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Abstract: Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of
the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities
such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually
filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated
in the systemic circulation and tissues, which hastens the progression of CKD and concomitant
comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is
one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating
CKD progression through the production of further uremic toxins in the gastrointestinal tracts.
Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic
target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to
the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs)
not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This
review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney
injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the
view of uremic toxins such as TMAO and AGEs.

Keywords: gut microbiota; dysbiosis; AGEs; RAGE; TMAO; chronic kidney disease

Key Contribution: Gut microbiota dysbiosis causes chronic kidney disease through production of
uremic toxins.

1. Introduction

Chronic kidney disease (CKD) has emerged as a major public health concern that
affects an estimated 37 million people in the United States [1,2]. Not only is CKD the 9th
leading cause of death in the U.S., but it also contributes to several diseases such as heart
disease [3], stroke [4], cancer [5], and cognitive impairment [6], thereby increasing mortality
rates in patients with CKD [7]. Therefore, preventing the new onset of CKD or inhibiting
the progression of CKD is of paramount importance for public health. It has been shown
that inappropriate activation of the renin-angiotensin system, sympathetic nerve activation,
and upregulated inflammatory cytokines are implicated in the progression of CKD [8–10].
In addition to the traditional risk factors for CKD progression, recent studies have revealed
that gut microbial dysbiosis, defined as an “imbalance” in the gut microbial community, is
also one of the key contributors to accelerating CKD progression [11].

Substances that are typically excreted or metabolized by the kidney accumulate as
renal function declines. If the substances induce clinical symptoms of uremia, they are
referred as to “uremic toxins.” Advanced glycation endproducts (AGEs), a heterogeneous
group of molecules formed by a non-enzymatic reaction between reducing sugars and
amino acids, lipids, and DNA, are considered as one of the representative uremic toxins [12].
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AGEs accumulate in visceral organs crosslinking with matrix molecules and disrupting
matrix-matrix and matrix-cell interactions, resulting in organ dysfunction in CKD [13].
Also, through the interaction with the receptor for AGEs (RAGE), AGEs promote further
oxidative stress and stimulate several intracellular signaling molecules, leading to the
production of inflammatory and profibrotic cytokines [14]. Another uremic toxin, trimethy-
lamine N-oxide (TMAO), which is a degradation product of choline and L-carnitine, is
shown to accumulate when renal function declines and correlates with enhanced cardiovas-
cular mortality in CKD patients [15,16]. An elevated TMAO value is not only a predictor of
cardiovascular disease, but it also promotes renal fibrosis, the main feature of CKD [17].

The human gut microbiota consists of approximately 1000 species and there are
~100 trillion bacteria in the gut, the genetic information of which is 150 times larger than
that of the host [18]. With better understanding as technology advances, gut microbiota
seems to not only maintain homeostasis, but also to be involved in the pathology of several
human diseases including obesity [19], hypertension [20], cancer [21], depression [22],
and cardiovascular diseases [23]. Further, recent studies have shown that gut microbiota
dysbiosis including loss of beneficial microbes, expansion of pathobionts, and loss of
microbiome diversity, is one of the common features in patients with CKD, possibly due to
metabolic acidosis, accumulation of uremic substances in the intestine, volume overload-
induced edema of intestinal epithelial cells, and frequent use of antibiotics and oral iron
agents [24]. It has been found that the proportions of the bacteria possessing urease, uricase,
and p-cresol- and indole-producing enzymes are increased in CKD, leading to uremic
toxicity and systemic inflammation [25]. Many substances secreted by the microbiota
become uremic toxins in the setting of CKD and can be absorbed into the body [26,27].
Thus, gut microbiota impairment plays a pathological role in the development of uremia in
CKD patients and represents a potential therapeutic target for CKD progression.

A recent study has demonstrated that an AGEs-rich diet affects the gut microbiota [28],
which may be linked to TMAO production [15]. Further, accumulation of AGEs was found
in the gastrointestinal tract of CKD patients in association with gut microbiota dysbiosis,
possibly leading to further progression of CKD [29]. Understanding the mutual relationship
between gut microbiota dysbiosis and uremic toxins such as AGEs and TMAO is of great
importance for preventing kidney injury and developing new therapeutic options for
CKD patients. This review highlights the underlying mechanisms by which the reciprocal
regulation of gut microbiota dysbiosis and uremic toxins drives CKD progression.

2. Gut Microbiota, AGEs, TMAO, and Inflammation
2.1. Dysbiosis in CKD

A number of studies have shown that CKD affects the distribution and makeup of gut
microbiota, which is linked to dysbiosis [30]. Although the results of clinical studies may
vary depending on the ethnicity, medical treatment, and lifestyle, it is generally accepted
that bacterial species that produce urease (Proteobacteria, Clostridiaceae, and Actinomyc-
etales), uricase (Actinomycetales and Proteobacteria), and indole or p-cresol forming enzymes
(Clostridiaceae and Prevotellaceae) thrive, whereas species containing butyrate-forming en-
zymes (Roseburia, Faecalibacterium, Clostridium, and Coprococcus) are reduced in CKD [25].
Urease-producing bacteria including Clostridiaceae are known to hydrolyze urea in the gut
to form ammonia, which, in turn, is converted to ammonium hydroxide. The high burdens
of ammonia and ammonium hydroxide in the gut are associated with the alteration of gut
microbiota and disruption of the intestinal epithelial tight junction [11]. Besides this, indole-
or p-cresol-forming enzymes are responsible for metabolizing tryptophan and tyrosine
into indole and p-cresol, respectively, in the gut. Then, in the liver, indole and p-cresol are
converted to indoxyl sulfate (IS) and p-cresol sulfate (PCS), well-documented uremic tox-
ins [31]. Uremic toxins are substances that are usually filtered and excreted by the kidneys,
whereas as glomerular filtration rate (GFR) declines in CKD, these compounds accumulate
and exert their deleterious effects on various organs. In fact, the serum concentration of IS
and PCS are positively correlated with serum creatinine, a marker of GFR, and the patients
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with a later stage of CKD showed a higher concentration of IS or PCS. Thus, in addition
to the loss of the ability to remove uremic toxins due to decreased GFR, the expansion
of such bacterial species producing uremic toxins in the gut of CKD is linked to further
accumulation of uremic toxins in the body.

The possible mechanisms for how the gut microbiota change in CKD are as fol-
lows: (1) accumulated uremic toxins perturb the composition of gut microbiota [11,32];
(2) metabolic acidosis; (3) therapeutic agents such as oral iron supplements [33], chelating
agents [34], antibiotics [35], and proton-pump inhibitors [36]; (4) reduced bowel movement
due to CKD–induced edema and ischemia; (5) lack of dietary fiber intake [37]; (6) prolonged
intestinal transit time [24]. A recent investigation using microbiome analysis showed that
the proportions of Eggerthella lenta and Fusobacterium nucleatum were increased in patients
with end-stage renal disease (ESRD) when compared with healthy individuals, and fecal
transplantation with the two species into rats with CKD exacerbated renal fibrosis and
increased the production of uremic toxins [38], supporting the gut-kidney axis theory. Sev-
eral systematic reviews and meta-analyses have also demonstrated that probiotic, prebiotic,
and synbiotic supplements in the CKD population improve a circulating inflammation
marker (C-reactive protein), oxidative stress markers (malondialdehyde, glutathione, and
total antioxidant capacity), and lipids profiles [39,40]. Indeed, Rossi et al. conducted a ran-
domized, double-blind trial to investigate the efficacy of synbiotic interventions in patients
with CKD stage 4–5, and determined that with synbiotic supplementation, an enrichment
of Bifidobacterium and depletion of Ruminococcaceae were observed with a decrease in the
serum concentrations of IS and PCS [41].

CKD-induced dysbiosis is thought to accelerate the progression of CKD to ESRD
through the production of uremic toxins, giving rise to a vicious cycle between CKD and
dysbiosis. Once ESRD is established, uremic toxins still remain a major problem and source
of uremic symptoms as they are not cleared by blood purification therapies, such as dialysis.
Although an infusion of ibuprofen [42] or reduction of blood pH [43] are shown to increase
the clearance of protein-bound uremic toxins during single dialysis treatment, no specific
therapeutic option to enhance the removal of protein-bound uremic toxins has yet been
established [44]. Thus, creating new interventions targeting the production process of
uremic toxins is promising and needs to be further investigated.

2.2. Disruption of Gut Epithelial Barrier in CKD

Disruption of the gut epithelial barrier, referred to as a “leaky gut”, is another intestinal
complication related to CKD [45]. The buildup of uremic toxins is thought to weaken the
intestinal epithelial barrier, allowing bacterial components derived from intestinal bacteria,
such as DNA, lipopolysaccharide (LPS), and endotoxins, to flow into systemic circulation
through the leaky gut. IS induces systemic inflammation, leading to cellular injury in
vascular endothelial cells, and promotes arteriosclerosis with an increase in thrombus
formation (Figure 1) [46]. Kikuchi et al. demonstrated that a high serum concentration
of phenyl sulfate, a protein-bound uremic solute, was associated with the progression of
albuminuria in 362 patients with diabetic kidney disease (DKD) [47]. Besides endothelial
dysfunction, IS induces cardiac fibrosis, thus affecting cardiac function [48]. AST-120, an
oral charcoal adsorbent, was shown to attenuate cardiac hypertrophy and cardiac fibrosis
by inhibiting the absorbance of uremic toxins in a rodent CKD model [49]. A meta-analysis
concluded that serum IS and PCS levels strongly correlate with overall mortality in CKD
patients [50]. The serum concentration of phenylacetylglutamine, a recently identified
colonic microbial metabolite from amino acid fermentation, also predicts the prevalence
of cardiovascular diseases [51]. These findings provide a link between the multiple organ
damage seen in CKD patients and gut microbiota-derived uremic toxins.

As CKD progresses, endotoxins such as LPS flow into the body and function as
pathogen-associated molecular patterns (PAMPs) [52]. A number of clinical investigations
have demonstrated that individuals with a high concentration of serum endotoxins are
more likely to develop cardiovascular diseases (CVD) [53]. Also, PAMPs and damage-
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associated molecular patterns (DAMPs) are involved in the progression of several types
of kidney diseases including DKD through interaction with pattern recognition receptors
such as RAGE and the toll-like receptor (TLR) [54]. In fact, injection with LPS worsened
kidney function in streptozotocin-induced diabetic mice, and upregulation of the vascular
endothelial growth factor (VEGF) in the PTECs of a diabetic kidney was further enhanced
by the administration of LPS [55]. Recently, Nakano et al. revealed interesting findings,
using intravital imaging by 2-photon microscopy, that LPS disrupts the tight junction of
PTECs and induces paracellular leakage of filtered molecules and interstitial accumulation
of extracellular fluid, leading to oliguria [56]. Interestingly, tubule-specific deletion of
TLR-4, an LPS-binding receptor, retained the efficacy of intravenous fluid treatment in
LPS-induced acute kidney injury (AKI) [56]. Although it is still not clear whether this
theory is applicable to intestinal epithelial cells, the idea could provide an explanation for
the prevalence of the “leaky gut” in CKD.

CKD-related dysbiosis and intestinal barrier dysfunction contribute to the progression
of CKD. Therefore, there are several ongoing clinical trials attempting to improve dysbiosis
by using prebiotics or probiotics in CKD patients [41,57,58].

2.3. Gut Dysbiosis and Inflammation

There are many overlapping processes that drive the progression of CKD to ESRD such
as renin-angiotensin system activation, sympathetic hyperactivity, mitochondrial dysfunc-
tion, and so on [8–10]. In addition to the traditional risk factors, subclinical inflammation
can be considered one of the contributors to the progression of CKD; thus, this section
focuses on the links between dysbiosis, uremic toxins, and inflammation in CKD. The
subclinical inflammation in CKD is characterized by an increase in inflammatory markers
such as cytokines, acute-phase proteins, and adhesion molecules [59]. Chronic subclinical
inflammation in CKD can be the result of increased production and decreased elimina-
tion of proinflammatory cytokines [60], gut dysbiosis [45], reactive oxygen species (ROS),
metabolic acidosis [61], and alteration of adipose tissue metabolism [62], or a combination
of these factors. Besides an increase in uremic toxin-producing bacteria, a concomitant
reduction in the species generating beneficial short-chain fatty acids (SCFAs) including
butyrate is one of the characteristics of CKD-related dysbiosis [63,64]. SCFAs are saturated
fatty acids with a chain length ranging from one to six carbon atoms, produced by fermen-
tation of dietary fiber in the colon. Recent studies provide evidence for gut microbiota
producing the SCFAs influencing the severity of AKI by regulating the immune and in-
flammatory responses [65]. Mishima et al. demonstrated that intestinal SCFA production
was dramatically reduced in germ-free mice, which worsened adenine-induced kidney
injury [66]. Meanwhile, supplementing with exogenous SCFAs not only reduced ROS,
but also suppressed cytokines and chemokines such as interleukin (IL)-1β, IL-6, tumor
necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) [66]. Intrigu-
ingly, in vitro experiments showed that SCFAs prevented dendric cells’ maturation with
inhibition of CD4+ and CD8+ T cell proliferation [67], indicating that SCFAs seem to directly
modulate immune cells’ function and regulate cytokine/chemokine production. In addi-
tion to CKD-related dysbiosis characterized by lack of SCFA-producing bacteria, dietary
restriction of fermentable fiber such as potassium-rich fruits and vegetables in CKD leads
to the depletion of the bacteria that convert indigestible carbohydrates to SCFAs [63,64].
The most recent investigations demonstrated that dietary intake of sulfur-containing amino
acids inhibited the function of tryptophanase, a secreted enzyme that catalyzes the degra-
dation of tryptophan to indole, pyruvate, and ammonia, which resulted in a reduction in
uremic toxin production, leading to the prevention of tubular injury in an adenine-induced
CKD model [68]. Similarly, a number of studies have shown the efficacy of interventions
targeting dysbiosis for slowing down CKD progression. Dietary supplementation with
resistant starch—which is a carbohydrate that resists digestion in the small intestine and
ferments in the large intestine, acting as a prebiotic—ameliorated kidney injury in a type 2
diabetic rodent model [69] and a CKD rat model [70]. Lubiprostone, a chloride channel ac-
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tivator that can improve the symptoms of constipation, was also shown to prevent tubular
injury and GFR decline with increases in proportions of Lactobacillus and Prevotella in an
adenine-induced CKD model [71]. Thus, a clinical trial to examine the inhibitory efficacy
of lubiprostone (UMIN000023850) is currently underway.

With respect to AKI, Jang et al. showed that structural injury and functional decline
following ischemic reperfusion injury (IRI) were more severe in germ-free mice with
enhanced CD8+ T cells trafficking into the injured kidney. Reconstituting microbiota by
adding fecal material from control mice to the germ-free mice attenuated histological
damage, which led the authors to conclude that regulatory T cells may not be stimulated
or mature in germ-free mice during development, thus amplifying renal damage [72]. In
contrast, Emal et al. demonstrated that treatment with broad-spectrum antibiotics like
ampicillin, metronidazole, neomycin, and vancomycin reduced microbial diversity and
protected mice against IRI-induced kidney injury. This was achieved by suppressing
the maturation status of F4/80+ renal-resident macrophages, well-known immune cells
involved in the detection, phagocytosis, and destruction of bacteria and other harmful
organisms, as well as by reducing the release of chemokines. Fecal material transplantation
from control mice to antibiotic-treated mice abolished this protective effect [73]. Although
previous animal data depend on whether germ-free animals or broad-spectrum antibiotic
treatment was utilized for the removal of gut microbiota, the gut microbiota seem to be
associated with inflammation, leading to modulation of the outcome of kidney injury in
AKI, as well.

2.4. AGEs–RAGE Axis and Inflammation

A non-enzymatic reaction between reducing sugars such as glucose and the α-amino
group or lysine residue at the N-terminal of amino acids is an initial step in the synthesis
of AGEs [74,75]. It is followed by the formation of a Schiff base and Amadori compounds,
which in turn, undergo various reactions such as dehydration, condensation, oxidation,
and reduction. AGEs are finally generated with intermolecular crosslinking in visceral
organs. This was first reported by a French chemist, Louis-Camille Maillard, in 1912,
and extensively studied in the area of food chemistry. However, AGEs have begun to
receive greater attention after the discovery of hemoglobin A1C, a glycated hemoglobin
and a marker for type 2 diabetes [76,77]. Since then, research studies have shown that
proteins with a slow turnover rate in the body, like collagens exposed to reducing sugars
for a long period, have lysine residues that are AGEs-modified, which induces protein
polymerization, reduced solubility, and susceptibility to proteases. Thus, AGEs are rarely
degraded, and crosslinking of AGEs leads to irreversible organ damage [78].

There are two main drivers of AGE generation, namely, glycation and oxidative stress.
Pyrraline and crosslines, the major AGEs, are produced via a glycation-dependent path-
way [79]. Thus, hyperglycemia in diabetes is closely associated with the production of
AGEs. In recent years, oxidative stress has also been shown to promote the synthesis of
AGEs. N(ε)-carboxymethyl lysine (CML), a well-established AGE, is generated after the
oxidative cleavage of Amadori compounds or through the auto-oxidation of glucose [80].
In fact, CML accumulation has been observed in the glomeruli of DKD, as well as hyper-
tensive nephropathy [81,82] and lupus nephritis, in humans and experimental rodents [83].
RAGE, the main receptor for AGEs, is a type I transmembrane receptor and is expressed
on the surface of several kidney cells including PTECs, mesangial cells, podocytes, and
endothelial cells [81,84–86]. In addition to the intrinsic kidney cells, RAGE is also expressed
on the membrane of immune cells such as monocytes [87], macrophages [88], and T and
B lymphocytes [89,90]. The interaction between RAGE and its ligands is shown to di-
rectly activate immune cells, causing inflammation and the development of autoimmune
diseases [91]. Since AGEs are one of the ligands of RAGE, AGEs promote the secretion
of proinflammatory cytokines, such as IL-1α, IL-6, and TNF-α, through the activation of
NF-kB, leading to the amplification of systemic inflammation [92,93]. AGEs also delay
spontaneous apoptosis of monocytes, thus, contributing to the development of inflamma-
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tory responses [94]. Considering that RAGE also recognizes a wide range of DAMPs [93], it
is likely that DAMPs derived from gut microbiota bind to RAGE, inducing immune cells to
migrate and proliferate. With respect to acute inflammation, the genetic deletion of RAGE
attenuated the hepatic expression of pro-inflammatory cytokines with a better survival
rate compared to wild-type mice in LPS/D-galN-induced acute liver injury [95]. The out-
come of a clinical research study supported the concept that there is a positive correlation
between the expression levels of RAGE and E-selectin, endothelin-1, and TNF-α in septic
AKI patients [96]. In addition, RAGE was implicated in chronic inflammation. Durning
et al. demonstrated that RAGE enhanced the inflammatory function of T cells, and that its
increased levels in patients with type 1 diabetes may account for the chronic autoimmune
response [97]. In another study, old RAGE knockout (KO) mice exhibited a decrease in
the renal concentration of proinflammatory cytokines compared to old wild-type mice,
and attenuated glomerulosclerosis, a marker of aging kidneys [98]. RAGE expressed on
various cell types plays a central role in amplifying and prolonging inflammatory responses
through engagement with AGEs (Figure 1).

RAGE is linked to the development of human autoimmune diseases such as systemic
lupus erythematosus (SLE) [91] and arthritis [99]. Tian et al. demonstrated that HMGB-1
released from necrotic or dead cells in autoimmune diseases activates autoreactive B cells
and plasmacytoid dendritic cells, and augments inflammatory cytokines secretion through
TLR-9 and RAGE [100]. Clinical research also showed that the polymorphism of the RAGE
gene is correlated with the severity of SLE and the progression of lupus nephritis [101].
In vitro data showed that peripheral blood mononuclear cells (PBMCs) incubated with
serum from lupus nephritis patients enhance the secretion of INF-1α, which is reduced by
RAGE-Fc or a monoclonal antibody to RAGE [100]. Thus, a number of studies provide
clear evidence that RAGE is a key contributor to inflammation and can be a potential
therapeutic target for regulating the massive inflammation in CKD.

2.5. TMAO and Inflammation

The dietary intake of TMAO precursors such as choline, betaine, and L-carnitine, is
an important factor for TMAO production. Choline is higher in animal-derived food as
compared to plant-based food on a per unit of weight basis, and specifically abundant in
liver, eggs, beef, fish, pork, chicken, and milk [102]. Betaine is found in vegetables, animals,
and microorganisms, and is a significant component in spinach, wheat, sugar beets, and
shellfish [103,104]. L-carnitine is found in many animal products, but especially, red meat
has high levels. Small amounts of L-carnitine are also found in chicken, milk and dairy
products, fish, beans, and avocado. The L-carnitine content of red meat and fish is not
affected by freezing or cooking [105]. These precursors are converted by gut microbiota
into an intermediate compound known as trimethylamine (TMA) in the gastrointestinal
tract, which is then absorbed and delivered to the liver. There, it undergoes oxidization by
Flavin-dependent monooxygenase3 to generate TMAO [106], which is then transported
to the brain, muscle, kidney, and intestine [107]. Since TMAO is excreted into the urine,
the serum concentration of TMAO is known to be elevated as renal function declines [17],
which correlates with an increased risk of cardiovascular disease in general, and especially
in patients with CKD [108]. Thus, TMAO has been considered as a uremic toxin as well.

Perturbations of the intestinal microbiota composition in both human and experi-
mental CKD have demonstrated a significant elevation of TMAO, which is linked to an
increased burden of inflammation as well as renal disease progression [109]. Interestingly,
high-salt and high-fat diets (HFDs), both of which are characteristics of the current West-
ernized diet, are more likely to alter the composition of microbiota and increase the serum
concentration of TMAO (Figure 1) [110]. Therefore, the current generation may be at high
risk of elevated TMAO and dysbiosis. A number of investigations have demonstrated
that TMAO accelerates kidney injury. A high dietary intake of TMAO exacerbates tubular
injury and promotes renal fibrosis, with an increase in phosphorylated Smad3 shown in a
rodent CKD model [17]. Recent animal data also showed that HFD induces renal fibrosis,
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with a corresponding increase in circulating TMAO, which could be inhibited by the ad-
ministration of 3,3-Dimethyl-1-butanol (DMB), a trimethylamine formation inhibitor [111].
Interestingly, DMB attenuated renal inflammation with a reduction of oxidative stress in
mice fed with HFD [111]. Not only is TMAO a contributor to the progression of kidney in-
jury, but it also amplifies inflammation by directly regulating the function of immune cells.
In basic research, TMAO has been shown to aggravate the severity of graft-versus-host
disease by promoting alloreactive T cell proliferation in a rodent model [112]. TMAO also
promoted the migration of macrophages in a CD36-dependent pathway in vitro [113]. That
is supported by the evidence that Apo-E KO mice injected with TMAO for eight weeks
exhibited enhanced macrophage infiltration into the aortic root [114]. These data suggest
that the direct effect of TMAO on the function of immune cells could be the missing link
between gut microbiota dysbiosis and inflammation in CKD. A recent study identified
that organic anion transporter-3 (OAT-3), a major transporter expressed on the basolateral
membrane of PTECs, mediates the excretion of TMAO into the urine. Since flosemide, a
loop diuretic often prescribed in the clinical setting, competitively binds to OAT-3, CKD
patients treated with flosemide are at a high risk of TMAO accumulation [115]. Similarly,
protein-bound uremic toxins including IS and PCS are also taken up through OAT-1 or
OAT-3 and secreted by PTECs. Probenecid inhibits the function of OAT-1 and OAT-3 [116];
thus, frequent use of those medicines might cause the accumulation of TMAO or uremic
toxins.

3. Possible Interplay between Gut Microbiota and Uremic Toxins in CKD
3.1. AGEs and Dysbiosis in CKD

In addition to the intracorporeal formation of AGEs, dietary intake is another main
source of AGEs since modern foods contain relatively high amounts. Cooking tempera-
ture, duration, pH, and method are shown to influence the generation of new AGEs in
foods [117,118]. Meats including beef and poultry and meat-derived products such as
sausages and bacon processed at high, dry heats contain large amounts of AGEs. High-
fat cheeses and spreads such as butter, cream cheese, and margarine are also among the
products with high dietary AGEs [119]. Importantly, dietary intake of AGEs is positively
correlated with AGE levels in serum [120]. Recent studies have demonstrated that not
only serum AGEs but also dietary AGEs are likely to be deposited in the gastrointesti-
nal tract tissue and lead to the disruption of the microbiota (Figure 1) [29]. Given that
dysbiosis is related to CKD progression, excessive intake of AGEs is likely to advance
the progression of CKD and its comorbidities such as nerve system disorder [121], bone
mineral disorder [122], cardiovascular diseases [12], and sarcopenia [123], possibly via the
induction of dysbiosis. Mastrocola et al. explored the impact of an AGEs-enriched diet on
inflammation, as well as on the composition of gut microbiota in mice. In an AGEs-rich
diet group, Nε-CML deposition and the upregulation of RAGE were observed in the ileum
portion of the intestine and submandibular salivary glands, with an increase in systemic in-
flammation assessed by the levels of IL-1β, IL-17, and TNF-α [124]. Using fecal microbiota
analysis, they found that high AGEs exposure in the intestine affected the gut microbiota
population, characterized by the reduction of Anaerostipes, one of the butyrate-producing
species [124]. Another investigation has demonstrated that a high-AGEs diet reduces
the levels of saccharolytic bacteria such as Ruminococcaceae and Alloprevotella, which are
related to SCFAs’ production. These findings suggest that intestinal AGEs exposure can
reduce SCFA production, which affects the risk of the progression of kidney injury [125].
Further, high amounts of dietary AGEs exposure downregulate tight junction proteins in
the epithelia, such as zonula occludens-1 and claudin-5 [125]. A recent study investigating
intestinal permeability, assessed in vivo by the clearance of FITC-labelled dextran, clearly
showed that the intake of high dietary AGEs disrupts the gut epithelial barrier, inducing
a “leaky gut” in db/db mice, as shown with a type 2 diabetic mouse model [69]. Thus,
an increase in the uptake of AGEs affects the composition of gut microbiota, leading to
a “leaky gut” via the disruption of the tight junctions of intestinal epithelial cells, which
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may go on to affect the progression of CKD (Figure 1). The restriction of dietary AGEs, or
removing AGEs pharmacologically in the gastrointestinal tract can, therefore, be a potential
therapeutic intervention option to preserve gut microbiota ecology, and consequently,
inhibit the progression of CKD.

Figure 1. Schematic of the mutual link between gut dysbiosis and uremic toxins in chronic kidney
disease (CKD). Excess dietary intake of advanced glycation endproducts (AGEs) affects the composi-
tion of the gut microbiome, leading to further uremic toxin production, which results in kidney injury.
AGEs deposition in the gastrointestinal tract also disrupts the epithelial barrier, allowing bacterial
components and endotoxins to flow into the systemic circulation, which, in turn, leads to other organ
damage. The high burdens of uremic toxins such as trimethylamine N-oxide (TMAO) or AGEs are
linked to progressive tubular injury and renal fibrosis, which are associated with the development of
CKD to end stage renal disease.

Several strategies using anti-AGEs have been evaluated in recent years. A clinical
study demonstrated that AST-120, known to adsorb uremic toxins in the gut leading to its
fecal excretion, decreased the serum concentrations of both glycated AGEs and Nε-CML in
patients undergoing hemodialysis [126]. A recent single-center, randomized, open-label
crossover study has demonstrated that sevelamer carbonate, a non-absorbed phosphate-
binding polymer, substantially reduced the concentration of serum AGEs, with a decrease
in inflammation and oxidative stress markers in diabetic CKD patients [127,128]. On the
other hand, a large proportion of dietary AGEs are degraded and metabolized by the
colonic microflora [129]. Lactobacilli, a commercially available probiotic supplement, is
capable of producing glyoxalase, the enzyme that degrades dietary AGEs [57]. Therapy
targeting probiotics is thus promising for blocking the interaction between dysbiosis and
enhanced AGEs accumulation in the CKD condition. Further studies using larger human
cohorts are required to confirm this observation.

3.2. AGEs–RAGE Coordinates with TMAO to Progress CKD

Animal products such as red meat, eggs, and fish are major dietary sources of be-
taine and L-carnitine, precursors of TMAO. Cooking these products at high temperatures
(grilling, broiling, and frying) leads huge amounts of AGEs-bound proteins to accumulate,
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leading to an increase in the concentration of TMAO as well as those of AGEs (Figure 1).
Mitchell et al. demonstrated that high protein intake (1.6 g/kgBW/day) increases the
circulating concentration of TMAO in the elderly [130]. A recent epidemiological inves-
tigation showed that the amount of protein intake correlates with serum Nε-CML levels
(Table 1) [131]. Based on these findings, a low protein diet, recommended as per CKD guide-
lines in several countries, is expected to have a better outcome in reducing the accumulation
of TMAO and AGEs in the body. Further, a few studies have shown that the population of
Prevotella copri (P. copri), a gram-negative bacteria producing TMA (Table 1) [15], prospers
due to an excess intake of AGEs [28,132], suggesting that AGEs may be associated with
TMAO production by affecting the microbial composition in the gut. Tahara et al. also
demonstrated that the serum AGEs/soluble RAGE (sRAGE) ratio has a positive correlation
with serum TMAO concentration [133]. Given that sRAGE eliminates circulating AGEs
by functioning as a decoy receptor [134], this finding indicates that endothelial cells in
individuals with high circulating TMAO are more likely to be exposed to circulating AGEs,
leading to endothelial dysfunction. An oral L-carnitine supplement is frequently used in
hemodialysis patients who show carnitine deficiency due to insufficient carnitine synthesis
and loss through dialysis in over 30 countries globally [135]. In fact, a clinical study by
Adachi et al. showed a decrease in serum-free carnitine level in hemodialysis (HD) pa-
tients compared to healthy individuals, which was inversely correlated with skin AGE
levels [136]. Thus, the L-carnitine supplement is shown to reduce skin AGE levels [137]
with a decrease in vascular injury markers in HD patients (Table 1) [138]. However, it
should be noted that there is a risk that oral L-carnitine supplementation can increase
serum TMAO levels. Since intravenous L-carnitine administration does not affect TMAO
levels, the method of L-carnitine administration should be considered depending on the
patient’s condition. Taken together, these findings point to the possible implication of a
link between AGEs and TMAO. However, further studies are required to understand the
relationship and identify a therapeutic target.

Table 1. Previous studies indicating possible correlation between AGEs and TMAO.

Authors [Reference]
(Number of Participants) Intervention Outcome

Mitchell et al. [130]
(n = 20) High protein diet (1.6 g/kgBW/day) Serum TMAO↑

Brinkley et al. [131]
(n = 2439) High protein diet (≥1.2 g/kgBW/day) Serum Nε-CML↑, Serum sRAGE↑

Yacoub et al. [28]
(n = 20) Restriction of dietary AGEs intake

Serum Nε-CML↓,
Serum methylglyoxal-derivatives↓

Prevotella copri↓, Bifidobacterium animalis↓
Alistipes indistinctus↑, Clostridium citroniae↑

Adachi et al. [136]
(n = 204)

Observational study in healthy subjects (n = 75)
and HD patients (n = 129)

Clostridium hathewayi↑, Ruminococcus gauvreauii↑
Serum-free carnitine inversely correlates with skin AGEs

Tahara et al. [133] Observational study in non-diabetic subjects Clostridium hathewayi↑, Ruminococcus gauvreauii↑
Serum-free carnitine inversely correlates with skin AGEs

Fukami et al. [137]
(n = 102, HD patients)

Oral L-carnitine supplementation (900 mg/d),
six months

Skin AGEs↓
Serum-free carnitine inversely correlates with the

decrease in skin AGEs

Fukami et al. [138]
(n = 31, HD patients)

Oral L-carnitine supplementation (900 mg/d),
six months

Vascular injury markers (sICAM-1, sVCAM-1)↓
Oxidative stress marker (MDA)↓

Serum AGE tends to be decreased
TMA↑, TMAO↑

4. Conclusions

The accumulation of uremic toxins is one of the main characteristics of advanced CKD
and is linked to the further progression of kidney injury. Clinical symptoms of uremic
syndrome including nausea, vomiting, muscle cramp, tremor, and loss of consciousness
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are caused by the accumulation of uremic toxins consequent to a failure of renal excretion.
In addition to the inability to eliminate uremic toxins, CKD-related gut dysbiosis is recently
suggested to produce more uremic toxins. Further, intake of dietary toxins such as AGEs
and TMA precursors affects the composition of gut microbiota producing more uremic
toxins and disruption of the epithelial barrier, leading to leaking of endotoxins, such as
LPS, into the body. Thus, systematic studies aimed at teasing the interplay between these
factors will pave the way to better understanding the relationship between all of these
players in the progression of CKD.
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