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Abstract: Changes in ecological and environmental factors lead to an increased occurrence of
cyanobacterial water blooms, while secondary metabolites-producing cyanobacteria pose a threat
to both environmental and human health. Apart from oral and dermal exposure, humans may be
exposed via inhalation and/or swallowing of contaminated water and aerosols. Although many
studies deal with liver toxicity, less information about the effects in the respiratory system is
available. We investigated the effects of a prevalent cyanotoxin, microcystin-LR (MC-LR), using
respiratory system-relevant human bronchial epithelial (HBE) cells. The expression of specific
organic-anion-transporting polypeptides was evaluated, and the western blot analysis revealed the
formation and accumulation of MC-LR protein adducts in exposed cells. However, MC-LR up to
20 uM neither caused significant cytotoxic effects according to multiple viability endpoints after 48-h
exposure, nor reduced impedance (cell layer integrity) over 96 h. Time-dependent increase of putative
MC-LR adducts with protein phosphatases was not associated with activation of mitogen-activated
protein kinases ERK1/2 and p38 during 48-h exposure in HBE cells. Future studies addressing
human health risks associated with inhalation of toxic cyanobacteria and cyanotoxins should focus on
complex environmental samples of cyanobacterial blooms and alterations of additional non-cytotoxic
endpoints while adopting more advanced in vitro models.

Keywords: microcystin-LR; human bronchial epithelial cells; invitro, HBE1; 16HBEl4o-,
mitogen-activated protein kinase; cytotoxicity; OATP

Key Contribution: The study demonstrated the uptake of microcystin-LR into human bronchial
epithelial cells HBE1 and 16HBE140-. No significant changes in the cell viability, impedance (cell
layer integrity) or activation of MAPKs ERK1/2 and p38 were detected in multiple exposure and
concentration scenarios.

1. Introduction

Cyanobacteria, the most diverse group of Gram-negative prokaryotes and Earth’s oldest known
oxygen photoautotrophs, are an important part of both terrestrial and aquatic ecosystems [1-3].
Cyanobacteria are experiencing a boom in recent years along with the increasing eutrophication of
the environment, decreased diversity of phytoplankton, rising CO, levels, and global increase of
temperature [4-7]. Nowadays, the frequent and often massive occurrence of cyanobacteria-dominated
water blooms associated with the production and release of a large variety of biologically active
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secondary metabolites, cyanobacterial toxins (cyanotoxins), has become a major environmental and
health problem [8,9]. The variety of toxic effects linked to cyanobacterial blooms ranges from dermal
irritation, gastrointestinal symptoms, inflammation, hepatotoxic, nephrotoxic, neurotoxic effects,
to neoplastic transformation and cancer [4].

Humans can be exposed to cyanobacterial toxins via drinking of water, consumption of
contaminated food, or during recreational activities when contaminated water is swallowed or
inhaled [2,4,8]. Whilst oral and dermal exposures are considered the main routes of cyanotoxins
entering the human body, the inhalation exposure has gained attention relatively recently [10], along
with the fact that aerosolized cyanobacteria have been detected in the human upper respiratory tract and
central airways [11] and several toxin-producing cyanobacteria including Microcystis sp. were found
in the aerosol samples [12]. Cyanobacteria and associated toxins may enter the human body through
inhalation of aerosolized particles from wave breaking [12,13] or inhalation/swallowing of contaminated
water during swimming and other recreational activities, such as paddling or surfing [4,14].

Microcystins (MCs) are an environmentally abundant class of cyanotoxins [1,4]. MCs are a
large group of monocyclic non-ribosomal heptapeptide toxins [15], varying primarily in their two
L-amino-acids. These toxins can be produced by terrestrial cyanobacterial genera, such as Hapalosiphon,
as well as by both bloom-forming marine and freshwater cyanobacteria, including the genera Microcystis,
Planktothrix, or Dolichospermum [3,4,16]. MCs are transported via blood and bile carriers into target
organs such as the liver, intestine, kidneys, and lungs [8]. Several human and animal intoxications
by MC-producing cyanobacteria have been recorded following multiple exposure routes, including
inhalation, as thoroughly reviewed in Svircev et al. [17]. Overall, the collected data suggest that the
mammalian respiratory system is susceptible to MCs regardless of the exposure route [18].

Over 270 different structural analogs of MCs with varying toxicity to mammals were found
so far [17,19], among which, microcystin-LR (MC-LR) is the most abundant and widely studied
variant [2,20]. MC-LR is a heptapeptide containing L-leucine (L) and L-arginine (R) in positions 2 and
4 within its structure [16]. Due to their hydrophilic character and the relatively high molecular mass
(approx. 1 kDa) in comparison to freely diffusible ions and small organic compounds, the absorption
and cellular uptake of MC-LR is facilitated by organic-anion-transporting polypeptides (OATP) present
in a majority of human organs and tissues, rather than by passive diffusion [21,22].

MC-LR is considered to be a tumor promoter [2]. According to the statement of the
International Agency for Research on Cancer (IARC), MC-LR has been designated as “possibly
carcinogenic to humans”, group 2B [23]. Main mechanisms of action include impairment of
intracellular phosphorylation processes caused by dose-dependent inhibition of serine/threonine
protein-phosphatases (PP), especially PP1 and PP2A [9,21,24]. PPs counteract diverse intracellular
kinases such as Akt, mitogen-activated protein kinases (MAPKSs), protein kinases (PK) A and C, thus
are responsible for maintaining multiple vital processes such as cell cycle, cytoskeleton organization,
cell proliferation, apoptosis, migration, mobility, and survival [4,9,25]. MC-LR exposures have been
linked to genotoxicity and tumor promotion [4,26], both induction of cell growth and increase in
apoptosis depending on a dose [27], reactive oxygen species (ROS) production leading to oxidative
stress [28] and impaired function of mitochondrial DNA [29], immunotoxicity [30], altered immune
responses [31], toxicity to reproductive organs [32], neurotoxicity [33], neoplastic transformation, and
transformed phenotype in cancer and lung carcinoma [34].

In general, human exposure to cyanotoxins, including MC-LR, may lead to both acute and
chronic effects [3]. Chronic exposure to MC-LR results in sustained PP inhibition with subsequent
hyperphosphorylation of intracellular proteins, such as MAPKSs (e.g., extracellular signal-regulated
kinases 1/2, ERK1/2), changes in oncogenes expression and TNF-o expression [5]. Anincreased incidence
of colorectal and hepatic cancers is associated with chronic exposure to MCs [35]. Acute effects involve
changes in cell morphology, oxidative stress (formation of ROS and/or glutathione depletion), disruption
of actin in intermediate filaments, altered expression of pro-apoptotic proteins, mitochondrial damage,
and defects in cell adhesion [9,17,36].
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Although there are many studies about liver toxicity and associated adverse effects, distinctly less
information about the effects of MCs in the respiratory system is available. The observed effects and

findings related to MC-LR exposure affecting the respiratory tract are summarized in Table 1.

Table 1. Respiratory symptoms in mice after administration of microcystin-LR (MC-LR).

MC-LR Administration Respiratory-Related Symptoms Reference
Intraperitoneal Change in respiratory variables, increased Carvalho et al., 2010 [37];
(5 cute) lung impedance, pulmonary lesions, Gupta et al., 2003 [38];
lung inflammation. Soares et al., 2007 [39]
Intratracheal Increased number alveolar septa collapsed
o areas, fractured alveolar walls, damage to
instillation . C 1. Zhao et al., 2018 [40]
(acute) F-actin, multiple inflammatory-related
protein alterations.
Impairment of respiratory mechanics,
. pulmonary parenchyma degradation,
Intz;geg;tosr;eal augmented contents of inflammatory Carvalho et al., 2016 [41]
y mediators in lung tissue, a dose-dependent
lung inflammatory response.
Impairment of all respiratory mechanical
Intranasal components, pulmonary parenchyma
(30 days) damage marked by the augmented alveolar Oliveira et al., 2015 [42]
y collapsed areas and the number of
inflammatory cells
Lung structure disorder, thickening of
Intranasal alveolar septa, aggregation of inflammatory .
(30 days) cells (induction of oxidative stress, altered X. Lietal,, 2016 [43]
expression of inflammatory cytokines, etc.)
Inhalation Degeneration and necrosis of nasal
(7 days) respiratory epithelium, Benson et al., 2005 [44]

neutrophilic inflammation

Additionally, Wang et al. [45] observed decreased levels of cytoskeletal components leading
to alterations in cell-cell communication in a dose-dependent manner, increased activation of
MAPK-ERK1/2 and Akt, but no significant changes in inflammatory markers (IL-1, IL-6, nor TNF-c) in
the mice alveolar type II epithelial cells. The relevance and importance to study the effects of MC-LR in
the lungs is underlined by the fact that MC-LR influences tight junction proteins that play an important
role in the alveolar epithelial barrier function [46,47]. It was documented that in vitro exposure of
human bronchial epithelial cells to MC-LR resulted in decreased viability, determined by tetrazolium
reduction assay, in a concentration-dependent manner [29]. Another study demonstrated that MC-LR
is capable to inhibit PP2A, activate MAPK pathways (p38, ERK1/2) and anti-apoptotic genes (Akt, B-cell
lymphoma 2), and induce cytoskeletal changes, but not to interfere with either apoptosis or proliferation
in A549 human non-small lung cancer cells after 24-h exposure [25]. These findings suggest that
MC-LR causes adverse effects in both lung tissue and respiratory system-relevant in vitro systems.

To address the data gap in the molecular mechanism and uptake into human bronchial epithelia,
we utilized two immortalized human bronchial epithelial cell lines (HBE1 and 16HBE140-) and studied
the effects of MC-LR on a (sub)cellular level. We investigated the MC-LR uptake into bronchial cells and
evaluated the effects on in vitro cell growth and the ability to interfere with cell signaling pathways.
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2. Results

2.1. MC-LR Uptake and The Expression of Genes Encoding OATPs

Firstly, we evaluated whether both HBE1 and 16HBE14o0- cells express genes encoding OATPs that
are responsible for MC-LR cellular uptake. Reverse-transcription polymerase chain reaction (RT-PCR)
was used to determine the presence or absence of eleven individual OATP isoforms in both HBE1 and
16HBE140- cells. The experiments were performed in parallel with HepG2 cells, HeLa cells, and liver
RNA, which served as control samples (Figure 1). Representative images of gene expression detected
by RT-PCR are shown in the Supplementary Materials (Figure S1).
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HBE1 = o o = SR
16HBE140- - S
HepG2 S . T I DRI
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liver RNA -+ o+ - + - - - o+

Figure 1. Expression of genes encoding Organic-Anion-Transporting Polypeptides (OATPs) in HBE1
and 16HBE14o0-cells. RT-PCR was used to assess the expression of specific OATP isoforms in both
HBE1 and 16HBE140-cell lines. HepG2, human hepatocellular carcinoma cells, HeLa, human epithelial
cervical adenocarcinoma cells, and liver RNA were used as a positive control. Plus sign (+) represents
positive detection, dash sign (—) represents an absence of the specific polypeptide, grey plus sign with
asterisk (+*) indicates weak expression. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; OATP,
organic-anion-transporting polypeptide.

Our results show that both studied bronchial cell lines express multiple OATP-encoding genes,
including OATP3A1 and 4A1 isoforms (Figure 1). Further, the OATP1B3-encoding gene was expressed
in 16HBE14o0-cell line, along with a weak expression of OATP1B1, while neither OATP1B1 nor
1B3 transcripts were detected in HBE1. On the other hand, less pronounced expression of the
OATP2A1l-encoding gene was detected only in HBE1 cells. We demonstrate that both HBE1 and
16HBE140- express at least two genes encoding OATPs, in case of 16HHBE140- isoforms from family 1
known to facilitate MC-LR transport, OATP1B1, and 1B3.

Further, the uptake of MC-LR by human bronchial cells was indicated by western blotting
(Supplementary Materials, Figure 52). We observed the formation of bands recognized by anti-MC-LR
antibody in both HBE1 as well as 16HBE140- cells. These bands were detected only in MC-LR exposed
cells, and their intensity was increasing over 48 h of exposure, which indicates that these bands
represent adducts of MC-LR with cellular proteins that accumulate in the exposed bronchial cells.

2.2. Viability Assays

The effects of MC-LR on viability of both HBE1 and 16HBE14o0- cells were evaluated using a
combination of three endpoints based on cell metabolic activity, namely plasma membrane integrity
and esterase activity assessed by CFDA-AM, metabolic reductive potential (Alamar blue®assay),
and neutral red uptake (NRU) by lysosomes (Figure 2) [48,49].
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Figure 2. Effects of microcystin-LR (MC-LR) on the viability of HBE1 and 16HBE14o0- cells.
A combination of three assays was adopted to assess the viability of HBE1 cells (a) and 16HBE14o0-
(b) exposed to 1, 2.5, 5, 10, and 20 uM MC-LR for 48 h. Values are plotted as a percentage of viability
in comparison with the negative control (NC; untreated, 100% viability, indicated by the dotted
line). The scatter plot represents mean + S.D. from independent experiments (n > 3) conducted in
triplicate. Asterisks (*) indicate values significantly different from the negative control (ANOVA
followed by Dunnett’s post-hoc test, p < 0.05). SC, solvent control; CFDA-AM, 5-carboxyfluorescein
diacetate acetoxymethyl ester; AB, Alamar blue®; NRU, neutral red uptake; NC, negative control;
MC-LR, microcystin-LR.

The tested MC-LR concentrations (1-20 pM MC-LR) caused none or only minor cell viability
decreases in both HBE1 and 16HBE14o0- cells in all the three CFDA-AM, AB, and NRU cytotoxicity
assays (Figure 2). No apparent concentration-response trend was found for HBE1 cells (Figure 2a),
where all the viability results were comparable to the level of negative (naive) control (NC; cells
grown in culture medium without any treatment) and not significantly different. In 16HBE140- cells,
a slight gradual decrease in the viability was observed with an increasing MC-LR concentration in all
three endpoints (Figure 2b), with a statistically significant decrease of NRU (down to ~80% viability
compared to NC) observed after exposure to 20 pM MC-LR.

2.3. Real-Time Cell Analysis

To further increase the knowledge about the effects of MC-LR (1-20 uM) on bronchial cell viability,
we conducted real-time cell analysis (RTCA) experiments with continuous 96-h measurement of the cell
electrical impedance, which reflects cell viability, proliferation, and also monolayer cohesion/adhesion
(Figure 3).
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Figure 3. Effects of microcystin-LR (MC-LR) on the impedance induction by HBE1 and 16HBE14o0- cells.
In the real-time cell analysis experiments, HBE1 cells (a) and 16HBE140-cells (b) were grown in culture
medium for 24 h and then exposed to 1, 2.5, 5, 10, and 20 pM MC-LR for 96 h. Values are plotted as
Delta Cell Index-Fraction of the non-treated Control (DCI-FOC), data normalized according to Equation
S1 in the Supplementary Materials. The scatter plot represents mean + S.D. from two independent
experiments conducted in duplicate. SC, solvent control; NC, negative control; MC-LR, microcystin-LR.

In general, there were only minor alterations in response to MC-LR treatment observed by RTCA.
HBE1 cultures demonstrated no apparent trends in cell impedance (Figure 3a). Indeed, HBE1 cell
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impedance was relatively low compared to 16HBE140-, suggesting that HBE1 did not form a tight
epithelial monolayer.

The impedance of 16HBE14o0- cultures treated with 1-5 uM MC-LR closely corresponded to the
solvent control (SC; Figure 3b). The exposure to 10 uM MC-LR resulted in a minor impedance increase
compared to both NC and SC. The increase in cell impedance was more pronounced after 20 uM MC-LR
treatment, but not statistically significant (ANOVA followed by Dunnett’s post-hoc test, p < 0.05).

2.4. Evaluation of MAPKs Activity

Effects of MC-LR exposure on the activation (phosphorylation) of cellular MAPKs ERK1/2 and
p38 kinases were investigated. Bronchial epithelial cells were exposed in time-lapse experiments (0.1,
1, 2, 8, 24, and 48 h) to a non-cytotoxic and toxicologically-relevant concentration of 1uM MC-LR,
which was shown to form MC-LR protein adducts in both cell lines (see the Supplementary Materials,
Figure S2). Proteins isolated from both HBE1 and 16HHBE140- cells were examined using western
blotting technique. Both phosphorylated and total ERK1/2 (P-ERK1/2 and t-ERK1/2) were detected as a
major band with a molecular weight of 42 kDa and a faint band of 44 kDa. Phosphorylated and total
P38 (P-p38 and t-p38) were detected as a distinct band at 38 kDa. All experiments were carried out
at least in two biological replicates together with untreated negative control (NC) and appropriate
solvent control (0.04% (v/v) methanol). For detailed calculation procedures see the Supplementary
Materials, Equation S2.

In HBE1 cells, the levels of either P-ERK1/2 or t-ERK1/2 following MC-LR exposure were not
statistically significantly different (t-test, p > 0.05) from SC (Figure 4a,b). Although the P-ERK1/2 levels
were elevated following 48-h MC-LR exposure, this phenomenon was observed also in the solvent
control (Supplementary Materials, Figure S3a). Hence, there was no significant change in P-ERK1/2
levels after MC-LR treatment in comparison to the corresponding SC treatment (t-test). The levels
of total ERK1/2 were not altered in MC-LR treatments or SC, and not significantly different from the
NC (Supplementary Materials, Figure S3b). Similarly, no significant p38 activation by MC-LR was
observed (Figure 4c,d), since P-p38 levels were elevated to a similar extent in both MC-LR and SC
treatment after 48 h (~11x and ~9x NC, respectively). Total p38 levels remained at the level of NC
throughout the experiment (Supplementary Materials, Figure S3c,d).

Similarly, no significant increase of P-ERK1/2 levels was observed in 16HBE140- cells following
48-h exposure to 1 uM MC-LR (Figure 5a,b). Total ERK1/2 levels in MC-LR treated cells remained stable
throughout the experiment and comparable to SC and NC (Supplementary Materials, Figure S4a,b).
Slight time-dependent increase in p38 activation after 48-h MC-LR exposure was not significantly
different from SC (Figure 5¢,d). Total levels of p38 remained unaltered by MC-LR during the experiments
in all experimental variants (Supplementary Materials, Figure S4c,d). Overall, the results show no
major changes in the activation of ERK1/2 and p38 caused by 1 uM MC-LR in HBE1 and 16HBE140-cells,
suggesting that MC-LR does not significantly interfere with intracellular signaling in these cells.
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Figure 4. Effects of 1 pM microcystin-LR (MC-LR) on mitogen-activated protein kinases (MAPKs)
activation in HBE1 cells. Results of densitometric evaluation show MAPK activation (phosphorylation)
by MC-LR treatment expressed as fold changes over the solvent control (SC) with normalization to
the negative control (NC; horizontal dotted line): fold changes in (a,b) extracellular signal-regulated
kinases 1/2 (ERK1/2) and (c,d) p38 kinase activation. Data were normalized according to Equation 52
in the Supplementary Materials. Bar charts represent mean + S.D. from independent experiments
(n > 2). SC, solvent control; MC-LR, microcystin-LR; NC, negative control; P-ERK1/2, phosphorylated
extracellular signal-regulated kinases 1/2; t-ERK1/2, total extracellular signal-regulated kinases 1/2;
P-p38, phosphorylated p38 kinase; t-p38, total p38 kinase; MC-LR/SC, ratio between MC-LR and SC
densitometric values; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Figure 5. Effects of 1 uM microcystin-LR (MC-LR) on mitogen-activated protein kinases (MAPKs)
activation in 16HBE140- cells. Results of densitometric evaluation show MAPK activation
(phosphorylation) by MC-LR treatment expressed as fold changes over the solvent control with
normalization to the negative control (horizontal dotted line): fold changes in (a,b) extracellular
signal-regulated kinases 1/2 (ERK1/2) and (c,d) p38 kinase activation. Data were normalized according
to Equation 52 in the Supplementary Materials. Bar charts represent mean + S.D. from independent
experiments (n > 2). SC, solvent control; MC-LR, microcystin-LR; NC, negative control; P-ERK1/2,
phosphorylated extracellular signal-regulated kinases 1/2; t-ERK1/2, total extracellular signal-regulated
kinases 1/2; P-p38, phosphorylated p38 kinase; t-p38, total p38 kinase; MC-LR/SC, ratio between MC-LR
and SC densitometric values; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

3. Discussion

The increasing abundance and frequency of harmful algal and cyanobacterial blooms is gaining
public attention in recent years since it is negatively influencing recreational activities in many
freshwater and coastal areas. The research has been recently oriented towards hazards resulting
from inhalation exposure to cyanobacterial aerosols and toxins. To evaluate possible effects of a
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very abundant cyanotoxin MC-LR in the human respiratory system, we used two immortalized,
non-cancerous, respiratory-relevant human bronchial epithelial cell lines. The concentrations of
MC-LR in our experiments were chosen based on previous studies with human bronchial or alveolar
cells [25,29], where MC-LR at relatively high concentrations (30—40 M) nearly completely inhibited
cell viability after 24-h exposure, while 1-20 uM significantly reduced cell viability to 90%-35% of the
control [29]. Thus, in our prolonged exposure (48-96 h) experiments, we decided to test a concentration
range of 1-20 uM MC-LR, while using 1 uM MC-LR to assess the effects of a toxicologically more
feasible concentration on a sub-cellular level for mechanistic studies.

First, we determined the transcription of specific OATP-encoding genes by reverse-transcription
polymerase chain reaction (RT-PCR) in order to see if the toxin can be potentially transported into
these cells to further manifest both cellular and subcellular effects. Out of 11 different human OATP
isoforms, the ability to transport MC-LR was confirmed for OATP family 1 (OATP1A2, 1B1 and 1B3),
while no MC-LR transport was detected for the OATP2B1 [50]. To the best of our knowledge, the other
OATP isoforms have not been investigated for their ability to transport MC-LR [36]. Regarding OATP
expression in human lung tissue, studies utilizing microarray and RT-PCR reported expression of
OATP2B1, 3A1, 4A1, and 4C1 [51,52], while targeted proteomics analyses detected OATP1A2, 1B3,
2A1 and 2B1 [53]. In vitro, OATP3A1 and 4A1 were found by PCR to be consistently expressed in
various types of human bronchial and alveolar cells, including primary bronchial epithelial cells and
immortalized cell lines such as Calu-3, Beas-2B, 16HBE140-, and A549 [54,55], which is consistent also
with our results for both, 16HBE140- and HBE1 cell lines.

However, expression of other OATP isoforms, including MC-LR-transporting OATP1A2, 1B1,
and 1B3, seems to be varying between different in vitro models and culture conditions [54,55].
Expression of OATP1A2 was reported in primary bronchial epithelial cells, cell lines Calu-3, Beas-2B,
and A549, but not 16HBE140-, which is also in agreement with our results. OATP1B1 and/or 1B3
were previously detected in Calu-3, Beas-2B or A549, but not in primary bronchial epithelial cells
or 16HBE140- [54,55]. Interestingly, we found OATP1B1/1B3 genes to be transcribed under our
experimental conditions by the 16HBE140-, but not by the HBE1 cell line.

Nevertheless, the formation of MC-LR protein adducts in the exposed cells was qualitatively and
quantitatively comparable between both HBE1 and 16HBE14o0- cell lines, which indicates that other
OATP isoforms than 1B1/1B3 (e.g., 3A1 or 4A1), or other membrane transporters or cellular mechanisms,
could have been involved in the uptake of MC-LR by bronchial epithelial cells. This is consistent
with a previous study, which reported formation of MC-LR protein adducts in immortalized adult
human liver cells HL1-hT1 occurring independently on the expression or activity of OATP1B1/1B3,
since HL1-hT1 cultures were found to express OATP2A1 and 3A1 only, and the putative MC-LR
uptake was not affected by pharmacological inhibitors of OATP1B1/1B3 [56]. MC-LR-protein adducts
accumulated in both HBE1 and 16HBE140- cells included major bands with molecular weights around
35-37 kDa, i.e., corresponding to PP1/PP2A catalytic subunits, which represent primary intracellular
targets known to covalently bind MC-LR [57]. Additional protein bands detected by anti-MC-LR
antibody had molecular weights around 20 kDa, 30 kDa, and in the case of 16HBE140- cells also
60 kDa, which might correspond to putative intracellular targets of MC-LR (e.g., 55 kDa ATP-synthase
(3 subunit, [58]; 56 kDa aldehyde dehydrogenase 2 [59]; or 23 kDa Proteasome 32 subunit [60], or to
yet-to-be-identified proteins [56]).

Although these results suggest uptake of MC-LR and its interaction with cellular proteins,
the viability assays did not reveal any major effects of MC-LR in both HBE1 and 16HBE140-cells.
The results of our study are mostly consistent with findings of Wang et al. [25], who found no significant
effect of 10 uM MC-LR on viability in A549 human non-small lung cancer cells following 24-h exposure.
On the contrary, Li et al. [29] found that 10 pM MC-LR significantly reduced (EC50) cell survival in HBE
cells after 24 h, and concentrations >50 nM were cytotoxic to immortalized murine alveolar type II cell
line [45]. To compare with other epithelial cell lines, a decreased viability of rat Sertoli cells was found
after 24-h exposure to 8-32 uM MC-LR [61]. Additionally, a time-dependent reduction in survival was
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observed in a series of murine RAW246.7 macrophage-like, BV-2 immortalized microglial, and N2a
neuroblastoma-derived cells exposed to 10 pM MC-LR for 24-72 h [62]. However, 10 uM MC-LR
did not decrease the viability of human adult liver stem cells HL1-hT1 [56,63], human hepatocellular
carcinoma cells HepG2, human colorectal carcinoma cells Caco-2 or monkey kidney epithelial Vero-E6
line [64-66]. The data presented in the literature thus suggests that the cytotoxic effects of MC-LR are
cell type-specific and possibly species-specific.

Impedimetric RTCA revealed no major changes in cell adhesion and proliferation rates of HBE1
cells. Although both HBE1 and 16HBE140- cells reached relatively stable impedimetric values 24 h
post-seeding, HBE1 elicited lower impedance than 16HBE140-, similarly to previous observations (see
Figure 2a in [67]). An impedance increase (~35%) following 20 uM MC-LR exposure of 16HBE14o0-
cells was not accompanied by an increase of metabolic activity but rather by a slight decrease (see
AB, CFDA-AM, and NRU results). A similar trend was observed in 16HBE14o0- cultures exposed
to lower concentrations of cytotoxic cyanotoxin cylindrospermopsin (0.5 uM CYN), whilst an initial
impedance increase observed in the 1-2.5 uM CYN treatment for approximately 60-90 h was followed
by a steep decline of the cell impedance and accompanied by a decrease of cell viability [67]. Further,
Basu et al. [63] found that 10 puM MC-LR induced a slight (~20%) increase in cell impedance of the
adult human liver stem cells HL1-hT1 in monolayer experiments that was not accompanied by an
increase of metabolic activity.

The formation of in vivo barriers between different compartments of the body as well as
pseudo-epithelial barriers in vitro requires the formation of tight junctions including the tight junction
protein ZO1/TJP (reviewed in [68]). ZO1/TJP protein was present in 16HBE140- cells, indicating the
formation of tight junctions and a tight (pseudo-)epithelial sheet, supported by the measurement
of transepithelial resistance (TEER) [67]. However, no ZO1/TJP and very low values of TEER
measurement were recorded for HBE1 cells, thus suggesting that HBE1 cultures were not able to form
tight junctions [67]. This might explain the lower ability of HBE1 cells to induce cell impedance and its
measurable changes.

Tight junctions work as paracellular gates that restrict diffusion on the basis of size and charge.
Such selective paracellular diffusion is essential to maintain homeostasis in organs and tissues [68].
Based on the aforementioned results and studies, we can speculate that 16HBE140- cultures react to the
presence of cyanotoxins (at a certain concentration level) via an increase in impedance in order to tighten
the paracellular diffusion as a part of the adaptive stress response. Such an effect of epithelial cells in
the respiratory tract is desired in order to restrict transfer of bigger molecules, including cyanotoxins,
further into the body. However, the toxicological tipping point of the adaptive stress response may be
surpassed with further cyanotoxin concentration increase and adverse effects on bronchial epithelial
layers might be expected, as shown for CYN [67]. In addition, MC-LR-induced reduction of viability
in murine epithelial alveolar type II (ATII) cells was accompanied by a dose-dependent decrease of
TEER values and reduced expression of tight junction proteins (e.g., ZO-1, occludin) [45]. MC-LR also
decreased the expression of tight junction proteins in murine Sertoli cells [69]. Therefore, further
studies, preferably with physiologically more relevant human in vitro models, such as filter-insert
cultures or 3D air-liquid interface (ALI) cultures of bronchial epithelial cells [70] should focus on tight
junctions and barrier function modulation in response to cyanotoxins, especially in combination with
relevant exposure estimates and scenarios.

Intracellular signaling pathways, such as ERK1/2, p38, and JNK signaling, play a critical role in
the control of inflammatory respiratory diseases and cell proliferation-related neoplastic disorders [71].
Disruption of MAPK signaling by MC-LR has been documented in several studies with multiple
in vitro models [24-26,45,72] and might be a direct consequence of MC-LR-induced inhibition of
PP1/PP2A. Although the MC-LR-positive protein bands were formed and accumulated in both HBE1
and 16HBE140- cells, we observed only minor changes in the activation of ERK1/2 and p38 kinases,
suggesting that non-cytotoxic concentrations of MC-LR did not significantly interfere with intracellular
MAPK signaling in these cells. Similarly to cell viability or barrier function, responses and sensitivity
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of MAPKSs to MC-LR exposure seem to depend on the cell type and in vitro model used. For example,
Wang et al. [45] observed significantly increased ERK1/2 activity after 24-h exposure to 0.5 utM MC-LR
in murine epithelial ATII cells; however, Wang et al. [25] reported no significant changes in P-ERK1/2
following 24-h exposure to 1 uM MC-LR in human A549 lung cancer cells. Increased phosphorylation
was observed in the human HL7702 liver cell line after 48-h exposure to 10 uM MC-LR [72], but not in
human HL1-hT1 adult liver stem cells exposed to 1 uM [56], despite toxin uptake was documented in
both studies. Elevated P-ERK1/2 levels were additionally reported by Adamovsky et al. [31] in murine
RAW 264.7 macrophages after 30-min exposure to 1 uM MC-LR, but probably triggered via interactions
of the toxin with membrane receptors, independently of MC-LR cellular uptake and inhibition of PPs.

Overall, our observations add further evidence about cell line-, tissue of origin-, and even
species-specificity of MC-LR effects. The use of relevant in vitro models providing the desired
biological context in terms of target species, tissue, and cell type is, therefore, necessary for accurate
identification of human health hazards and assessment of risks, including the risks associated with
the inhalation of aerosolized cyanotoxins, such as MC-LR. Thus, our experiments with immortalized,
non-cancerous human bronchial epithelial cells provide valuable insight into potential effects induced
in the human airway epithelium exposed to MC-LR. Despite the absence of stronger cytotoxic responses
or detectable disruptions of MAPK signal transduction, the toxin was apparently accumulated by
the cells and interacted with several cellular proteins. While MC-LR represents the most studied
structural variant among MCs because of its high acute hepatotoxicity and frequent environmental
occurrence, cyanobacterial blooms frequently contain multiple MC variants at the same time, some of
them demonstrating even higher toxicity and cell permeability than MC-LR [21,22,73,74].

Considering environmental concentrations of MCs, these toxins can be occasionally detected in
surface waters at levels up to several mg/L (corresponding to several uM), but typical concentrations
are usually within the range of several pg/L (~nM) [4]. For example, a recent survey mapping of
cyanotoxin concentrations in 137 European lakes detected MCs (sum of different variants) in 93% lakes
with a mean concentration of 1.2 pg/L (~1.2 nM), and a maximum of 17.2 pg/L (~17.2 nM) [75]. A first
guideline value recommendation of 20 pg/L for moderate risk of adverse effects due to MC exposure
in recreational waters was given by the WHO in 2003 [76] and refined by the US Environmental
Protection Agency recently to 8 ug/L [77]. Concentrations of MC-LR used in our study represent
rather the upper end of the environmental concentration range occurring in surface waters [4,75].
Despite exceeding environmental concentrations of MCs in this experimental setup, we could not
confirm earlier reports of MCs affecting lung cells in vitro [29], even though the model used is
capable to take up MCs, presumably via OATPs, and demonstrates a time-dependent increase in
protein-MC adducts. Additionally, the initial interest to study cyanotoxin effects on the respiratory
tract epithelia originated from epidemiological evidence linking cyanobacterial blooms to adverse
respiratory conditions [78,79]. The absence of effects on cell viability and the sub-lethal endpoint of
intracellular signaling highlights the importance of the assessment of well-characterized environmental
samples or model mixtures to reflect potential co-action and perhaps even synergistic effects of
cyanobacterial bloom metabolites beyond MCs. Further, more detailed studies are needed to better
characterize concentrations of toxic cyanobacteria and cyanotoxins in aerosols and to more accurately
assess and quantify the inhalation exposures and concentrations/doses of cyanotoxins relevant for
the airway epithelium. Advanced human in vitro airway epithelium models, such as ALI cultures of
immortalized human bronchial epithelial cells, possibly in co-cultures with different cell types [70] shall
be considered because they allow for toxicologically more relevant toxin administration in contrast
to fully submerged cell cultures. In combination with better estimates of environmental exposures,
such an approach would contribute to improved assessment of human health risks associated with
inhalation of cyanotoxins.
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4. Conclusions

To conclude, our study presented similar patterns of MC-LR effects in two respiratory
system-relevant human bronchial epithelial cell lines. Both HBE1 and 16HBE140- cultures transcribed
several genes encoding transporting polypeptides, potentially involved in MC-LR cellular uptake.
Despite the evidence of both, formation and accumulation of putative MC-LR adducts with intracellular
proteins, the cell viability was not significantly compromised by even relatively high (20 uM) MC-LR
concentrations. A slight decrease in cell viability induced by the highest toxin concentration in
16HBE140- cells was associated with an increase in cell impedance, indicating an adaptive response of
epithelial cells to sub-cytotoxic concentrations of MC-LR. MC-LR exposure and uptake did not result
in any significant alteration of intracellular signal transduction mediated via MAPK ERK1/2 or p38.
With respect to the evidence on the toxin uptake and its interactions with intracellular proteins of
human bronchial epithelial cells, the effects of MCs in human airway epithelium should be further
investigated using physiologically more relevant in vitro models and exposure scenarios.

5. Materials and Methods

5.1. Cell Cultures

Two non-cancer immortalized human bronchial epithelial (HBE) cell lines were used in the study.
HBE1 cells (RRID: CVCL 0287), originating from non-cystic fibrosis lung tissue of a 60-year-old woman,
were transfected with human papillomavirus type 18 E6 and E7 oncogenes [80]. HBE1 cells have
been reported to exhibit differentiated airway epithelium properties, including polarized phenotype,
vectorial ion transport, or expression of cystic fibrosis transmembrane conductance regulator (CFTR)
protein [80].

16HBE140- cells (RRID: CVCL 0112) were obtained by transfection of 40 pSVori~ plasmid into
1-year-old human male bronchial epithelial explants [81,82]. The cell line retains physiological
and morphological properties of differentiated bronchial epithelial cells, such as contact inhibition,
intermediate filaments, polarized ion channels, CFTR protein, as well as tight junctions [82].

Further details of the cell culture work and used materials are given in the Supplementary
Materials (Section S1: Methods).

5.2. Experimental Design

Stock solutions of MC-LR (100x or 500x concentrated) were prepared in 20% (v/v) methanol to
assure their sterility for the in vitro experiments and stored frozen at —20 °C. Based on preliminary
data of cell seeding densities (data not shown), HBE1 and 16HBE140-cells were seeded at the density
of 60,000-80,000 cells/cm? into 96-well black plates for cytotoxicity assays (Greiner, Cat. No. 655090,
Greiner BioOne, Kremsmiinster, Austria), 96-well E-plates for impedimetric real-time cell analysis
(E-Plate VIEW 96 PET, ACEA Biosciences, San Diego, CA, USA) and into & 35 mm Petri dishes (Costar,
Cambridge, MA, USA) for protein analysis by western blotting and for gene transcription analysis
by RT-PCR.

After 24 h of growth in culture medium, cells were exposed to 1-20 uM MC-LR for 48 h for
cytotoxicity assessment and 96 h for RTCA, or to 1 uM MC-LR for the assessment by RT-PCR (48-h
exposure) and by western blotting after various time intervals (from 1 h up to 48 h). In RTCA and
cytotoxicity assays, cells were exposed by replacing the growth medium with MC-LR containing
exposure medium. For western blotting analysis, the MC-LR stock solution was pipetted directly into
the growth medium to avoid unintentional phosphorylation during medium replacement due to shear
forces and growth factor replenishment.

Each experiment was conducted together with negative (untreated) control (NC), and with
appropriate solvent control (SC) containing 0.2% (v/v) (cytotoxicity and impedimetric experiments) or
0.04% (v/v) (western blotting) methanol.
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5.3. Impedimetric Real-Time Cell Analysis (RTCA)

The impedimetric RTCA was conducted according to [67]. Briefly, cellular impedance (reported
as Delta Cell Index-Fraction of the non-treated Control, DCI-FOC) of both HBE1 and 16HBE140- cells
was detected on xCELLigence SP (ACEA Biosciences, San Diego, CA, USA) as a function of attachment
and proliferation. Cell Index (CI) was measured in each well every 15 min during the first 5 h after the
cell seeding or exposure start, and every 60 min for the following period up to 96 h. Delta Cell Index
values were calculated according to xCelligence System Technical Note No. 2 [83]. For details of the
calculation, see Supplementary Materials, Equation S1.

5.4. Cytotoxicity Assays

An assay combining three indicative dyes was adopted from Raska et al. [56] to evaluate the
disruption of various vital cellular processes: the plasma membrane integrity and esterase activity by
5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), the metabolic reductive potential
as resazurin reduction (Alamar blue® assay), and neutral red uptake (NRU) by lysosomes [48,49].
Further details of the method and used materials are given in the Supplementary Materials (Section S1:
Methods).

5.5. Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

In the processes of RNA isolation, RI-PCR and agarose gel electrophoresis were conducted
according to a recently published study, including the sequences of the primers [56]. Briefly, total
RNA was isolated by RNeasy Plus Mini kit (QIAGEN, Hilden, Germany), its concentration and purity
were measured by NanoDrop 1000 (ThermoFisher, Prague, Czech Republic). cDNA was prepared
using Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland) and followed by PCR
reaction (Phusion High-Fidelity DNA Polymerase kit, ThermoFisher) with target-specific primers
(sequences given in [56]). HBE1 and 16HBE140- RNA samples were used in the experiments together
with positive controls for OATP genes (HepG2 and HeLa cell lines, liver RNA). PCR was run with the
following parameters: initial denaturation for 30 s at 98 °C, 25 cycles of denaturation for 10 s at 98 °C,
annealing for 30 s at 60 °C, and elongation for 30 s at 72 °C, the final extension was at 72 °C for 10 min.
PCR products were separated by 1.5 % agarose gel electrophoresis, stained by ethidium bromide and
detected using MF-ChemiBis 3.2 documentation system with GelCapture software (DNR Bio-Imaging
Systems Ltd., Neve Yamin, Israel).

5.6. Western Blotting

The western blot analysis was conducted as recently published [56,67]. After exposure, the cells
were rinsed 5 times with ice-cold phosphate-buffered saline (PBS), as previously optimized to sufficiently
remove residues of extracellular MC-LR (data not shown), to prevent its binding to cellular proteins
after the cell lysis and to avoid its interference with the assessment of MC-LR uptake [56]. The proteins
were extracted with 150 pL lysis buffer (20 mM Tris base, 1 mM dithiothreitol, 4% (w/v) sodium dodecyl
sulfate, SDS) per dish using a cell scraper. Cell lysates were homogenized by ultrasonication (20 s at
50% power and pulses of 1 5/0.2 s rest; SONOPULS mini20, Bandelin Electronic, Berlin, Germany) and
protein concentration measured using DC Protein Assay (Bio-Rad, Hercules, CA, USA). Protein lysates
were subsequently diluted to a concentration of 1 mg/mL with lysis buffer and 4x Laemmli sample
buffer (Bio-Rad). Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
on 12.5% acrylamide gels (120 V, 70-90 min) and electrophoretically transferred to polyvinylidene
difluoride membrane (100 V, 60 min; Immobilon-P, Merck Millipore, Darmstadt, Germany). Membranes
were incubated with blocking solution (5% (w/v) non-fat dry milk in Tris-buffered saline with 0.1% (v/v)
Tween 20; TBS-T) and subsequently incubated overnight at 4 °C with primary antibodies diluted in
blocking solution. After the washing step, membranes were incubated in secondary antibodies for one
hour at room temperature. Signals from western blot were detected using ECL Substrate (Bio-Rad)
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in MF-ChemiBis 3.2 with GelCapture software (DNR Bio Imaging Systems, Neve Yamin, Israel).
After quantification of signals, membranes were washed in distilled water and incubated overnight at
4 °C with diluted primary antibody against housekeeping protein GAPDH. Membranes were then
incubated in secondary antibody for one hour at room temperature and quantified. The optical density
of protein bands was evaluated using Image]. Signals from the proteins of interest (i.e., MAPK signals)
were normalized to the GAPDH (the loading control) signal from the same sample and blot and to
the negative control (NC) from the same blot (for detailed equations see Supplementary Materials,
Equation S2). For a list of primary and secondary antibodies used in the study see Supplementary
Materials (Section S1: Methods).

5.7. Data Evaluation and Statistical Analyses

The data obtained from at least two independently repeated experiments were combined to
calculate the mean + standard deviation (S.D.) values, which are presented in the graphs. Initial data
evaluation was conducted in MS Excel (Microsoft, Redmond, WA, USA). Data plotting, graphical
outputs, and statistical analyses were conducted in SigmaPlot 11.0 (Systat Software Inc., Erkrath,
Germany). For data with a normal distribution (Shapiro-Wilk’s test) and equal variances (Equal
Variance test), statistical differences from the negative control samples were analyzed by one-way
ANOVA followed by Dunn’s or Dunnett’s post-hoc tests. Kruskal-Wallis ANOVA on ranks followed by
Dunnett’s or Mann—-Whitney’s post-hoc tests was used for evaluation of data with unequal variances
and/or non-normal distribution. P values < 0.05 were considered significantly different.

Supplementary Materials: The following Supplementary Materials are available online at http://www.mdpi.
com/2072-6651/12/3/165/s1, Figure S1: Representative images of gene expression in HBE1 and 16HBE140-cells,
Figure S2: Immunodetection of putative MC-LR protein adducts in bronchial cell lines, Figure S3: Effects of
1 uM microcystin-LR on mitogen-activated protein kinase levels in HBE1 cells, Figure S4: Effects of 1 uM
microcystin-LR on mitogen-activated protein kinase levels in 16HHBE14o0- cells; Equation S1: Calculation of
Delta-Cell Index-Fraction of Control values from RTCA data, Equation S2: Densitometric calculations for western
blot data; Section S1: Methods.
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