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Abstract: The type 5 secretion system (T5SS) is one of the more widespread secretion systems in
Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins,
enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered
the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still,
despite more than two decades of study, the exact process by which T5SS substrates attain their final
destination and correct conformation is not totally deciphered. Moreover, the recent addition of new
sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the
understanding of type 5 secretion is the question of protein folding, which needs to be carefully
controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of
proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors
preventing or promoting protein folding during biogenesis.

Keywords: secretion; folding; autotransporter; type 5 secretion system; intimin; invasin; two-partner
secretion; trimeric autotransporter

Key Contribution: This short review describes the different factors preventing or promoting folding
of proteins secreted by the T5SS.

1. Introduction

In bacteria, protein secretion is essential for numerous processes (nutrients acquisition,
pathogenesis, adaptation to the environment, etc.). These organisms have hence developed
specific machineries dedicated to this task, 11 of which have been described so far (Type 1 to
Type 11 secretion systems: T1SS to T11SS) [1–10]. These secretion systems are mostly found
in didermic bacteria, which harbor, in addition to the cytoplasmic (or inner membrane:
IM), an additional outer membrane (OM). However, some of them (T4SS, T7SS) are also
present in monodermic bacteria [9,10].

Secretion systems differ by the number, structure, localization, and function of their
components; the number and final destination of the secreted substrate proteins (external
medium and/or intracellular compartments of other bacteria or eukaryotic cells); and the
mechanism of secretion employed (energy requirement, mode of substrate recognition, one
or two-step secretion, etc.).

Among secretion systems, the T5SS is one of the more widespread, being found in
62% of Gram-negative bacteria whose genome has been sequenced, with some species
even harboring more than 20 different T5SS [11].

Akin to the T2, T8, and T9SS, the T5SS operates in a two-step fashion. The protein to
be secreted (the “passenger”) is first exported to the periplasm via the Sec machinery before
being translocated through the outer membrane (OM). The translocation across the outer
membrane requires a specific, dedicated OM β-barrel protein, called the “translocator” [12].
The passenger and translocator can be part of the same polypeptide chain or produced as
two separate proteins (T5bSS). The translocator was initially thought to be the only protein
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required for OM secretion of the passenger domain. Although it is now clear that it is
not the case [13,14], when it comes to the number of specific, necessary factors involved,
the T5SS still remains one of the simplest secretion machineries known so far. After OM
translocation, the passenger can be released into the surrounding medium or may remain
attached to the bacterial cell surface by the translocator.

Proteins secreted by the T5SS are diverse in size, sequence, and function. Although
some are produced by environmental species, most of the ones studied so far are produced
by pathogenic bacteria and are implicated in the pathogenesis of the producing strain
(toxins, adhesins, evasion from the immune system) [15].

The T5SS is currently divided into 6 sub-families (T5aSS to T5fSS) based on the three-
dimensional structures of their respective translocator and passenger domains and on
the organization of these domains relative to each other in the precursor polypeptides
(Figure 1). Structural data have been obtained for multiple T5SS proteins (translocator
and/or passenger domains) [16–26]. The only ones not structurally characterized yet are
the translocator domains of the T5dSS and T5fSS.

The T5aSS comprises the “classical” autotransporters. They are produced as single
polypeptide chains comprising an N-terminal passenger domain and a C-terminal translo-
cator domain, which forms a 12-stranded β-barrel in the OM. Both domains are connected
by a linker that traverses the OM through the pore formed by the β-barrel (Figure 1) [17].
In this sub-family, the passenger can vary widely in size and usually, but not exclusively,
adopts a β-helix fold [16,25,27]. In the T5eSS (“inverted” autotransporters), the domains are
inverted. The translocator domain, which also forms a 12-stranded β-barrel in the OM, is
N-terminal, while the passenger domain, which adopts an elongated structure composed of
multiple, independent, immunoglobulin-like domains, is C-terminal [23,24,28]. The T5cSS
(“trimeric” autotransporters) also relies on a 12-stranded β-barrel for outer membrane
translocation. However, as their name indicates, they are trimeric: 3 subunits, each con-
tributing 4 strands, assemble to form the barrel. The sequence coding for these 4 β-strands
is found at the C-terminus of the passenger domain. The three secreted passenger domains
form an intertwined, elongated structure composed of a succession of α-helical coiled-coil
and β-rich (β-prisms, β-rolls) domains, linked by connector regions [20,21,29].

In the T5bSS, the translocator is a larger, 16-stranded β-barrel, belonging to the
BamA family and possessing 2 periplasmic POTRA (polypeptide-transport-associated)
domains [19]. Upstream from the 2 POTRA domains is an α-helix that occludes the
translocator pore when in the resting state and moves to the periplasm during substrate
secretion [19]. The translocator, also called the TpsB protein, is produced independently
from the passenger (the TpsA protein), hence the name: “two-partner secretion” (Tps) for
this sub-family. As in the T5aSS, the substrates secreted by the T5bSS are predicted to fold
mostly as long β-helices to which additional functional domains can be added [18,30].

In the T5dSS, a single polypeptide chain comprises an N-terminal passenger domain,
followed by a single POTRA domain and a C-terminal domain predicted to form a 16-
stranded β-barrel homologous to TpsB proteins (Figure 1) [31]. In that case, the secreted
substrates identified so far adopt a globular, compact, α/β hydrolase fold typical of
patatin-like lipases [22]. The last addition to the T5SS, the T5fSS sub-family, includes Hops
(Helicobacter outer membrane proteins), which are predicted to form an 8-stranded β-barrel
in the OM, needed for the translocation of 15–110 kDa α-helical passenger domains. Here
however, the passenger domain is not connected to one of the barrel termini, but instead
constitutes one of the extracellular loops of this β-barrel (Figure 1) [32].

Despite this variety in structure and topology, it is currently assumed that all proteins
belonging to the T5SS have a rather similar mode of biogenesis. After synthesis, they are
kept unfolded in the cytoplasm until they are exported through the inner membrane via
the Sec translocon. Once in the periplasm, the translocator domain is targeted to the OM
by periplasmic chaperones and folded and inserted into the OM by the BAM (β-barrel
assembly machinery) complex [33,34]. There, in a still controversial mechanism, the β-
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barrel allows the translocation of the passenger domain to the cell surface, where it adopts
its final, functional conformation.

During their journey from their site of synthesis to the external medium, the folding
of the different domains of T5SS proteins need to be carefully and temporally controlled.
Here, what is currently known about this control and the factors involved in each cellular
compartment is discussed.
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Figure 1. Topological representation of the different T5SS proteins in the outer membrane. The 6 sub-families of the T5SS are
represented. Twelve-stranded β-barrels [17,21,24] are represented as pale green cylinders, while BamA-like β-barrels (16-
stranded) [19,22] are colored dark green. Hops (Helicobacter outer membrane proteins) β-barrel (predicted to be 8-stranded)
is colored cyan [32]. A question mark indicates the domains for which no structural data are available. Passenger domains
adopting β-rich conformations are depicted as red cylinders for β-helices [16,18], red cubes for β-prisms/β-rolls [20,29], and
red ovals for immunoglobulin-like domains [23,28]. Passenger domains adopting α-helical conformation are purple [22,25].
The N and C-termini of each domains are indicated. OM: Outer Membrane.

2. Staying Unfolded in the Cytoplasm
2.1. Targeting Pathways to the Inner Membrane

Numerous secreted proteins are identified by the presence of a 20–30 amino acid long
N-terminal signal sequence (or signal peptide) which is cleaved during export through the
inner membrane. Signal sequences show little sequence conservation but have a common
organization. They are composed of three regions: a N-terminal region (N) which comprises
a majority of basic residues, a H region predominantly composed of hydrophobic amino
acids, and a C region, which includes the cleavage site (Figure 2) [35].

Signal sequences are recognized by molecular chaperones and targeting factors as
they emerge from the ribosome. This ensures that proteins are delivered to the correct
translocon and kept in the appropriate conformation for export. Indeed, whereas the
TAT (twin-arginine translocation) translocase exports only folded proteins, the Sec translo-
con transports unfolded proteins across the inner membrane. All T5SS proteins harbor
N-terminal signal peptides. None of them have been identified as crossing the inner mem-
brane via the TAT translocon. Hence, as for other Sec-dependent presecretory proteins,
the folding of T5SS proteins in the cytoplasm must be prevented and the proteins kept
in a soluble, secretion-competent conformation to ensure proper export and to prevent
aggregation and degradation.
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Figure 2. Signal sequences of T5SS proteins. Although they represent the majority of signal peptides found in T5SS, only
two examples of canonical signal sequences, harboring the N, H, and C regions are shown (BrkA and IgAP). Multiple
extended signal sequences, which comprise the conserved N-terminal ESPR (Extented Signal Peptide Region), are shown,
with examples from each sub-family. Two signal peptides from lipidated autotransporters (NalP and SphB1) are also
depicted, with the lipobox highlighted in yellow.

In bacteria, there are two major pathways allowing protein targeting to the Sec translo-
con [36]. The SRP/FtsY pathway relies on a ribonucleoprotein (SRP for signal recognition
particle) that recognizes hydrophobic sequences as they emerge from the ribosome and
targets the ribosome-nascent chain complex (RNC) to the SecYEG-bound FtsY receptor.
The nascent chains are then transferred to the Sec translocon and exported through the
inner membrane (IM) co-translationally (Figure 3) [37].

Co-translational export, by limiting protein exposure to the cytoplasmic environment,
is an efficient way to prevent premature folding or aggregation of secreted proteins in the
cytoplasm. However, the SRP/FtsY pathway is mostly dedicated to the targeting of inner
membrane proteins and only 2% of secreted proteins are addressed to the membrane by
this route [38]. Most presecretory proteins are instead directed to the inner membrane post-
translationally, in a process that depends on the essential ATPase SecA and cytoplasmic
chaperones such as SecB, Trigger Factor (TF), or DnaK [39].

In the case of the T5SS, targeting to the inner membrane has been exclusively stud-
ied for a limited number of proteins that contain atypical signal sequences, longer than
50 residues. These T5SS-specific signal peptides, which are found in about 10% of T5SS
proteins, have been identified in all T5SS subfamilies, except Type 5f and 5d. They consist
of a C-terminal part resembling a canonical signal sequence and a conserved 25-residue
N-terminal extension, called the “extended signal peptide region” (ESPR) (Pfam: PF13018)
(Figure 2) [40].

While the ESPR region alone cannot act as a signal sequence [41,42], the C-terminal
part of the extended signal peptide is usually sufficient to target proteins to the inner
membrane and ensure their export [43–45]. One exception is the passenger domain of Vta9,
a trimeric autotransporter from Haemophilus parasuis which, when expressed in E. coli, is
not exported in the absence of ESPR [46].

The elongated signal sequences of the classical E. coli autotransporters (ATs) EspP, Pet,
and IcsA allow post-translational, SecB-dependent targeting to the inner membrane [45,47–49]
However, the deletion of ESPR in EspP leads to co-translational, SRP-dependent ex-
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port [45,49]. It was therefore initially proposed that the ESPR region could inhibit the
interaction between the C-terminal part of the signal sequence and SRP. However, it was
subsequently shown that EspP in fact binds SRP immediately after its synthesis but is then
excluded from the SRP/FtsY targeting pathway by a TF-dependent mechanism [50,51].
A similar result was obtained with FhaB, a protein secreted by the T5bSS in Bordetella
pertussis, which interacts transiently with SRP immediately after its synthesis but is then
targeted post-translationally to the inner membrane via the SecA/SecB pathway. In that
case, deletion of the ESPR extension has no influence on the addressing pathway [52]. In
contrast to EspP, Pet, or FhaB, Hbp, a classical AT produced by pathogenic strains of E. coli,
is addressed to the inner membrane co-translationally, in the presence or absence of the
ESPR region [43,53]. Finally, the trimeric autotransporter EmaA from Aggregatibacter actino-
mycetemcomitans was shown to be targeted to the inner membrane in an SRP-independent,
SecB-dependent manner, but the role of ESPR in targeting was not studied. In the absence
of SecB, DnaK could partially compensate for the defect in EmaA secretion [54]. DnaK was
also implicated in the secretion of two classical ATs (IcsA and SepA) [55] and proposed to
interact with a third (Ag43) [56]. Whether its role is ubiquitous in T5SS or limited to T5SS
proteins harboring an ESPR extension is currently unknown.

Overall, these studies suggest that the ESPR region has only a little role in determining
the targeting pathway of T5SS proteins to the inner membrane. However, they indicate
that depending on the T5SS protein, export across the inner membrane can be post- or
co-translational.

When post-translational targeting occurs, chaperones (SecB, DnaK) appear essential
to maintain T5SS proteins in a secretion-competent state until they reach the IM. Whether
these chaperones interact with specific domains (passenger and/or translocator domains)
of T5SS proteins or if multiple chaperones can bind simultaneously to these usually large
proteins (>100 kDa) is not yet known.

So far, Hbp is the only T5SS protein reported to be co-translationally exported [43,53].
Initially, it was proposed that proteins exported co-translationally fold too rapidly in the
cytoplasm to be addressed post-translationally. Indeed, several of these proteins were not
efficiently secreted when fused to post-translational signal peptides [57]. In contrast, Hbp
could be efficiently secreted when fused to the post-translational signal peptide from PhoE,
provided that SecB was present [43]. This indicates that co-translational export is not a
prerequisite for Hbp secretion.

Because the targeting pathway of only a handful of T5SS proteins has been established
(<10), it remains to determine how prevalent co-translational export is in the T5SS.

Certain classical autotransporters (T5aSS) have a signal sequence characteristic of
lipoproteins, comprising, at the cleavage site, a “lipobox” ([LVI]-[ASTVI]-[GAS]-C) (Figure 2).
Lipoproteins are proteins modified in the periplasmic leaflet of the IM by the addition of
lipids on the invariant cysteine of the lipobox [58]. In E. coli, export of the two lipopro-
teins: Lpp (murein lipoprotein) and BRP (Bacteriocin Release Protein) is independent
of SecB and instead requires SRP together with YidC, a universal membrane protein in-
sertase that functions either together or independently from the Sec translocon [59–61].
It is thus possible that, similarly to these 2 lipoproteins, lipidated autotransporters are
exported co-translationally.

It is currently unknown whether co-translational export is strictly necessary for a
subset of T5SS proteins exhibiting fast folding kinetics in the cytoplasm. In fact, folding
kinetics have not been compared between co- and post-translationally exported T5SS
proteins. However, studies performed on the passenger domains of two classical ATs
(Ag43 and Pertactin (Prn), both most likely exported post-translationally), have shown that
folding is extremely slow in vitro (t1/2 ~hrs to days) [62,63]. This observation is in line with
a recent study from Loos et al. [38], who proposed that in E. coli K12, mature domains of
secreted proteins, independently from signal peptides, have evolved enhanced flexibility
and a tendency to fold more slowly compared with cytoplasmic proteins. Secreted proteins
indeed appear enriched in small and polar amino acids and have fewer aggregation-
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prone regions and hydrophobic patches. These characteristics were hypothesized to limit
premature cytoplasmic folding, independently of chaperones [38]. Interestingly, mutations
introducing small hydrophobic clusters in the N-terminal disordered region of Prn caused
conformational ensemble contraction and increased aggregation in vitro together with
secretion defects in vivo when introduced in the full-length protein. Although it is most
likely that in the case of T5SS, these properties influence translocation of the passenger
domain across the OM [64], whether they also influence the mode of export through the
inner membrane or the need for interaction with cytoplasmic holdases, before export, has
not been tested.
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Figure 3. T5SS proteins targeting to the inner membrane. T5SS proteins can be targeted to the inner membrane co-
translationally (left) or post-translationally (right). Co-translational export required the recognition, by SRP (signal
recognition particle), of nascent chains as they emerge from the ribosome. The ribosome-nascent chain complex (RNC) is
then targeted to the Sec translocon (SecYEG) via SRP recognition of its receptor FtsY. Export then proceeds co-translationally.
In the case of post-translational targeting, proteins are released in the cytoplasm, where they need to be kept unfolded and
soluble until export through SecYEG. This is achieved by interactions with chaperones such as SecB or DnaK. Some T5SS
are also glycosylated in the cytoplasm by 2 classes of glycosyltransferases: the NGTs (HMW1C-like N-glycosyltransferases)
and the BAHTs (bacterial autotransporter heptosyltransferases) which potentially recognize partially folded substrates.

Finally, the targeting pathway/mode of export and role of cytoplasmic chaperones
remains to be determined for T5SS proteins lacking an ESPR sequence and for members of
the newest T5SS subfamilies (T5dSS, T5eSS, and T5fSS).

2.2. Cytoplasmic Glycosylation and Folding

The passenger domain of several members of the T5SS, including classical ATs
(T5aSS) [65–68], proteins secreted by the two-partner secretion system (T5bSS TpsA pro-
teins) [69,70], and trimeric ATs (T5cSS) [71,72], have been shown to be glycosylated at
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multiple sites (e.g., 31 for the TpsA HMW1A and 18 for the classical autotransporter
Ag43). Two different mechanisms of glycosylation have been identified, and in both cases,
modification occurs in the cytoplasm, before export.

HMW1A/2A and EtpA are proteins secreted by the T5bSS in H. influenzae and en-
terotoxigenic E. coli respectively. They are glycosylated by dedicated glycosyltransferases
(HMW1C/2C and EtpC), the genes of which are co-transcribed with the respective tpsA and
tpsB genes. These homologous glycosyltransferases are interchangeable [73] and belong to
a family of enzymes (the “NGTs” for HMW1C-like N-glycosyltransferases) able to transfer
single hexoses from UDP-hexoses to asparagine on the acceptor NXS/T sequons (where
X 6= Pro). In some species, genes encoding NGTs are found alone, without associated
T5bSS, and can modify classical or trimeric autotransporters, as well as proteins not related
to T5SS [71,74]. Whether these cytoplasmic glycosyltransferases recognize their substrates
co-translationally, as they emerge from the ribosome, similarly to peptide deformylase
and methionine aminopeptidase [75,76] or post-translationally, after complete synthesis,
is unknown. In addition, the state of folding of the acceptor protein when modification
occurs has not been determined. On the one hand, the recognition of a sequence motif,
together with the ability of NGTs to modify short peptides in vitro [74,77] suggest that
these enzymes do not recognize a structural motif in their targets. However, a recent study
coupling mass spectrometry and proteomics showed that NGTs act in a semi-processive
manner, with a preference for sequons that are exposed on the surface of the acceptor
protein, suggesting a post-translational modification of partially folded substrates [78].

The second mechanism of T5SS protein glycosylation involves an unrelated family
of glycosyltransferase, the BAHTs (bacterial autotransporter heptosyltransferases), which
transfer heptoses on serine or threonine residues of target proteins [66,67,79]. The crystal
structure of the glycosylated passenger domain of TibA (TibA55–350), a classical autotrans-
porter, indicates that the sugars are aligned on the surface of the protein, mostly attached
to the loops connecting the β-strands of the β-helix [80].

BAHTs, which are also commutable, are either co-transcribed with their target or
located elsewhere on the chromosome [67,68,81]. These enzymes use ADP-glycero-β-D-
manno-heptose from the lipopolysaccharide biogenesis pathway as a sugar donor, and
require iron for activity [68,70]. E. coli TibC, the only BAHT that has been crystallized
so far, forms a large (578 kDa) ring-shaped dodecamer (external diameter 145 Å, height
72 Å) with the catalytic site of each subunit pointing towards the central pore of the ring
(internal diameter 110 Å). The complex between TibA55–350 and TibC was purified and
analyzed by cryo-electron microscopy. The structure obtained (at 8.9 Å resolution) shows
six molecules of TibA55–350 inserted in the pore of the TibC ring, in an elongated, spiral shaft
conformation fitting well with the crystal structure of folded TibA55–350 [80]. These results,
which suggest that BAHTs modify folded (or partially folded) substrates, are consistent
with the previously proposed idea that these enzymes recognize a structural motif rather
than a consensus sequence [82] and the position of the modified residues, on the surface of
the target protein, in loops connecting the β-strands [68].

Whatever the glycosylation mechanism (NGTs- or BATHs-mediated), a number of
questions remain about how the glycosylation reaction is spatially and temporally coordi-
nated with protein targeting to the inner membrane (Figure 3). In particular, how, and at
what point during/after synthesis, are proteins handed over to glycosyltransferases instead
of being directly exported without modifications? How is specificity established? Are
glycosyltransferases interacting with cytoplasmic chaperones and targeting factors? How
are the glycosylation-competent conformations of passenger domains (apparently partially
folded) attained and maintained? What happens to the linked β-domain (which is not
glycosylated) during the glycosylation steps? In particular, in the case of BAHTs substrates,
is the passenger domain folding before or upon interaction with the BAHTs ring? Can
BAHTs modify any β-helix-forming passenger domain? Finally, once glycosylated, how
are these domains released, unfolded, and addressed to the inner membrane for export?
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Canonical chaperones/targeting factors could transfer T5SS proteins to glycosyltrans-
ferases, remain bound to them while they are being modified, or address them to the
membrane after modification. Whether NGT or BAHT glycosyltransferases directly partici-
pate in inner membrane targeting of glycosylated T5SS is unknown. Because the HMW1A
level in the cytoplasm was strongly decreased in the absence of the NGT HMW1C [70], this
enzyme was hypothesized to act as a chaperone for HMW1A prior to export, eventually
protecting it from proteolytic degradation [83]. However, glycosylation itself is known
to increase stability and proteolytic resistance of proteins, including the BAHT-modified
ATs Ag43 and AIDA-I [63,79]. Glycosylation was also found to increase the rate of Ag43
folding in vitro [63].

Aah, the BAHT necessary for AIDA-I glycosylation, was proposed to be membrane-
associated [84], but an eventual interaction with SecYEG was not tested. Importantly, gly-
cosyltransferases are not required for the secretion of Ag43, AIDA-I, or HMW1A [63,70,79]
and although glycosylated T5SS proteins often possess an ESPR sequence, neither this
sequence nor the entire signal peptide are required for glycosylation [82]. As previously
mentioned, SecB and DnaK are important for the secretion of EmaA, an N-glycosylated,
trimeric AT [54]. Ag43, an O-glycosylated, classical AT from E. coli, was isolated as part
of the DnaK interactome [56]. In that case, DnaK, which has an unfolding activity, might
be necessary for unfolding the passenger domain after it has been glycosylated in the
BAHT ring. Alternatively, glycosylated autotransporters might interact with unidentified,
specific chaperones.

3. Periplasmic Transit

T5SS proteins exported by the Sec translocon emerge in the periplasm, with their
N-terminus first, in an unfolded conformation. The translocator domains must then reach
the outer membrane, in which they are inserted/folded by the BAM (β-barrel assembly
machinery) or TAM (translocation and assembly module) machineries [85–87]. Meanwhile,
the long passenger domains must be prevented from aggregation and degradation and
maintained in a conformation competent for proper translocation across the OM. In most
subfamilies, the passenger domain is fused to the translocator domain and hence targeted
with it to the OM. In the case of the T5bSS, the passenger (TpsA protein) is indepen-
dently targeted to the OM, where it is recognized by the already inserted translocator
(TpsB protein).

3.1. Transient Anchoring to the Inner Membrane

Although the ESPR extension has apparently no role in determining the targeting
pathway of T5SS proteins to the inner membrane, it appears to be important for proper
periplasmic transit. Szabady et al. [41] have indeed shown that in the absence of ESPR,
the classical autotransporter EspP is properly exported through the inner membrane but
tends to misfold in the periplasm, leading to decreased passenger domain translocation
across the OM. Because overexpression of a fusion between EspP signal sequence and
the maltose binding protein impairs the translocation of various envelope proteins across
the inner membrane, it was proposed that the ESPR extension interacts with the Sec
translocon to reduce overall rates of IM transport. This sequence would hence slow down
export of T5SS proteins and prevent the passenger domain from folding compactly in the
periplasm [41]. Similarly, the extended signal sequence from FHA (secreted by the T5bSS)
significantly decreases the rate of export of beta-lactamase when it replaces its native signal
sequence [52]. However, although the presence of the ESPR sequence also delays the inner
membrane translocation of Pet [48], this classical autotransporter is still efficiently secreted
when the ESPR is deleted [44]. In contrast, the extended signal peptide of the trimeric
autotransporter EmaA is important for proper assembly of the monomers into a functional
adhesin [42]. Finally, an ESPR sequence has also been found in at least one protein secreted
by the T5eSS (the “inverted” autotransporters) (Figure 2) [88]. However, the role of ESPR
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in this family, where the first domain to emerge in the periplasm is the translocator, has not
been determined.

How exactly the ESPR sequence is slowing down export via Sec has not been deter-
mined. In the case of Hbp, the extended signal sequence interacts with YidC [61,89]. In
the absence of YidC, Hbp accumulates in the periplasm in a form which is susceptible to
degradation by the DegP protease [89]. The secretion of another classical AT, EspC, is also
affected in the absence of YidC [89], suggesting that ESPR could delay export by interacting
with YidC. However, neither an ESPR-dependent export delay of Hbp and EspC nor an in-
teraction between ESPR and YidC has been demonstrated [89]. In addition, the role of YidC
in the secretion of EspP, FHA, or EmaA has not been tested, whereas the secretion of IcsA,
another AT harboring an extended signal sequence (Figure 2), is YidC-independent [47].
Alternatively, the ESPR extension could also delay export by preventing the association
between Sec and a factor necessary to clear the translocon from its substrates. One potential
candidate is PpiD, an inner membrane-anchored periplasmic chaperone, which interacts
with SecY at the same position as YidC and improves translocation efficiency [90,91].

The second question is how does slowing down export across the inner membrane
prevent passenger domain misfolding in the periplasm and/or facilitate OM translocation
through the OM? Initially, it was proposed that delaying export could facilitate interactions
between T5SS proteins emerging in the periplasm and soluble periplasmic chaperones [41].
Indeed, slowing down export of Prn in E. coli (by replacing its native post-translational
signal peptide by a co-translational or ESPR-containing one) suppresses the requirement of
the DegP chaperone for cell viability [92], suggesting that export rate directly influences the
conformation of the passenger domain in the periplasm. Alternatively, transient anchoring
to the inner membrane could also help recruit inner membrane or outer membrane factors
important for periplasmic transit or OM translocation. For instance, an ESPR-containing
trimeric autotransporter (SadA) depends on an inner membrane trimeric lipoprotein (SadB)
for proper export to the surface [93]. Although not tested, a transient anchoring of SadA
to the inner membrane could facilitate SadB recruitment. Similarly, recruitment of OM
insertion machineries, such as TAM or BAM, could be favored by longer retention times of
T5SS proteins at the Sec translocon. TAM is indeed an intermembrane-spanning complex,
with the inner membrane component (TamB) contacting the outer membrane insertase
TamA via an elongated taco shell-shaped periplasmic domain [94]. The involvement
of TAM in the secretion of certain T5SS proteins has been demonstrated [87,95,96] and
the inner membrane component, TamB, appears essential for the proper folding of the
passenger domain at the cell surface [97]. Whether TamB captures T5SS proteins as they
exit the Sec translocon and targets them to TamA without periplasmic release is not clear
yet. No interaction between TamB and Sec has been demonstrated, nor a tripartite complex
consisting of TamAB with a substrate isolated [87,97]. However, an ESPR-containing AT
(Ag43) is able to interact with both TamA and TamB in vivo [97].

In contrast with TAM, the BAM machinery was found to associate with the Sec
translocon to form a trans-periplasmic complex. Here, it is still unclear if this complex is
formed constitutively or upon export of substrates [98–100]. Additionally, the eventual
substrate specificity of this complex or its potential role in T5SS has not been determined.

3.2. Role of Periplasmic Factors in Maintaining Secretion-Competent Conformation

In the periplasm of Gram-negative bacteria, a network of well-described ATP-indepen-
dent quality control factors is necessary for the biogenesis of outer membrane proteins. This
network includes chaperones/holdases such as SurA (survival protein A), FkpA (FK506-
binding protein A), or Skp (seventeen kilodalton protein), as well as proteins with dual
chaperone/protease activity like DegP. In physiological conditions, none of these factors
are essential due to their redundant function and overlapping substrate specificity [101].

The role of these quality control factors is variable depending on the T5SS protein.
Studies have shown that in E. coli, S. flexneri, and Yersinia, the lack of SurA affects passenger
domains secretion for classical (EspP, Hbp, IcsA) [102–104], and inverted (EPEC Intimin
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and Yersinia Invasin) autotransporters [105–108]. In these cases, the effect on β-barrel
insertion in the OM differs from one protein to another. Direct interactions between
SurA and Hbp or EspP have been demonstrated in vivo by cross-linking approaches or
yeast two-hybrid (YTH) experiments [103,109] and in vitro, by surface plasmon resonance
(SPR) [103]. These studies indicate that SurA binds not only to the β-barrel but also to
the passenger domain of T5aSS proteins. Similarly, Skp interacts with both the passenger
of EspP and Pet and with the β-barrel domain of EspP and NalP [110–112]. However,
deletion of skp was found to affect the biogenesis of EspP and IcsA, but not that of Pet,
Hbp, Intimin, or Invasin [102–105,108,112,113]. The passenger domain of EspP was found
to also interact with FkpA by SPR, but the effect of deleting fkpA on EspP biogenesis
was not tested [114]. Finally, in strains lacking degP, the secretion of EspP and IcsA was
defective while Hbp translocation was unaffected [104]. Interactions between DegP and
the passenger or translocator domains of EspP were revealed by SPR and YTH [103]. As
previously mentioned, contrary to Pet or Hbp, expression of Bordetella Prn was lethal in an
E. coli degP strain, while the lack of either skp or fkpA did not cause lethality or defect in Prn
secretion [92,113].

Importantly, UV-dependent cross-linking experiments coupled with pulse-chase anal-
ysis have shown that interactions between periplasmic chaperones and their substrates are
sequential; indeed, EspP first interacts with Skp, then with SurA and the components of
the BAM machinery (interactions with FkpA or DegP were not reported in this study) [110].
Skp would hence act early after the protein emerges in the periplasm, while SurA would
target the protein to the BAM complex for folding and insertion in the OM. Altogether,
these studies point to a central role of SurA in T5aSS protein transit through the periplasm,
while the other quality control factors would only have a secondary role in maintaining
the passenger domain in a form compatible with secretion and/or in degrading the mis-
folded, potentially toxic intermediates. The essential role of SurA in T5aSS biogenesis
is corroborated by the fact that, in vitro, SurA and the BAM complex are necessary and
sufficient to insert and fold autotransporters into proteoliposomes or nanodisks [115,116].
The dependency on other factors in vivo could be governed by the folding properties, rate
of inner membrane export, expression level, or OM insertion machinery used by individual
T5SS proteins.

Interestingly, apart from the factors described above, which have a general role in
outer membrane proteins biogenesis, putative chaperones have also been identified as
implicated only in T5SS biogenesis. Such a putative periplasmic chaperone protein, VirK,
(conserved in Enterobacteriaceae), interacts with the unfolded passenger domain of Pet
(but not with its β-barrel) and is necessary for its secretion [112]. A role for VirK in
the biogenesis of IcsA was also suggested but not thoroughly investigated [117]. This
putative chaperone does not seem to have a general role in the biogenesis of OMPs (porins),
however its exact substrate specificity has not been determined [112]. Another recently
identified periplasmic protein (OsmY) is necessary for the biogenesis of several classical
autotransporters (Ag43, TibA, and EheA) in E. coli. In vitro studies indicate that this
protein would act by promoting the folding and stabilization of the translocator domain
but not that of the passenger domain. OsmY appears specific to SAATs (Self Associating
AutoTransporters, which includes glycosylated ATs), its absence having no influence on
the biogenesis of EspP. Although not confirmed, it was proposed that OsmY would be part
of an OM-addressing path parallel to the SurA/BAM canonical path (Figure 4). Indeed,
the ATs Ag43 and EhaA are substrates of the TAM insertion machinery and OsmY interacts
with TamB [118]. Whether VirK or OsmY have a role in other T5SS sub-families, outside
the “classical” autotransporters, remains to be established.

Importantly, the studies described above have been mostly performed in E. coli or
close relatives. However, the role of these chaperones in the wider bacterial community
may vary significantly. In N. meningitidis for instance, SurA, Skp, and DegP appear to have
a minor role in OMPs biogenesis or AT secretion. Indeed, although an interaction has been
demonstrated in vitro between E. coli Skp and NalP (an AT from N. meningitidis) [111],
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in vivo, IgAP, another classical AT of Neisseria, does not show any synthesis defect in the
absence of skp, surA, or degP [119].
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Figure 4. T5SS proteins transit through the periplasm. T5SS proteins exit the Sec translocon in an unfolded conformation,
with their N-terminus first. Some may be transiently associated with the Sec translocon, via their N-terminal ESPR sequence.
Once released into the periplasm, they interact with chaperones and targeting factors that address them to the BAM and/or
the TAM complex for insertion and folding in the outer membrane. For clarity, the BamBCDE subunits are not represented.
A portion of T5SS proteins is acylated, after export, by the dedicated lipoprotein modification pathway consisting of
3 enzymes: Lgt, Lsp and Lnt. Although not proven, lipidated T5SS proteins might be addressed to the OM via the Lol
system, before OM insertion and folding by BAM or TAM. IM: Inner Membrane, OM: Outer Membrane.

In the T5bSS, the TpsA protein is released in the periplasm independently from
the TpsB protein, which, like other OMPs, probably relies on the previously described
network to reach the OM, at least in E. coli. Whether this network is also necessary to keep
TpsA proteins in a secretion-competent conformation until they reach their cognate TpsB
translocator is mostly unknown. In the absence of their cognate TpsB proteins, certain
TpsA (ShlA, OtpA) accumulate in the periplasm, while others (FHA, HMW1A, CupB5)
are degraded by DegP [120–124]. In Bordetella pertussis, Par27, a chaperone with peptidyl
prolyl isomerase activity, was identified as interacting with the TpsA FHA. In vitro, both
Par27 and DegP prevent FHA aggregation and degradation. However, FHA secretion was
not affected in a B. pertussis par27 strain [125] but was decreased in a degP strain [120].
Additionally, none of these proteins were required for FHA translocation in an in vitro
reconstituted system [126].

The periplasmic transit of trimeric autotransporters (T5cSS) appears to significantly
differ from other T5 subfamilies. Although mutants of YadA (a Yersinia trimeric AT) defec-
tive in OM translocation were degraded by DegP [127,128], yeast two-hybrid experiments
failed to detect interactions between YadA and SurA or Skp. When YadA was expressed
in yeast, it could fully integrate as functional trimers in the OM of mitochondria and the
level of assembly was significantly increased in the presence of Skp, but not of SurA [129].
However, the biogenesis of YadA was not affected in Y. enterocolitica strains where the
skp, surA, or degP genes have been deleted [108]. Interestingly, few trimeric ATs genes
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are found to be co-transcribed with genes encoding potential periplasmic chaperones. In
S. typhimurium, the export and folding of the trimeric AT SadA is affected when SadB, a
trimeric lipoprotein associated to the inner membrane, is absent. Although an interaction
between SadA and SadB has not been detected, it was proposed that SadB could support
the trimerization of unfolded SadA and improve translocation across the OM by increasing
the retention time of the unfolded passenger at the inner membrane [93]. In Acinetobacter
sp. Tol 5, a gene encoding a periplasmic protein is co-transcribed with the trimeric AT
AtaA. When this protein (TpgA: trimeric autotransporter and peptidoglycan-associated
protein A) is absent, the level of AtaA displayed at the cell surface decreased. TpgA has
no similarity with SadB and is monomeric. It interacts both with the peptidoglycan and
with AtaA at the outer membrane [130]. Operons similar to sadBA and aatA-tpgA were
found in various Gram-negative bacteria, however the exact mechanism of action of these
two putative chaperones, together with their substrate specificity, is currently unknown.
In particular, it remains to be determined if they could also act on other trimeric ATs or
other OMPs.

In addition to chaperones and proteases, enzymes catalyzing the formation and
isomerization of disulfide bonds (DsbA/DsbC), are also found in the periplasm of Gram-
negative bacteria. Some T5SS passenger domains indeed harbor native disulfide bonds,
suggesting they interact with the Dsb system while transiting through the periplasm.
However, this has been verified only in a few cases. DsbA was found essential for the
formation of a disulfide bridge located in the C-terminal lectin-like domain of Intimin.
In the absence of this disulfide bond, Intimin passenger domain is still secreted, but in a
conformation susceptible to proteases [105]. Similarly, the Dsb system was required for
the formation of the disulfide bridge located in the passenger of IcsA [131]. In some TpsA
proteins, a disulfide bond is formed at the C-terminus of the protein, in a domain that
remains periplasmic after translocation. The role of Dsb in the formation of this disulfide
bond, which is necessary for the protein anchoring to the cell surface [132], has not been
addressed. In general, T5SS proteins have a low cysteine content and when present, the
cysteines are only a few residues apart. In these conditions, disulfide bond formation
should only generate small loops in the unfolded precursor that should not interfere with
OM translocation [113]. In this context, it is interesting to note that a family of chlamydial
classical ATs, the Pmp (polymorphic membrane protein) can display up to 18 cysteines in
their passenger domain [133]. How these T5SS proteins are handled in the periplasm has
not been examined.

As previously mentioned, some T5SS proteins are lipoproteins. In Gram-negative
bacteria, lipoproteins are tri-acylated, after export to the periplasm, by the consecutive
action of 3 enzymes: Lgt, Lsp, and Lnt (Figure 4) [58]. Lipoproteins destined to the OM
interact with the LolCDE complex, which transfers them to LolA, a soluble periplasmic
protein. LolA subsequently handles the substrate to LolB (an OM lipoprotein) for insertion
of the lipid moiety in the inner leaflet of the OM [58]. Some lipoproteins can be further
translocated across the OM [134]. In the case of lipidated T5SS proteins, the final desti-
nation of the lipid anchor (inner or outer leaflet of the OM) and hence the topology of
the corresponding proteins in the OM, have not been determined. In addition, the role of
the Lol system in their biogenesis, and its eventual interplay with the periplasmic factor
previously described, has not been studied.

Finally, in contrast with the previously described member of the T5SS, the role of
periplasmic factors in the biogenesis and folding control of T5dSS and T5fSS proteins have
not been investigated.

4. Translocator Domain Insertion and Folding in the Outer Membrane
4.1. Role of the BAM Complex

In 2003, a conserved system essential for the insertion and folding of β-barrel proteins
in the outer membrane of Gram-negative bacteria was discovered [33]. Since then, the
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now-called BAM (β-barrel assembly machinery) complex has been extensively studied
both biochemically and structurally [33,85,86].

The BAM machinery is a hetero-oligomeric complex composed of an outer membrane
protein (BamA), and a variable number of lipoproteins (4 in E. coli: BamB-E). BamA is
essential and conserved in Gram-negative bacteria. The C-terminal domain of BamA
forms a 16-stranded β-barrel in the OM, while its N-terminal domain consists of five
POTRA domains located in the periplasm [135–139]. Multiple T5SS have been shown
to depend on the BAM complex for biogenesis, which is expected since these proteins
contain β-barrel-forming domains. BAM is indeed necessary for the secretion of classi-
cal [33,104,109,110,140,141], inverted [105], and trimeric [128,142] ATs, but its role in TpsB
protein biogenesis, or T5d and T5f autotransporters, has not been studied. Interactions
between T5SS proteins and various components of the Bam complex (BamA, BamB, and
BamD) have also been demonstrated [104,109,110].

Although the mechanism by which BAM inserts and folds β-barrels in the OM is
not completely deciphered [34,85,86,143], structural studies have indicated that BamA can
adopt multiple conformations, with its N- and C-terminal β-strands pairing either via 8
(closed barrel) or only 2 (open barrel) hydrogen bonds [135–139]. It was hence proposed
that the substrate terminal β-strands could pair with the BamA lateral seam to initiate
β-sheet formation in the OM. This led to a “budding” model in which the substrate β-
barrel forms a hybrid barrel with BamA and buds out in the membrane once folding is
complete [85,86,135,143]. This model is supported by the recent observation, by cryo-
electron microscopy, of such a hybrid barrel formed between BamA and a substrate [144].
However, this complex represents a late-stage intermediate in the assembly of the substrate
and does not permit to determine whether the hairpins of the substrate β-barrel are formed
before or upon interaction with BamA. Indeed, site-specific cross-linking studies performed
on classical and trimeric ATs indicate that the β-barrels of these proteins already acquire a
certain degree of folding in the periplasm, prior to their insertion in the OM [145,146]. In
these cases, the periplasmic proto-barrels would be transferred onto the opening of BamA
by a “swing” mechanism [147].

How the b-barrels are finally released into the OM is less clear [86].

4.2. Role of the TAM Complex

More recently, another complex (TAM: Translocation and Assembly Module) has been
identified as important for the secretion of certain T5SS proteins [87]. TamA is a homologue
of BamA, also forming a 16-stranded β-barrel in the outer membrane with a lateral opening,
but harboring only 3 POTRA domains [148,149].

TAM is necessary for the secretion of some classical autotransporters such as Ag43
and EhaA in E. coli and p1121 in Citrobacter [95], as well as some inverted ATs (Intimin,
FdeC) [150], but has apparently no role in trimeric ATs assembly (YadA, EibD, SadA) [151].
Its role in other T5SS subfamilies has not been established. It is not clear yet what properties
of β-barrels make them substrates for TAM instead of BAM. Specificity might not be that
stringent since Ag43, a TAM substrate, is efficiently processed by BAM in an in vitro
reconstituted system [152] and Intimin has been found to depend on BAM for secretion
in vivo [105]. Although the structural and functional homologies between TamA and BamA
suggest that these two proteins may have similar mechanisms to insert ATs in the OM
(“budding” model), this needs to be established. The exact role of TamB in this process also
needs to be determined. It was recently shown that TamA POTRA domains, upon substrate
binding, extend into the periplasm. Because these domains interact with the relatively rigid
TamB, the resulting pressure applied on TamA intramembrane domain was proposed to
induce a local distortion of the OM that could promote β-barrel assembly [87,96].

5. Passenger Domain Secretion and Folding in the Extracellular Space

The mechanism by which T5SS proteins secrete their passenger domain across the
OM has been the subject of numerous debates and will only be briefly discussed here as
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several excellent reviews have covered these subjects recently [30,153,154]. In the case of
the two-partner secretion system (T5bSS), the TpsB protein forms a channel in the OM
through which the TpsA protein is secreted. TpsB recognizes its periplasmic, unfolded
substrate via an interaction between its POTRA domains and the N-terminal domain of
the TpsA protein. What remains unclear is the orientation of the substrate (N-terminus
outside or inside) as it emerges in the extracellular space and what is the energy source
driving translocation [30,154]. In the case of autotransporters, the main questions are the
nature of the channel translocating the passenger, and, as for T5bSS, the energy source
driving translocation through the OM [153]. The question of the energy source might
have found a partial answer with the recent demonstration of a role for the proton motive
force (PMF) in the assembly of outer membrane proteins by BAM. However, a direct link
between the PMF and the translocation of ATs passenger domains across the OM needs to
be established [98]. It also remains to be determined whether all ATs passenger domains
are translocated through their own β-barrel or through a hybrid barrel formed with BamA
during OM folding and insertion [13]. What is generally accepted, however, is that the
passenger domains emerge unfolded in the extracellular space, the region closer to the
barrel (i.e., the passenger C-terminus in the T5aSS and T5cSS, the N-terminus in the T5eSS)
forming a hairpin through the membrane [62,155]. These passenger domains then need to
rapidly reach their functional conformation at the cell surface. In a few classical ATs, an
“autochaperone” domain has been identified at the C-terminus of the passenger domain.
This domain promotes folding of the full passenger domain whether provided in cis or
in trans (as a separate polypeptide) [12,156]. In some ATs, a domain of increased stability
(“stable core”) can also be found at the C-terminus of the passenger domain [12]. It was
proposed that this stable core could nucleate folding in the extracellular space, which would
then occur in a vectorial fashion from the C- to the N-terminus and drive translocation of
the rest of the passenger through the OM. These autochaperone domains and stable cores
are however absent from passenger domains adopting an α-helical conformation [156].
Nevertheless, the structure of at least one α-helical passenger domain (Rickettsia Sca)
suggests that it could also fold vectorially [27]. Whether this is also true in other sub-
families where passenger domains are mostly α-helical (T5dSS, T5fSS) is unknown. No
autochaperone/stable core domain were identified in inverted autotransporters. In the case
of Intimin, deletion of the membrane-proximal domain does not affect folding or secretion
of the rest of the passenger, suggesting that in that case, each Immunoglobulin-like domain
folds individually in a sequential manner [155]. Finally, folding of the passenger domain in
the extracellular space might also be assisted by the β-barrel itself. Indeed, Yuan et al. [157]
showed that the extracellular loop 5 of EspP and Pet β-barrel forms a β-hairpin at the
cell surface, which is essential for the folding of the passenger domain. A mechanism
was proposed in which the β-barrel L5 β-hairpin would promote folding of the passenger
domain by β-nucleation. This mechanism could be widespread in the T5SS. Indeed, an
external β-sheet region of the TpsB protein FhaC was also found to be important for the
secretion of its cognate TpsA [158]. Finally, in the X-ray structure of Intimin and Invasin,
the extracellular loops L4 and L5 were found to form a small β-sheet with the extremity
of the linker [24]. However, the role of these loops in passenger domain folding and/or
translocation across the OM has not been tested.

6. Conclusions

The T5SS proteins, initially thought to be able to drive their own secretion, in fact
require numerous accessory factors for proper travel from their site of synthesis to their
final destination. While most of these accessory factors have a general role in the biogenesis
of secreted proteins, others appear specific to the T5SS. The requirement for some of
these accessory factors varies between sub-families, but also within members of the same
sub-type, which indicates that findings obtained with a single T5SS protein cannot be
generalized neither to the entire T5SS nor to one of its sub-families. Importantly, studies
performed so far have been limited to only a few bacterial species (mostly E. coli and close
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relatives). Thus, the eventual role of the various accessory factors identified so far needs to
be established in more distant bacteria (when present).
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