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Abstract: The last years have brought an abundance of data on the existence of a gut-kidney axis
and the importance of microbiome in kidney injury. Data on kidney-gut crosstalk suggest the
possibility that microbiota alter renal inflammation; we therefore aimed to answer questions about
the role of microbiome and gut-derived toxins in acute kidney injury. PubMed and Cochrane Library
were searched from inception to October 10, 2020 for relevant studies with an additional search
performed on ClinicalTrials.gov. We identified 33 eligible articles and one ongoing trial (21 original
studies and 12 reviews/commentaries), which were included in this systematic review. Experimental
studies prove the existence of a kidney-gut axis, focusing on the role of gut-derived uremic toxins
and providing concepts that modification of the microbiota composition may result in better AKI
outcomes. Small interventional studies in animal models and in humans show promising results,
therefore, microbiome-targeted therapy for AKI treatment might be a promising possibility.

Keywords: acute kidney injury; microbiota; uremia middle molecule toxins

Key Contribution: The article is a systematic review of available data on the kidney-gut axis and the
role of gut-derived uremic toxins in the course of acute kidney injury.

1. Introduction

The term microbiota is used to describe a community of 100 trillion microorganisms (more than
1000 species, of mostly bacteria, but also viruses, fungi, and protozoa) that are present in the
gastrointestinal tract. The term microbiome on the other hand, refers to the collective genomes of
the above-mentioned organisms. The microbiome encodes over 3 million genes (as compared to
30,000 genes present in the human genome) characterized now by the Human Microbiome Project [1],
which produce thousands of metabolites. Unsurprisingly, those metabolites play an important role
both in human biology and disease development [2].

In healthy subjects, the phyla Bacteroidetes and Firmicutes dominate, composing more than 90%
of all species, although density and species composition varies alongside the digestive tract [3].
The functional diversity of microbiota is key to normal biology.

Kidney failure directly or indirectly modifies microbial composition in the digestive tract.
Edema and ischemia of the intestinal wall complicating kidney diseases lead to increased intestinal
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permeability, or so-called “leaky gut”, which further activates the immune system and results in
systemic inflammation.

The relationship is bidirectional, as dysbiosis (changes in structure and composition of the
microbiome) is implicated in many kidney diseases. The existence of a gut-kidney axis has been
extensively proved. Communication between those two organs occurs not only directly, but also
through the aforementioned metabolites. We have long known that many uremic toxins, such as
ammonia, indole sulfate, p-cresyl sulfate, indole-3 acetic acid, trimethylamine N-oxide (TMAO)
are gut-derived. Short chain fatty acids (SCFAs)—-anaerobic fermentation end products of complex
carbohydrates, on the other hand, are insufficiently generated due to dysbiosis. Most research focuses
on chronic kidney disease (CKD) and the unmistakable role these toxins play in cardiovascular
complications, mortality, or disease progression [4]. Less is known about the gut-kidney crosstalk
present in acute kidney injury (AKI).

2. Objective

This systematic review aims to answer questions about the role of microbiome and gut-derived
toxins in acute kidney injury. We analyzed both experimental and interventional data, animal and
human studies, original articles and reviews/opinions aiming to gather full knowledge on the subject
in question.

3. Results

Out of 1014 identified records, 638 were screened, 36 retrieved and assessed for eligibility and 33
finally included in the review (21 original studies and 12 reviews/commentaries). The entire selection
process is illustrated in Figure 1. The basic characteristics of the original articles on the researched
subject are summarized in Tables 1 and 2. We have identified 16 experimental studies and five human
studies (three prospective observational and two retrospective). We could therefore not assess the
risk of bias and applicability concerns. ClinicalTrials.gov identified 226 studies with 36 duplicates,
and after screening, one study, pertaining to the subject of the review remained.
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Figure 1. Search strategy and results.
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Table 1. Original studies assessing the relationship between microbiome-derived toxins and acute kidney injury.

Author Year Population Uremic Toxin/Parameter Assessed Outcome Results and Key Observations
Experimental
Jang et al. [5] 2009 germ-free mice, afterwards fed numbers and phenotypes of T cells extent of renal injury and microbial stimuli influence the phenotype of renal
& ' bacteria-rich diet and NK cells, panel of cytokines functional decline after IRI lymphocytes and ameliorate the extent of renal injury
Samanta et al. [6] 2017 Wistar rats microbiota composition hypoxia induced AKI hypobaric hypox.1a causes both A.KI and affects gut
microbial population
Long et al. [7] 2017 C57BL/6 mice influence of elevated Hcy levels cisplatin-induced AKI cisplatin 1r'1duces frore severe tul:')ula.r nyury tubular cell
apoptosis and lower proliferation in hyperHcy mice
increased renal mRNA of TLR4
Lietal. [8] 2019 Sprague-Dawley rats gut-derived endotoxin and proinflammatory endotoxin increases intrarenal inflammatory response
mediators (II-6 and MCP-1)
C57BL/6 mice and germ-free Lo o . intestinal dysbiosis, inflammation and leaky gut are
Yang etal. [] 2020 C57BL/6 mice microbiota composition severity of IRI consequences of AKI but also determine its severity
Andrianova et al. [10] 2020 Wistar rats microbiota composition, lg\./els of severity of IRI, creatinine specific bacteria in the gut may e?mehorate or aggravate
selected toxins (acylcarnitines) and urea levels IRI and affect toxin levels
1. germ-free mice and mice . extent of kidney damage in germ-free mice enhanced host purine metabolism
Mishima et al. [11] 2020 with microbiota metabolome analysis adenine-induced AKI and exacerbated kidney damage
Human
Knoflach et al. [12] 1994 retrospective hippuric acid concentration acute kidney allograft rejection hippuric acid concentration was higher in patients with
’ P PP Yy alog ) acute allograft rejection and fell after antirejection treatment
prospective observational . . chronic exposure to LPS in the period before transplantation
. . . L . chronic inflammation and acute . .
Carron et al. [13] 2019 design: 146 kidney transplant circulating lipopolysaccharide reiection episodes can promote endotoxin tolerance and those patients are less
recipients ) P prompt to develop acute rejection after transplantation
prospective observational . . . .
Wang et al. [14] 2019 design: 262 patients with serum indoxyl sulfate levels 90-day mortality serum indoxyl sulfate 1 evels were elevated in patients with
. . AKI and associated with a worse prognosis
hospital-acquired AKI
Veldeman et al. [15] 2019 prospective observational serum indoxyl sulfate and p-cresyl acute kidney injury serum indoxyl sulfate and p-cresyl sulfate levels were

design:194 patients with sepsis

sulfate levels

due to sepsis

higher in patients with AKI and correlated with AKI course

Abbreviations: AKI, acute kidney injury; Hcy, homocysteine; I1-6, interleukin-6; IRI, ischemia-reperfusion injury; LPS, lipopolysaccharide MCP-1, monocyte chemoattractant protein-1;
mRNA, messenger ribonucleic acid; TL4, toll-like receptor 4.
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Table 2. Original studies assessing microbiome-modifying interventions on acute kidney injury.

Author Year Population Uremic Toxin/Parameter Assessed Outcome Results and Key Observations
Experimental
levels of creatinine, inflammatory ..
Machado et al. [16] 2012 Wistar rats SCFA (sodium butyrate) markers and histology in contrast SCFA treatment. attengated creatinine levels and
. histological damage
induced AKI
levels of creatinine, AKI markers, . .
Sun et al. [17] 2013 Sprague-Dawley rats SCFA (sodium butyrate) antioxidant enzymes and histology chronic trea.tr.ner}t with SCFA p rotef:t.s from
. ST gentamicin-induced nephrotoxicity
in gentamicin induced AKI
SCFAs (acetate, butyrate levels of creatinine and urea, mice treated with acetate-producing bacteria
Andrade-Oliveira et al. [18] 2015 C57BL/6 mice o ione,l tel)l yrate, necrosis score in kidney tubular had improved mitochondrial biogenesis and
prop epithelial cells in IRI better outcomes
mvocardial infarction induced treatment with AST-120 may have protective
Fujii et al. [19] 2016 SH rats AST-120 Y . effects (reduced indole levels and urine, serum
kidney damage . . L
biomarkers of kidney injury)
Emal et al. [20] 2017 C57BL/6 wild-type mice broad-spectrum antibiotics renal damage and tubular integrity depletion of gut microbiota protects against
’ after IRI renal injury
. . hypoxia-induced tubular damage renoprotective effects of gut-derived D-serine in
Nakade et al. [21] 2018 germ-free C57BL/6 mice D-serine and kidney function AKI proven
kidney function/ renal peroxidase  acetate ameliorates sepsis-induced kidney injury
Al-Harbi et al. [22] 2018 BALB/c mice SCFA (sodium acetate) activity/kidney tubular structure in by restoration of oxidant-antioxidant balance
sepsis induced AKI in T cells
Lee et al. [23] 2020 Sprague-Dawley rats and Lactobacillus salivarius BP121 cisplatin-induced AKI occurence L. salivarius BP]Z? rEdl.ICEd Cac.0—2 damage and
Caco-2 cells protected against cisplatin-induced AKI
. . . . -y urea and creatinine concentration in both murine and porcine models of AKI the
Zheng et al. [24] 2020 BALI]i/icnrir;ier:n? ]zama mlCrgszgll:;)(:;tf;;éifgfg%whm, in nephrotoxin-induced AKI orally delivered cocktail reduced urea and
P1& ! (adenine, cisplatin, glycerol) creatinine concentration
Human
retrospective analysis, 176 o .
Dong et al. [25] 2016 cirrhotic adult patients (88 rifaximin AKI & HRS risk incidence rate ratio of AKI'and HRS, as well as the

treated with rifaximin

risk of RRT was lower in the rifaximin group

Abbreviations: Abbreviations: AKI, acute kidney injury; HRS, hepatorenal syndrome; IRI, ischemia-reperfusion injury; RRT, renal replacement therapy; SCFAs, short chain fatty acids; SH,
spontaneously hypertensive.
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4. Discussion

Acute kidney injury is usually multifactorial and involves hemodynamic, biochemical,
inflammatory, and immunological mechanisms. The first studies on the influence of microbiome
on AKI stemmed from the “hygiene hypothesis”, which states that the lack of exposure to normal
microbiota induces less immune deviation and reduces immune regulation [26]. Jang and coworkers
studied the effects of ischemia-reperfusion injury (IRI) on germ-free mice and found that compared to
controls, the severity of injury (measured with creatinine and histologically determining the extent of
tubular injury) was higher. After addition of bacteria to the diet, renal injury was equivalent to that of
control mice [5].

4.1. The Gut-Kidney-Axis

There is a multitude of evidence that CKD alters microbiome composition [27]. Experimental
animal evidence suggests that such is also the case with acute kidney injury. The relationship is
bidirectional—AKI not only causes dysbiosis, microbiota composition also determines the severity of
kidney injury [6,9,10]. In a murine model, hypoxia altered the ratio of aerobic/anaerobic population,
increased the quantity of strict anaerobes and total lactic acid bacteria [6]. In another experimental
setting of ischemia reperfusion injury, the balance between Rothia and Streptococcus genera was
associated with creatinine levels [10].

Gut microbiota affect not only the levels of certain uremic toxins but both adaptive and innate
immune responses. The numbers of natural killer T cells were higher in germ-free mice, AKI induction
resulted in a greater number of CD8 cells [5]. Th17 cells are also crucial in kidney injury, as they produce
1I-17 and directly induce renal inflammation by neutrophil activation and macrophage-mediated injury.
Emerging evidence shows that the immunomodulatory effects of the intestinal microbiota include
Th17 induction [28].

Another key link between the gut and the kidney is immunoglobulin A (IgA). It limits bacterial
association with the epithelium [29] and prevents bacterial penetration of host tissue [30]. The exact
mechanisms by which it works still remain unclear. Clues from research on IgA nephropathy also
point to existence of an IgA axis between the mucosa, the bone marrow, and the kidney. In that specific
disease, genome-wide association studies have identified risk loci in genes involved in the maintenance
of the intestinal epithelial barrier and response to mucosal pathogens. The genetic risk also strongly
correlates with microbiota variation, particularly helminth diversity [31]. The role of IgA in acute
kidney injury is still unknown.

Drugs used for kidney disease treatment also affect the gut-kidney axis. One of the examples is
oral iron, which increases gut microbial protein fermentation and in turn causes an increase in fecal
and plasma uremic toxin levels. Increase in gut transit time may further increase the levels of many
uremic toxins (such as phenols and indoles) [32,33]. The effect of many drugs used for AKI treatment
on microbiome remains largely unknown.

As all intestinal barriers, biological, physical, and immune barriers might become damaged
during kidney injury (the aforementioned “leaky gut hypothesis”), as levels of other toxins, mainly
inflammatory, rise. Circulating lipopolysaccharide and endotoxin levels are higher during AKI and
stimulate intrarenal inflammatory response [8].

A schematic review of the gut-kidney axis in AKI is shown in Figure 2.
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Figure 2. Gut-kidney axis in acute kidney injury (AKI, acute kidney injury; Hcy, homocysteine; IRi,
ischemia-reperfusion injury; LPS, lipopolysaccharide; TMAO, trimethylamine N-oxide).

4.2. Uremic Toxins

Healthy kidneys excrete a multitude of substances. In patients with CKD retention, these substances
occur. These substances, when they contribute to the development of uremia, are called uremic toxins.
They can be divided into three categories: small water-soluble, non-protein-bound molecules (such as
urea, guanidines, oxalate, TMAOQO, phosphorus), small, lipid-soluble or protein-bound molecules (such as
p-cresol sulfate, indoles, homocysteine), and the so-called middle molecules such as beta-2 microglobulin.
It is well-known that some of these toxins are produced by the microbiota. Dysbiosis leads to excessive
secretion of gut-derived uremic toxins, which in turn may further damage renal tubular cells [34].

Experimental evidence shows that selective modification of the microbiome might change the
uremic toxin profile, e.g., in mice, deleting the tryptophanase gene from Bacteroidetes present in the
digestive tract resulted in nearly undetectable indole sulfate levels [35]. Both indole sulfate and p-cresyl
sulfate are well-researched toxins and their levels correlate with cardiovascular events and mortality in
dialysis patients [36,37]. The levels of those toxins rise in acute kidney injury and correlate with RIFLE
classification of AKI severity [15]. In a prospective cohort study, serum indoxyl sulfate levels were also
associated with mortality in hospital-acquired AKI [14]. In a murine model, suppression of indole and
p-cresyl production by Lactobacillus salivarius protected against cisplatin-induced kidney injury [23].

Trimethylamine-N-oxide is a gut-derived metabolite of phosphatidylcholine and a known uremic
toxin. It directly enhances atherogenesis. There is a proven correlation between elevated TMAO levels
and major adverse cardiovascular events (death, myocardial infarction, or stroke) [38]. CKD patients
(including hemodialysis) with elevated TMAO levels have lower long-term survival [39,40]. Studies in
AKI on TMAO are still pending.
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Homocysteine (Hcy), a transmethylation product of metabolic conversion of methionine to
cysteine, is an extensively studied gut-derived uremic toxin. Hyperhomocysteinemia is implicated
in the progression of chronic kidney disease, and many cardiovascular complications [41,42]. In an
experimental murine model, it induced more severe cisplatin induced-AKI than in mice with normal
Hcy levels [7]. Unfortunately, secondary homocysteine lowering in a large randomized clinical trial
did not improve survival or reduce the incidence of vascular disease in patients with advanced chronic
kidney disease or end-stage kidney disease [43].

Acylcarnitines, metabolites of carnitine, are inversely correlated with blood pressure and
cholesterol levels in hemodialysis patients [44]. In another murine model an increase in the levels of
acylcarnitines was detected after ischemia-reperfusion injury of the kidney together with associations
of certain bacterial species and metabolite levels (Rothia and Staphylococcus abundance positively
correlated with severity of AKI) [10]. The exact mechanism is still unknown but suggests potential
targets for future therapeutic interventions.

Hippurate on the other hand is reported by some to be a metabolomic marker of gut microbiome
diversity [45]. In a 1994 study of 35 kidney transplant recipients, hippuric acid levels were significantly
higher in patients with acute allograft rejection. It was hypothesized that this is due to reduced
excretion; blood levels fell after successful antirejection treatment and microbiota composition was not
assessed [12] but it might be another suggestion warranting further research.

4.3. Potential Interventions

Simple nutritional interventions, that modify gut microbiota, might lower uremic toxin production.
Oral adsorbents, prebiotics, probiotics, synbiotics, eubiotics or fecal microbiota transplantation (FMT)
are possible therapeutic options (Figure 3).

Diet Probiotics

Adsorbents Prebiotics

FMT Synbiotics
Microbiota composition modification Y
Uremic toxin reduction L
olf78 AKI amelioration

Figure 3. Potential microbiota-targeting interventions in acute kidney injury (AKI, acute kidney injury;
FMT, fecal microbiota transplantation; OLF 78, olfactory receptor 78; ScFAs, short chain fatty acids).

One strategy to decrease gut-derived uremic toxins is adsorbent use. Oral uremic toxin adsorbents
are present on the market and have been proven to work. AST-120 (marketed as Kremezin®) binds
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many low-molecular-weight compounds with superior adsorption of p-cresol sulfate and indoles.
In some human phase II and phase III studies it slowed CKD progression, but unequivocal results
have not been demonstrated [46,47]. In a murine model, treatment with AST-120 reduced indole levels
and decreased renal expression of mRNAs of injury-related markers [19].

Prebiotics are defined as “selectively fermented ingredients that result in specific changes in the
composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host
health” [48]. The role of different prebiotics in CKD has been studied with promising results; in a
prospective crossover single-blind study gum arabic fiber combined with low-protein diet patients
had lower serum urea nitrogen levels [49]. We have not found any studies on the use of prebiotics
in AKI a trial NCT03877081 on the effect of probiotics and prebiotics on renal function in septic
acute kidney injury patients is registered on ClinicalTrials.gov [50]. On the other hand, anaerobic
fermentation of prebiotics results in the production of short chain fatty acids: acetate, butyrate and
propionate. SCFAs are recognized as potential mediators modifying intestinal immune function (they
modulate inflammatory gene expression, chemotaxis, cell differentiation, proliferation and apoptosis
and also improve the course of many inflammatory diseases) [51]. Many experimental studies in
mice have shown that SCFAs (especially acetate and butyrate) administration improves outcomes of
acute kidney injury [16-18,22]. The potential mechanisms need more elucidation, but as a decrease in
apoptosis and increase in autophagy together with an increase in mitochondrial DNA content have
been shown [16,18], it might be energy conservation and improvement of mitochondrial energetics.
The role of olfactory receptor 78 (0lf78), a type G protein-coupled receptor that is expressed in the
juxtaglomerular apparatus and modulates renin secretion in response to SCFAs, is underlined in some
studies [52].

Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health
benefit on the host” [53]. Small experimental studies demonstrate that Lactobacillus salivarius or a
microbial cocktail may ameliorate acute kidney injury [23,24]. This seems to be in contrast to studies
showing that broad-spectrum antibiotics protected against AKI [20], although further elucidation is
needed, as we do not know the exact microbiota content after antibiotic treatment (a possibility exists
that protective bacteria genres were spared).

Synbiotics are nutritional supplements that combine both prebiotics and probiotics. In small
human CKD studies showed lower concentrations of p-cresol but not indoxyl sulfate after synbiotic
use, although results are inconclusive [54,55]. Studies in AKI are lacking.

Substances, which induce homeostatic changes in the intestinal microbiota or eubiosis are
sometimes called eubiotics. Rifaximin-a poorly absorbed antibiotic lowered TMAO levels in mice [56]
but in a randomized control trial in CKD patients failed to lower TMAO, p-cresol sulfate, indoxyl
sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines but did decrease bacterial
richness and diversity [57]. A retrospective study that analyzed patients with hepatic cirrhosis found
a reduced incidence rate of AKI and hepatorenal syndrome and a lower need for renal replacement
therapy [25].

Fecal microbiota transplant is widely accepted as definitive treatment of Clostridioides difficile
infection [58]. A recently completed trial NCT04361097 registered on ClinicalTrials.gov has evaluated
fecal microbiota transplantation in CKD, results are as yet unknown [59], another similar trial is currently
recruiting [60]. As yet, there is no data on FMT in AKI, but it remains a possible therapeutic strategy.

5. Conclusions

In the beginning of the 20th century, Ilya Ilyich Metchnikoff hypothesized that the human colon
functioned only as a waste reservoir, where microbiota produced only “fermentations and putrefaction
harmful to the host” [61]. Today the paradigm is completely changing. Increased data provide
evidence of existence of a gut-kidney axis in acute kidney injury, mediated in part by uremic toxins.
Experimental studies provide concepts that modification of the microbiota composition may result in
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better AKI outcomes. Small interventional studies in animal models and in humans show promising
results, therefore microbiome-targeted therapy for AKI treatment is a promising possibility.

6. Materials and Methods

We undertook a systematic search of MEDLINE through PubMed and COCHRANE LIBRARY
database from inception to October 10, 2020.
We searched both with individual keywords and Medical Subject Headings (MeSH) with all

v

subheadings included. Individual keywords used were “acute kidney injury”, “acute renal failure”,

v v ”oou v

“microbiota”, “microbiome”, “uremic toxins”, “gut-derived toxins”, “nephrotoxicity”. MeSH terms
included were “acute kidney injury”, “microbiota”, and “uremia middle molecule toxins”. The terms
were combined individually using the Boolean operator “AND”. In addition, the references of
eligible papers were searched manually for additional records. The results were merged together with
duplicates discarded. Remaining articles were screened for relevance (based on their title, abstract,
or full text). All articles on the subject of microbiota and gut-derived uremic toxins in the course of acute
kidney injury were included due to paucity of data: original studies and reviews/perspectives were
both experimental and human. Articles were excluded only if they were clearly related to other subject
matters or were not published in English, French, or German. Additionally, ClinicalTrials.gov was
searched with simple keywords (kidney, microbiome, microbiota, gut-derived) for currently registered
and active studies.
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