 1)
(2)

In some cases, not all reconstituted CDTb channels responded to the presence of the
channel blocker chloroquine. In these cases, Equation (2) had to be modified to account for
this problem:

Gmax − G(c)
Gmax

= A· K·c
(K·c + 1)

(3)

A is the fraction of the total number of CDTb channels that responded to the presence
of chloroquine in the aqueous phase (normally around 0.7 to 1.0).
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4.7. Calcium (Ca2+) Imaging

Calcium imaging was done as previously described [26]. In brief, cells were incubated in
bath solution and loaded with 3 µM Fura-2AM for 45 min at 37 ◦C. After washing with bath
solution, baseline was measured for 2 min before respective treatments. Calcium flow was
recorded for 20 min using an iMic Digital Microscope and Live Acquisition 2.6 software.

4.8. Reproducibility of Experiments and Statistics

All experiments were performed independently at least three times. In each ex-
periment, triplicates were performed. Figures display one representative result of one
experiment with triplicates unless indicated otherwise. Significance was tested by one-way
or two-way ANOVA followed by Dunnett’s multiple comparison test.
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