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Staphylococcus aureus is an opportunistic and versatile pathogen that can cause several
diseases, which range from acute and destructive, to chronic and difficult-to-treat infec-
tions [1,2]. S. aureus colonizes the nasopharynx of many individuals, but this colonization
can be the source for infections [3] that vary from superficial mild skin infections to severe
diseases, such as pneumonia or osteomyelitis [4,5]. In particular, severe staphylococcal
infections are associated with significant morbidity and mortality. The ability of S. aureus
to trigger different types of infection is due to its wide repertoire of virulence factors and
infection strategies [2,6,7].

To initiate the infection, S. aureus uses different surface-bound proteins that facilitate
the pathogen to attach to host tissue and invade host cells [8–10]. Following adherence
and internalization, the bacteria can grow and activate their toxin production largely con-
trolled by global regulators, such as quorum sensing systems [11]. S. aureus can express
many molecules, in particular toxins, that harm and destroy host cells [12–16]. During the
infection process, the toxins enable the bacteria to destroy and enter deep tissue structures,
to obtain nutrition for their growth, and to defend against the immune system [16]. How-
ever, after the acute and destructive phase, S. aureus bacteria aim for survival within the
host [17,18]. For bacterial long-term persistence in host tissue, many of the toxins need to
be downregulated. In this way, the bacteria are hardly recognized by the immune system
and can avoid clearance by phagocytes. Consequently, downregulation of toxins is crucial
to silently persist within host cells/tissue for long time periods [18–20].

Taken together, virulence factors, such as toxins, need to be regulated precisely during
the course of infection by global regulators, e.g., quorum-sensing systems, which act as
a feedback to the surrounding microenvironment [21–25]. Even though staphylococcal
toxins are deeply studied, the question remains as to whether and at which stage of the
infection a “virulent” strain which expresses a lot of secreted toxins, or a “silent” persisting
strain is the real danger for the host.

The purpose of this Special Issue is to publish original research and review articles
related to the role of toxins in disease development, the mechanisms of toxin effects in host
tissue, the regulation and function of toxins during acute and chronic infections, and toxins
as targets for vaccine development and therapeutic interventions. A better understanding
of the role of toxins during the different stages of infection may enable us to precisely plan
anti-toxic drugs/vaccinations or therapeutic interventions in bacterial regulation.

In two reviews, the importance of S. aureus enterotoxins and exotoxins as foodborne
intoxications are addressed. The first review highlights the role of staphylococcal entero-
toxin C in human and animal health, whereas the second review focusses on measures to
avoid food poisoning originating from mastitis or skin infection from ruminants [26,27].
For this, rapid methods to detect S. aureus exotoxins in dairy products are required.

The function and effects of toxins that are major virulence factors in serious invasive
infections are outlined in the next section. Two original research articles deal with S. aureus
leukocidins that efficiently induce cytotoxicity in susceptible leucocytes, whereas these
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effects are highly cell type- and species-specific. In the article by Hodille et al., the effect
of leukocidins on bone marrow cells is analyzed to better understand leukopenia, which
is described in many clinical cases [28]. In the work by Tromp et al., the host cellular
pathways that are activated after the binding of the leukocidins to the cellular receptor of
susceptible cells are elucidated [29]. The authors describe post-translational modification
pathways that could explain differences in the susceptibility to leukocidins. In a further
contribution, the production and release of S. aureus extracellular vesicles (EVs) that are
packed with different cytotoxic components and represent a novel bacteria secretory system
in response to various stress conditions are analyzed [30]. Finally, the article by Schelin
focusses on bacterial regulator networks that control the expression of S. aureus toxins, e.g.,
superantigens. The authors performed RNAseq analysis, and revealed the role of ClpXP in
the complex regulation of S. aureus virulence [31].

Two research papers within this Special Issue analyzed the role of toxins in the devel-
opment of S. aureus pneumonia. Deinhardt-Emmer et al. demonstrated that pneumonia
strains exhibit enhanced invasion and cytotoxicity, whereas when the strains were obtained
from a viral–bacterial co-infection, these virulence characteristics were not required [32]. La-
coma et al. characterized S. aureus isolates from mechanically ventilated patients. Although
the authors performed an extensive analysis, there was no evidence of pathological adapta-
tion related to virulence, resistance, or niche adaptation [4]. From these two papers, we can
conclude that almost any S. aureus strain is able to cause a lung infection when the lung is
already damaged, e.g., by a preexisting influenza infection or by a mechanical ventilation.

Chronic and difficult-to-treat S. aureus infections are major clinical problems which
are addressed in this Special Issue as well. One example is chronic rhinosinusitis, and
the S. aureus leucocidin ED ((LukED) is described as a constant trigger that contributes to
disease development [33]. A second well-known disease that is complicated by S. aureus
infections is cystic fibrosis (CF). A prospective multicenter study followed the adaptation
of S. aureus isolates in CF patients. The authors described a decrease in virulence and
toxin genes that most likely reflect the bacterial adaptation process towards a persisting
phenotype [34]. Additionally, in S. aureus osteomyelitis, the bacteria revealed adaptation
strategies largely controlled by the accessory gene regulator (agr) locus, which is extensively
reviewed by Butrico et al. [35]. Finally, Wong Fok Lung et al. display the S. aureus metabolic
adaptation that is induced by the host immune response and results in bacterial strains
adapted for chronicity [36].

We conclude the Special Issue on S. aureus toxins with two manuscripts addressing
prophylactic and therapeutic interventions. Shukla et al. propose a statistical method to
integrate data on changes in gene expression upon antimicrobial treatments. This method
aims to develop a therapeutic regime to not only eliminate bacteria, but also reduce their
virulence [37]. Joyner et al. developed a virus-based vaccine that target S. aureus toxin (Hla)
and attenuates S. aureus Hla-mediated pathogenesis [38]. This approach could be part of a
multi-component S. aureus vaccine in future.
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